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Background: Schizophrenia risk genes are widely investigated, but a systemic analysis of
miRNAs contributing to schizophrenia is lacking.

Methods: Schizophrenia-associated genetic loci profiles were derived from a genome-
wide association study (GWAS) from the Schizophrenia Working Group of the Psychiatric
Genomics Consortium (PGC) dataset. Experimentally confirmed relationships between
miRNAs and their target genes were retrieved from a miRTarBase. A competitive gene set
association analysis for miRNA-target regulations was conducted by the Multi-marker
Analysis of GenoMic Annotation (MAGMA) and further validated by literature-based
functional pathway analysis using Pathway Studio. The association between the targets
of three miRNAs and schizophrenia was further validated using a GWAS of antipsychotic
treatment responses.

Results: Three novel schizophrenia-risk miRNAs, namely, miR-208b-3p, miR-208a-3p,
and miR-494-5p, and their targetomes converged on calcium voltage-gated channel
subunit alpha1 C (CACNA1C) and B-cell lymphoma 2 (BCL2), and these are well-known
contributors to schizophrenia. Both miR-208a-3p and miR-208b-3p reduced the
expression of the RNA-binding protein Quaking (QKI), whose suppression commonly
contributes to demyelination of the neurons and to ischemia/reperfusion injury. On the
other hand, both QKI and hsa-miR-494-5p were involved in gliomagenesis.

Conclusion: Presented results point at an orchestrating role of miRNAs in the
pathophysiology of schizophrenia. The sharing of regulatory networks between
schizophrenia and other pathologies may explain higher cardiovascular mortality and
lower odds of glioma previously reported in psychiatric patients.
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INTRODUCTION

Schizophrenia, a common psychiatric condition characterized by
abnormal social behavior and failure to understand reality, affects up
to 1% of the human population and causes substantial morbidity
and mortality (Barnett, 2018). It is a complex disorder with an
estimated heritability of around 80% and an unclear mode of
genetic transmission (Hilker et al., 2018). There are many risk
genes for schizophrenia, and there is a very small risk attributed to
each one (Winchester et al., 2014; Li et al., 2016). In the largest
multi-stage genome-wide schizophrenia association study to date,
with 34,241 cases, 45,604 controls, and 1,235 affected parent–
offspring trios, a total of 128 independent associations spanning
108 conservative loci were identified (Ripke et al., 2014), many of
which were consistent with leading pathophysiological hypotheses
of schizophrenia development.

It is worth noting that schizophrenia rarely results from the
disruption of an individual gene, or even a contiguous
chromosomal region. On the contrary, this condition is
commonly attributed to the concerted and stable dysregulation
of a complex genetic network or a set of networks (Gilman et al.,
2012). Because of that, the dysregulation of master regulatory
molecules, such as miRNAs, is expected to play a crucial role in the
pathogenesis of schizophrenia. Indeed, altered levels of miRNA in
the brain, in peripheral blood mononuclear cells, and in serum are
found in patients with schizophrenia (Xu et al., 2010; Wang et al.,
2014). Consequently, miRNAs that systemically regulate the genes
contributing to the risk of schizophrenia may be of particular
importance to its pathophysiology.

In this study, we investigated the miRNA-target gene set
associated with schizophrenia with a goal of pinpointing
potential master miRNA regulators of the gene networks
associated with this disorder. To do that, we selected all
experimentally confirmed miRNA–target interactions
(MTIs) previously col lected in a manually curated
miRTarBase (Huang et al., 2020), and we then linked them
to a schizophrenia-related tissue context through performing
a MAGMA analysis (de Leeuw et al., 2015) of confirmed genes
rather than miRNAs itself. The finding was validated by PPI
network building and an analysis of secondary GWAS datasets
concerning differential antipsychotic treatment responses.
Our study prioritizes three miRNAs, miR-208a, miR-208b,
and miR-494, as potential high-level regulators of
schizophrenia phenotypes.
METHODS AND MATERIALS

