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Autophagy, a catabolic degradation system, is utilized for destroying and recycling the
damaged or unnecessary cellular components. Brain plasticity refers to the remarkable
characteristics of brain neurons that change their structure and function according
to previous experience. This review was performed by searching the relevant articles
in databases of SCIENCEDIRECT, PUBMED, and Web of Science, from respective
inception to January 2019. Here, we review the neuroprotective effect of autophagy
in neurological diseases and the mechanism of autophagy in brain plasticity. Moreover,
the mechanism of autophagy in the process of brain plasticity can provide the possibility
for the development of new treatment methods in the future, thus benefiting patients
with neurological diseases. In summary, autophagy and brain plasticity play important
roles in neurological diseases.

Keywords: autophagy, brain plasticity, neuroprotective effect, signal pathway, neurological disease

INTRODUCTION

Autophagy is a lysosome-reliant degradation mechanism that regulate many biological courses,
such as neuroprotection and cellular stress reactions (Shen and Ganetzky, 2009). There are different
kinds of autophagy in most mammalian cells, and each type of autophagy performs very specific
tasks in the course of intracellular degradation (Tasset and Cuervo, 2016). The autophagy-lysosomal
pathway is a main proteolytic pathway, which mainly embraces chaperone-mediated autophagy
and macroautophagy in mammalian systems (Xilouri and Stefanis, 2010). Macroautophagy, as a
lysosomal pathway in charge of the circulation of long-lived proteins and organelles, is mainly
considered as the inducible course in neurons, which is activated in conditions of injury and
stress (Boland and Nixon, 2006). Coupled with macro-autophagy, chaperone-mediated autophagy
(CMA) is crucial for maintaining intracellular survival and homeostasis via selectively reducing
oxidized, misfolded, or degraded cytoplasmic proteins (Cai et al., 2015).

The plasticity of the central nervous system(CNS) can be regarded as changes of functional
interaction between different types of cells, astrocytes, neurons, and oligodendrocytes (Aberg et al.,
2006). The mature brain, as a highly dynamic organ, constantly alters its structure via eliminating
and forming new connections. In general, these changes are known as brain plasticity and are
related to functional changes (Viscomi and D’Amelio, 2012). Brain plasticity can be divided into
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structure plasticity and function plasticity. The structural
plasticity of the brain refers to the fact that the connections
between synapses and neurons in the brain can be established
due to the influence of learning and experience. It includes
the plasticity of synapses and neurons. Synaptic plasticity
refers to the changes of pre-existing relationship between
two neurons including structure and function alteration (De
Pitta et al., 2016). Synaptic plasticity is considered as the
representative of cellular mechanisms of memory and learning.
Mitochondria are related to the modulation of complicated
course of synaptic plasticity (Todorova and Blokland, 2017).
For a long period, synaptic plasticity has been considered as
a neuronal mechanism under the regulation of neural network
action (Ronzano, 2017). Recent data indicate that autophagy
is a homeostatic mechanism which is compatible with the
microenvironment of the synapse, with the purpose of serving
local functions linked with synaptic transmission (Todorova and
Blokland, 2017). Neuronal plasticity is maintained by the fine
modulation of organelle biogenesis and degradation and protein
synthesis and degradation to assure high-efficiency turnover
(Viscomi and D’Amelio, 2012). Protein degradation plays an
important role in the course of synaptic plasticity, but the
involved molecular mechanisms are unclear (Haynes et al.,
2015). Therefore, Autophagy is a quality control mechanism
of organelles and proteins in neurons, which plays a crucial
role in their physiology and pathology (Viscomi and D’Amelio,
2012). In a word, there is a close relationship between
autophagy and brain plasticity, and the related mechanisms
are summarized in this review paper (as Table 1 and
Figure 1 demonstrate).