Experimentally Confirmed Pairs of miRNA
With Their Target Genes
In order to get the most reliable connection, only miRNA–target
pairs supported by strong experimental evidence (reporter assay
or Western blot) were retrieved from miRTarBase 7.0. (http://
mirtarbase.mbc.nctu.edu.tw/php/download.php) (Chou
et al., 2017).
Frontiers in Genetics | www.frontiersin.org 2
Competitive Gene Set Association and
Literature-Based Pathway Analysis
A Multi-marker Analysis of GenoMic Annotation (MAGMA)
based on a multiple linear principal components regression
model was previously designed to analyze the gene set
association involved in genome-wide association studies
(GWAS) data (de Leeuw et al., 2015). For each miRNA, its
target genes were treated as a gene set, and then the competitive
MAGMA-based gene-set analysis was utilized to test the
association of each gene set using the summary statistics from
the PGC2 GWAS (Ripke et al., 2014). The European samples
from the 1,000 Genomes data (http://www.1000genomes.org)
were used as reference data sets for the summary statistics gene
analysis. Potentially confounding effects of gene size and gene
density were treated as covariates in a generalized regression
model. Multiple comparisons were corrected by a threshold of
the false discovery rate (FDR) < 0.05. Then, significantly
associated miRNA target sets were validated using the
summary result of a GWAS of antipsychotic treatment
responses in 2,413 schizophrenia patients (Yu et al., 2018).
East Asian samples from the 1,000 Genomes data (http://
www.1000genomes.org) were used as reference data sets for the
summary statistics gene analysis.

The literature-based pathway analysis has been conducted using
Pathway Studio (www.pathwaystudio.com), which allowed us to
explore potential functional connections of miRNAs, their targets
and schizophrenia by providing high-quality coverage of these
connections with evidence extracted from full-text scientific reports.
RESULTS

miRNA–Target Gene Regulating
Relationships
A total of 8,496 unique miRNA–target pairs were retrieved from
miRTarBase, involving 740 miRNAs and 2,853 target genes
(Supplementary Table S1). After exclusion of all miRNAs
with only one target gene each, a total of 539 miRNAs with
two or more targets each were subjected to a gene set association
analysis. For each miRNA, its target genes formed a gene set (N =
539). Taken together, all gene sets were comprised of 2,726
unique genes defined in PGC2 genotype data (Supplementary
Table S2). The statistics describing miRNA–target gene
regulations are shown in Table 1.

Novel miRNAs Contributing to the Risk
of Schizophrenia
Competitive gene set association analysis conducted by MAGMA
identified three miRNAs as significantly associated with
schizophrenia, namely, hsa-miR-208b-3p (miR-208b) (p = 2.04E-
10, FDR = 1.10E-7), hsa-miR-494-5p (miR-494) (p = 1.72E-4,
FDR = 0.031), and hsa-miR-208a-3p (miR-208a) (p = 1.75E-4,
FDR = 0.031). An analysis of expression for these miRNAs was
performed in a comprehensive miRmine dataset (Panwar et al.,
2017) that was comprised of 304 high-quality microRNA
March 2020 | Volume 11 | Article 149
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sequencing experiments. Two of the three miRNAs studied,
namely, miR-208b-3p and miR-494-5p, were expressed in various
brain tissues at substantial levels. Notably, the expression pattern of
miR-208b-3p was restricted to brain and plasma, while miRNA
miR-208a-3p was specific to serum, plasma, and placenta. While
neither heart nor muscle has been covered by the miRmine dataset,
a body of work has demonstrated the importance of miR-208a-3p
andmiR-208b-3p asmyoMiRs, expressed in heart tissues along with
their myosin heavy chain encoding genes MYH6 and MYH7,
respectively (Siddique et al., 2016).

Table 2 presents a list of target genes regulated by these three
miRNAs. Interestingly, all three highlighted miRNAs directly
target CDKN1A, pointing to its possible function as a hub gene
in the pathology of schizophrenia.

Multiple Functional Pathways Link the
Three miRNAs to Schizophrenia
A Pathway Studio (www.pathwaystudio.com) analysis provided
evidence for multiple functional pathways that link miR-208b-3p
(Figure 1A), miR-208a-3p (Figure 1B), and miR-494-5p
Frontiers in Genetics | www.frontiersin.org 3
(Figure 1C) to schizophrenia. The relation types and the
reference information are presented in Supplementary Table
S3. Notably, all three schizophrenia-implicated networks
regulated by miRNA included BCL2, a well-known regulator of
apoptosis and mitochondrial dynamics, and a calcium
voltage-gated channel subunit alpha1 C (CACNA1C), one of
the L-type calcium channels (LTCCs) defining the calcium influx
into cells, and these are critical for normal brain development
and plasticity (Figure 1).

Protein–Protein Interaction Among Target
Genes of the Three miRNAs
A protein–protein interactions (PPIs) analysis was conducted to
study the relationship between the target genes of the three
miRNAs (miR-208a, miR-208b, and miR-494), as shown in
Figure 2. The relation data shown in Figure 2 were acquired
from STRING v10.0 (Szklarczyk et al., 2017) and plotted using
Cytoscape (Shannon et al., 2003).

As shown in Figure 2, the three miRNAs connect to each
other through a complex but relatively compact network through
TABLE 1 | miRNA–target gene sets associated with schizophrenia.

miRNA nGenes Beta S.E. p FDR

miR-208b-3p 4 3.8 0.607 2.04E-10 1.10E-07
miR-494-5p 3 2.53 0.708 1.72E-04 0.031
miR-208a-3p 8 1.43 0.4 1.75E-04 0.031
miR-146b-5p 17 0.886 0.275 6.52E-04 0.088
miR-599 2 2.73 0.881 9.81E-04 0.106
miR-4782-3p 3 2.13 0.812 4.40E-03 0.364
miR-466 2 2.68 1.05 5.37E-03 0.364
miR-21-5p 131 0.233 0.092 5.89E-03 0.364
miR-126-3p 43 0.389 0.155 6.08E-03 0.364
miR-29c-5p 4 1.32 0.541 7.30E-03 0.369
miR-33a-5p 31 0.425 0.179 8.68E-03 0.369
miR-153-5p 4 1.41 0.592 8.70E-03 0.369
miR-10a-5p 20 0.574 0.242 8.90E-03 0.369
March 2020 | Volume 11 | A
nGenes: the number of target genes for the miRNA; Beta, the regression coefficient for target gene set analysis; S.E., the standard error of the regression coefficient; FDR, the false
discovery rate.
TABLE 2 | Experimentally confirmed target genes of the three miRNAs contributing to the risk of schizophrenia.

miRNA Target Experiments PMID

miR-208a-3p CACNA1C Luciferase reporter assay 27545043
miR-208a-3p CACNB2 Luciferase reporter assay 27545043
miR-208a-3p CDKN1A qRT-PCR//Luciferase reporter assay//Western blot 20190813
miR-208a-3p CDKN1A Luciferase reporter assay//Western blot 26754670
miR-208a-3p ETS1 Luciferase reporter assay//Microarray//qRT-PCR//Western blot 20576608
miR-208a-3p MED13 Luciferase reporter assay//qRT-PCR//Western blot 17379774
miR-208a-3p PDCD4 Luciferase reporter assay//qRT-PCR//Western blot 27634902
miR-208a-3p QKI Luciferase reporter assay 28283792
miR-208a-3p SOX6 Luciferase reporter assay//Western blot 25023649
miR-208b-3p CACNA1C Luciferase reporter assay 27545043
miR-208b-3p CACNB2 Luciferase reporter assay 27545043
miR-208b-3p CDKN1A qRT-PCR//Luciferase reporter assay//Western blot 20190813
miR-208b-3p CDKN1A Luciferase reporter assay//Microarray//qRT-PCR//Western blot 26044724
miR-208b-3p QKI Luciferase reporter assay 28283792
miR-494-5p CXCR4 Luciferase reporter assay//qRT-PCR//Western blot 25955111
miR-494-5p DPYD GFP reporter assay//qRT-PCR//Western blot 25873402
miR-494-5p PTEN Luciferase reporter assay//qRT-PCR//Western blot 26045065
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multiple common target-binding proteins. Moreover, many
protein components of this network are known to interact with
each other, suggesting that this network is not random.

Validation by Association With the
Response to the Treatment With
Antipsychotic Drugs
To validate the association of miR-208a-3p, miR-208b-3p, and
miR-494-5p and their target sets with schizophrenia, a GWAS of
antipsychotic treatment response in 2,413 psychiatric patients
(Yu et al., 2018) was mined to detecting enrichment. As shown in
Table 3, the gene set regulated by miR-494-5p was associated
with the drug treatment response of patients with schizophrenia.

DISCUSSION

Accumulating evidence suggests that post-transcriptional gene
expression regulators, known as microRNAs (miRNAs), play a
crucial role in many physiological and pathophysiological
processes in human brain. In particular, various areas of the
brain and the serum of individuals with schizophrenia were
studied for the cellular and extracellular content of miRNA
molecules as well as the widespread alterations of their levels
reported (Moreau et al., 2011; Santarelli et al., 2011; Banigan
et al., 2013). In their typical biomarker discovery design, these
and other studies have not aimed at differentiating causal or
consequential relationships between the change in the levels of
certain miRNA and the development of psychiatric conditions.
Nevertheless, the miRNAs encoded by these genes, for example,
Frontiers in Genetics | www.frontiersin.org 4
miR-137 (Kuswanto et al., 2015), were found to harbor the single
nucleotide polymorphisms (SNPs) for an increased risk
of schizophrenia.