THE NEUROPROTECTIVE EFFECT
OF AUTOPHAGY IN
NEUROLOGICAL DISEASES

Autophagy is involved in the occurrence and treatment for
a series of neurological diseases. However, there are only
sporadic reports for the relationship between autophagy and
some types of the neurological diseases, which have not been
accumulated enough to be reviewed. Therefore, in this review,
we summarize the relationship between autophagy and brain
plasticity in stroke, traumatic brain injury, cerebral tumor, and
neurodegenerative diseases.

Autophagy and Stroke
Autophagy plays different roles in various conditions, and
both autophagy activation and autophagy inhibition could exert
neuroprotective effects in the process of stroke.

The Neuroprotective Effect of Autophagy
Activation in Stroke
The co-modulation of autophagy and apoptosis is involved
in ischemic stroke (IS)-induced injuries, and apoptosis and
mitochondrial autophagy play an important role in this
process (Guo Y. et al., 2017). RIPer (Remote ischemic

perconditioning) has obvious neuroprotective effect on cerebral
ischemia reperfusion injury in rats, and the autophagic lysosomal
pathway is activated by RIPer. Autophagy activation promotes
the neuroprotective effect of RIPer on focal cerebral ischemia
in rats (Su et al., 2014). Liu et al. (2018b) report that
activation of autophagy flux in astrocytes might conduce to
neural recovery mechanisms and endogenous neuroprotective
following stroke. Nampt promotes neuronal survival via inducing
autophagy by modulating the TSC2-mTOR-S6K1 signaling
pathway in a SIRT1-reliant manner during cerebral ischemia
(Wang et al., 2012).

The Neuroprotective Effect of Autophagy
Inhibition in Stroke
There is increasing evidence that autophagy dysfunction
leads to the accumulation of damaged organelles and/or
abnormal proteins. This accumulation is associated with
synaptic functional disorder, neuronal death, and cellular
stress (Xilouri and Stefanis, 2010). RIPreC (Remote ischemic
preconditioning) + IPOC(ischemic post-conditioning) reduced
the plasma HMGB1 level to exert its neuroprotective effect
on cerebral ischemia reperfusion injury by suppressing the
autophagy process (Wang et al., 2016a). SMXZF, which is a
kind of compound extracted from Chinese traditional medicine,
plays a neuroprotective part in focal ischemia-reperfusion
injury, which might be related to the autophagy inactivation
via AMPK/mTOR and JNK pathways (Guo et al., 2014).

TABLE 1 | The summary for involved signal pathways for the neuroprotective
effect via regulating autophagy.

References Pathway Neuroprotective
effect via activating /
inhibiting autophagy

Diseases

Wang et al.,
2012

TSC2-mTOR-
S6K1

Activating Cerebral
ischemia.

Guo et al.,
2014

AMPK/mTOR
and JNK
pathways

Inhibiting Ischemia-
reperfusion
injury

Chen et al.,
2018

mTOR/p70S6K Inhibiting Ischemia/
reperfusion injury

Jiang J.
et al., 2018

mTOR/Ulk1 Inhibiting Ischemic stroke

He et al.,
2018

PI3K/AKT Activating Traumatic Brain
Injury

Feng et al.,
2017

PERK and IRE1 Inhibiting Ischemic stroke

Shen et al.,
2017

AMPK Activating Stroke

Wang et al.,
2014

MiRNA-30a Activating Ischemic stroke

Zhou et al.,
2011

Gsk-3 Activating Ischemic brain
injury

Zhang Y.
et al., 2016

MiR-214-3p Inhibiting Sporadic
Alzheimer’s
disease

Hu et al.,
2017

ATG5 Activating Parkinson’s
Disease
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FIGURE 1 | The related important factors of autophagy and brain plasticity.

Guo D. et al. (2017) demonstrate for the first time that
suppression of MALAT1 reduces beclin1-reliant autophagy via
regulating the expression of mir-30a in cerebral IS, thereby
reducing neuron cell death. Moreover, autophagy is regulated
by mammalian target proteins in the PI3K/AKT/mTOR/p70S6K
signaling pathway (Fan et al., 2015). RIPostC could suppress
autophagy via activating the mTOR/p70S6K signaling pathway,
thus reducing the brain I/R damage (Chen et al., 2018).
Vitexin regulated autophagy dysfunction to alleviate MCAO-
induced cerebral IS through mTOR/Ulk1 pathway (Jiang J.
et al., 2018). The increasing evidence indicates that the AMPK-
mTOR signaling pathway mediates the autophagy activity
by the coordinated phosphorylation of ULK1 (Wang et al.,
2018). Zheng et al. (2012) have demonstrated that NAD(+)
administration reduced ischemic brain injury at least partly
via inhibiting autophagy. LncRNA H19 inhibits autophagy
through dusp5-erk1/2 axis. Blood samples from patients with
IS showed that H19 gene mutation increased the risk of
IS. LncRNA H19 could be a novel therapeutic target for IS
(Wang et al., 2017a).

In summary, different studies obtained various results for
the role of autophagy in the process of stroke, and further
studies are required to explore the relationship between
autophagy and stroke.

Autophagy and Traumatic Brain Injury
Similar to the relationship between autophagy and stroke, the
relationship between autophagy and traumatic brain injury is
also not simple. Both inhibition and activation of autophagy
could exert neuroprotective effects following the occurrence of
traumatic brain injury.

The Neuroprotective Effect of Autophagy Activation
in Traumatic Brain Injury (TBI)
The promotion of autophagy and neuronal apoptosis are related
to the secondary neural injury after Traumatic Brain Injury (TBI).
Sevoflurane post-conditioning regulates autophagy through
PI3K/AKT signaling, which alleviates the TBI-triggered neuronal
apoptosis (He et al., 2018). Zhang L. et al. (2016) for the first time
reveal that FTY720 plays a neuroprotective role following TBI, at
least partially through the activation of the PI3K/AKT pathway
and autophagy. In addition, Melatonin promotes autophagy,
and suppresses mitochondrial apoptosis pathway, thus alleviating
secondary brain injury of mice following traumatic brain injury
(Ding et al., 2015). RIPoC alleviates brain IR injury via activating
AMPK-reliant autophagy (Guo et al., 2018). Calcitriol treatment
promotes the expression of VDR protein and alleviated the neural
defect in the TBI model of rats. Its protective effect might be
related to the decrease of apoptosis and the recovery of autophagy
flux in the cortex area of rat brain (Cui et al., 2017). HS (heat
stroke) can lead to brain injury via impaired autophagy flux
and lysosomal dysfunction, and HA (heat acclimation) has a
protective exerts neuroprotection on HS-induced brain injury
through the mechanism of autophagy - lysosomal pathway
(Yi et al., 2017).

The Neuroprotective Effect of Autophagy Inhibition in
Traumatic Brain Injury
The autophagy pathway is associated with the pathophysiological
reactions following TBI, and suppression of this pathway might
contribute to the alleviation of traumatic injury and functional
outcome defects (Luo et al., 2011). Melatonin administration
before ischemia could notably alleviate brain IR damage by
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suppressing ER stress-reliant autophagy (Feng et al., 2017).
The over-expression of mir-27a may mitigate brain injury by
inhibiting Foxo3a-regulated neuronal autophagy after TBI (Sun
et al., 2017). Jiang H. et al. (2018) report that the down-
regulation of TLR4 improves the neuroinflammatory response
and brain injury following TBI by inhibiting astrocyte activation
and autophagy induction. Therefore, the effect of activation and
inhibition of autophagy on traumatic brain injury should be
further clarified before future clinical applications.

Autophagy and Neurodegenerative
Disease
Autophagy is the core regulator of central nervous system
senescence and neurodegeneration. The delivery of organelles
and toxic molecules to lysosomes by autophagy is critical for
the health and survival of neurons (Plaza-Zabala et al., 2017).
Most of the neurodegenerative diseases that perplex humans
are related to the intracytoplasmic deposition of proteins that
tend to accumulate in neurons, and autophagy is a powerful
process for removing these proteins (Frake et al., 2015).
Autophagy up-regulation is a promising treatment due to its
potential to protect cells from the toxicity of accumulated
proteins in neurodegenerative diseases (Karabiyik et al., 2017).
Autophagy-regulated degradation of synaptic elements sustains
synaptic homeostasis but also involves in a mechanism of
neurodegeneration (Luningschror et al., 2017). Autophagy is
vital for neuronal integrity, and the reduction of important
autophagic components results in the structural defects and
progressive neurodegenerative changes in pre- and post-synaptic
morphologies (Nikoletopoulou et al., 2017). It is demonstrated
that autophagy defects arise in the early stage of Alzheimer’s
disease (AD) (Li et al., 2017). A considerable amount of evidence
indicates that the p38-mitogen-activated protein kinase (MAPK)
signaling pathway plays an important part in neurodegenerative
diseases and synaptic plasticity (Correa and Eales, 2012). MiR-
181a regulates apoptosis and autophagy in PD(Parkinson’s
Disease) by inhibiting the p38 MAPK/JNK pathway (Liu Y. et al.,
2017). In addition, RhEPO may alleviate hippocampal injury in
epileptic seizure rats via regulating autophagy in a time-reliant
manner through the S6 protein (Li et al., 2018).

In summary, autophagy has a close relationship with
neurodegenerative disease, and activation of autophagy could
improve the neurodegenerative changes, which might be a novel
target in clinical treatment for such diseases.

Autophagy and Cerebral Tumor
The role of autophagy in tumor cell survival and death has
attracted much attention in recent years (Noonan et al., 2016). As
for glioblastoma (GBM), the most lethal tumor of the CNS, there
is increasing evidence that the autophagy process is closely related
to the tumorigenesis of GBM (Jawhari et al., 2017). Glioblastoma
multiform is the most common and invasive primary brain
tumor. Due to its adaptive ability of autophagy, it is highly
resistant to various treatments (Jawhari et al., 2017). (Gammoh
et al. (2016) elucidate that autophagy is the key to the occurrence
and growth of GBM, which is an important therapeutic target

for the treatment of GBM. The inhibition of autophagy is a
promising strategy against GBM, and ATG9 is identified as a
new target for hypoxic-induced autophagy (Abdul Rahim et al.,
2017). Autophagy played a critical role in the formation of
vasculogenic mimicry(VM) via Glioma stem cells (GSCs), which
could be used as a therapeutic target for drug-resistant gliomas
(Wu et al., 2017). The inhibition of autophagy promotes the anti-
tumor activity of ibrutinib in GBM. Wang et al. (2017b) provides
important insights into the role of anticancer drugs combined
with autophagy inhibitors in the treatment of GBM.

In summary, autophagy provides new therapeutic
expectations for cerebral tumor which is a big challenging for
human. Therefore, the application of novel therapy for cerebral
tumor on the basis of autophagy mechanisms elucidation should
be explored in depth.

THE MECHANISM OF AUTOPHAGY IN
BRAIN PLASTICITY

The Role of Mammalian Target of
Rapamycin (mTOR) in the Relationship
Between Autophagy and Brain Plasticity
Brain Plasticity and mTOR
The mTOR-controlled signaling pathways regulate many
integrated physiological functions of the nervous system
including neuronal development, synaptic plasticity, memory
storage, and cognition (Bockaert and Marin, 2015). Mammalian
target of rapamycin, as a protein kinase, is implicated in long-
lasting synaptic plasticity and translation control of synapse
(Hoeffer and Klann, 2010). It is reported that mTOR modulates
many functions in the process of brain development, including
proliferation, differentiation, migration, and dendrite formation.
Moreover, mTOR plays an important role in the formation and
plasticity of synapses (LiCausi and Hartman, 2018). Moreover,
the mammalian target of rapamycin complex 1 (mTORC1) is
a key modulator for cap-dependent protein synthesis, which is
necessary for many forms of long-lasting memory and long-
term synaptic plasticity (Santini et al., 2014). Therefore, it is
demonstrated that mTOR plays a key role in the process of
brain plasticity.

Autophagy and mTOR
As a key regulator of autophagy, the mTOR plays an important
role in autophagy, translation, cell growth and survival (Hwang
et al., 2017). Mammalian target of rapamycin and autophagy are
tightly bound within cells, and defects of mTOR and autophagy
process might lead to a variety of human diseases (Hoeffer
and Klann, 2010). Studies have shown that mTOR is widely
involved in autophagy activation and synaptic plasticity (Ryskalin
et al., 2018). The mTOR modulates long-lasting synaptic
plasticity, memory and learning via regulating the synthesis
of dendritic proteins (Liu et al., 2018a). Macroautophagy
can degrade organelles and long-lived proteins in case of
mTOR inactivation. Synaptic plasticity is further modulated by
mTOR and neurodegeneration occurs when macroautophagy

Frontiers in Cellular Neuroscience | www.frontiersin.org 4 May 2019 | Volume 13 | Article 228

https://www.frontiersin.org/journals/cellular-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-13-00228 June 6, 2019 Time: 13:40 # 5

Wang et al. Autophagy and Brain Plasticity

is absent (Hernandez et al., 2012). Therefore, macroautophagy
following mTOR inactivation at the presynaptic terminal rapidly
changes the neural transmission and presynaptic structure
(Hernandez et al., 2012). The mechanisms for the target of
rapamycin have been involved in modulating neurodegeneration
and synaptic plasticity, but the role of mTOR in regulating
presynaptic function via autophagy has not been clarified clearly
(Torres and Sulzer, 2012).

In summary, there is a close relationship among mTOR,
brain plasticity and autophagy. The mTOR related pathways
play important role in regulating the process of autophagy and
brain plasticity.

The Related Signaling Pathways of
Autophagy and Brain Plasticity
The PI3K/Akt Pathway
Autophagy acts as a central mediator of cellular disease and
health, and this self-balancing process seems to affect synaptic
growth and plasticity in the CNS (Alirezaei et al., 2011). The
inhibition of autophagy was necessary for memory improvement
and for brain-derived neurotrophic factor (BDNF)-caused
synaptic plasticity under the circumstances of nutritional stress,
indicating that autophagy was a key component of BDNF
signaling pathway, which was critical to BDNF-induced synaptic
plasticity (Nikoletopoulou et al., 2017). The BDNF-activated ILK-
Akt and PI3K-Akt signaling pathway play an important role in
structural synaptic plasticity (Li et al., 2012). The activation of
PI3K/Akt pathway might conduce to the memory consolidation
and mechanisms of synaptic plasticity via increasing protein
synthesis via mTOR pathway and promoting cell survival through
FKHR pathway (Horwood et al., 2006). (Xu et al. (2017)
reported that the neuroprotection of L-3-n-Butylphthalide (L-
NBP) in attenuating learning and memory deficits in mice
after repeated cerebral ischemia-reperfusion (RCIR) might be
associated with the modulation of the expressions of proteins
involved in apoptosis and autophagy and the promotion of
Akt/mTOR signaling pathway. Moreover, the activation of
PI3 kinase-Akt signaling pathway played an important role
in promoting the survival of newly generated granule cells
originated during exercise and the related increase of synaptic
plasticity of dentate gyrus through an anti-apoptosis function
(Bruel-Jungerman et al., 2009). Tetrahydrocurcumin alleviated
the damage on neurons against TBI-induced apoptotic neuronal
death, possibly through regulating autophagy and the PI3K/AKT
pathway (Gao et al., 2016).

Moreover, neuronal stimulation led to NMDA receptor
(NMDAR)-dependent autophagy via PI3K-Akt-mTOR pathway
suppression, which might work in AMPA receptor (AMPAR)
degradation, thus showing autophagy as a promoting factor to
brain functions and NMDAR-reliant synaptic plasticity (Shehata
et al., 2012). Curcumin exerts neuroprotective role through
regulating the PI3K/Akt/mTOR pathway and down-regulating
the autophagy activities (Huang et al., 2018). However, the
interaction between the PI3K/AKT/mTOR pathway and the
autophagy process is complicated, more detailed studies on the
mechanism of disease as well as animal and cell models is needed.

The MAPK/Erk Pathway
There is increasing evidence that MAPKs can regulate
autophagy/macroautophagy (Wang et al., 2016b). MAPK/ErK
and p38 play key roles in the strict control of the autophagy
process during maturation (Corcelle et al., 2007). In addition,
some studies have shown that mitophagy requires MAPKs
MAPK1/ERK2 and MAPK14/p38 (Hirota et al., 2015). As a
protein kinase, MAPK/Erk is mobilized by neurotrophic factors
involved in synaptic plasticity and formation, acting at both
the cytoplasmic and nuclear levels (Giachello et al., 2010). The
activity-reliant short-term plasticity and formation of these
synapses are relied on the MAPK/Erk pathway (Giachello et al.,
2010). Recently, there is increasing evidence that Ras and MAPK
signaling plays a key role in neuronal function related to synaptic
plasticity (Mazzucchelli and Brambilla, 2000).

In summary, the related signaling pathways of autophagy and
brain plasticity has not be well clarified, which is worthy of
further exploration.

THE ROLE OF AUTOPHAGY
MECHANISM IN THE TREATMENT OF
NERVOUS SYSTEM DISEASES

The dysfunction of autophagy pathway is related to a variety
of neuropathologic conditions, and numerous studies
have demonstrated that autophagy is a potential target for
pharmacological regulation of neuroprotection (Russo et al.,
2015). Autophagy and AMPK play a key role in CSD-induced
ischemic tolerance. AMPK-regulated autophagy might be a novel
target for stroke (Shen et al., 2017). Wang et al. (2014) report
that the suppression of mirna-30a ameliorates ischemic injury
by enhancing beclin1-regulated autophagy, which represents
a possible therapeutic target for IS. Gsk-3 depressor hinders
neuroinflammation following ischemic brain injury via activating
autophagy, thereby providing a novel target for the prevention
of ischemic brain damage (Zhou et al., 2011). (Peng et al. (2018)
definitely indicates that mitofusin 2 mitigates I/R injury primarily
by promoting autophagy, providing a potential new strategy for
the neuroprotection of brain I/R injury. In addition, miR-214-3p
inhibits autophagy and reduces the apoptosis of hippocampal
neurons, suggesting that miR-214-3p is a new potential target
for sporadic Alzheimer’s disease (SAD) (Zhang Y. et al., 2016).
The effect of autophagy related gene 5 (ATG5) in protecting
dopaminergic neurons in zebrafish PD model is induced by
1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine (MPTP) (Hu
et al., 2017). Autophagy is closely related to the occurrence
and development of various neurological diseases in humans.
Therefore, the study of autophagy mechanism has important
clinical significance for the diagnosis of diseases and the search
for new drug targets.

CONCLUSION

Brain plasticity is one of the most fundamental mechanism
for neural function recovery following neurological diseases.
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Autophagy is a crucial lysosome-reliant degradation process that
controls various physiological and pathological courses in the
brain. The summary for the interaction of autophagy and brain
plasticity might provide novel therapy targets for neurological
diseases, thus benefiting the patients in clinic.
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