This study highlights three additional miRNAs, hsa-miR-
208b-3p, hsa-miR-494-5p, and hsa-miR-208a-3p, as potential
contributors to schizophrenia and as the master regulators for
the genes previously implicated in this disorder. An analysis of
their gene expression showed that these miRNA species were
expressed in the brain tissue, the plasma/serum/placenta, or in a
combination of these at relatively high levels. Current evidence
suggests that the blood–brain barrier does not block the passage
of miRNAs between CSF and blood, even if brain-derived
miRNAs are somewhat more diluted in blood (Stoicea et al.,
2016). While the data on the penetration of miRNA from
peripheral tissues to the brain are limited, one can assume that
this transfer is highly possible, especially during embryonic
development when brain tissue and its compartmentalization is
not yet fully formed. Moreover, recent experiments performed in
two different rodent models has shown that, in certain
conditions, such as during hypoxia, miRNAs actively
contribute to an increase in the penetrability of the blood–
brain barrier through the inhibition of genes encoding tight
junction proteins (Ma et al., 2017; Burek et al., 2019). The role of
prenatal and perinatal factors contributing to the risk of
schizophrenia was well documented (Kelly and Murray, 2000;
Davis et al., 2016). Thereby, one may surmise that the molecular
underpinning of this connection may be dependent on plasma
miRNAs being carried to the brain in the course of hypoxia or
other types of fetal stress, and it may also possibly be dependent
FIGURE 1 | Pathways that link each of three miRNAs, miR-208b (A), miR-208a (B), and miR-494 (C), to schizophrenia. Presented pathways were generated using
Pathway Studio (www.pathwaystudio.com) based on known relations mined from existing literature. Each relation has been supported by one or more references
summarized in Supplementary Table 3.
March 2020 | Volume 11 | Article 149
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on the pathophysiological pairing between miRNAs and mRNAs
in non-target tissue.

The accurate identification of miRNA targets remains a
formidable challenge. As the output generated by commonly
used microRNA–mRNA interaction-predicting software fails to
pinpoint experimentally confirmed microRNA-binding regions
correctly (Willgoose, 1981; Plotnikova and Skoblov, 2018), we
had resorted to limiting our study by investigating only
experimentally validated microRNA–mRNA interactions with
a subsequent anchoring of them to schizophrenia-related targets
by leveraging the data generated over the course of the largest
schizophrenia-dissecting GWAS performed to date. Further
support for our findings was obtained by the Pathway Studio
guided analysis, which allowed us to perform a systems analysis
of the molecular pathways engaged by these miRNAs.

Two functional molecules, BCL2 and CACNA1C, were
commonly shared between all three miRNA-coordinated
“Shortest Path” networks. Notably, both of these molecules
were implicated in schizophrenia in numerous previous
studies. CACNA1C, which encodes for the Cav1.2 a1 subunit
of L-type calcium channels (LTCCs), is one of the best-supported
risk loci for schizophrenia and bipolar disorder since it harbors
variants with consequences on neural processing and
connectivity (Gurung and Prata, 2015; Kabir et al., 2017). For
BCL2, the connections to schizophrenia are at the level of cellular
processes rather than genetic ones. In the astroglia and the
neurons, BCL2 regulates autophagy, which maintains the
Frontiers in Genetics | www.frontiersin.org 5
balance between the synthesis, degradation, and recycling of
mitochondria and other cellular components (Aouacheria et al.,
2017) as well as prevents apoptosis (Almeida, 2013). The
networks we built for schizophrenia risk miRNAs imply the
disease-associated deregulation of BCL2/BAX and the resultant
enhancement in cell susceptibility to apoptosis, which possibly
involves an increase in the production of reactive oxygen species
(Wu et al., 2013).

If increases in respective miRNA signals are defined
genetically, their observed effects should be systemic rather
than brain specific. In this light, it is important to note that the
primary fibroblasts collected form antipsychotic-naïve patients
with first-episode schizophrenia have greater apoptotic
susceptibility, higher caspase-3 activity, and lower BCL2
expression than healthy controls (Gassó et al., 2014). Increased
expression of hsa-miR-208b-3p, hsa-miR-494-5p, and hsa-miR-
208a-3p may augment susceptibility to schizophrenia by
simultaneously conferring susceptibility to apoptosis and
altering neural processing and connectivity through the
suppression of BCL2 and CACNA1C, respectively.

Importantly, all three schizophrenia-contributing miRNA
molecules are far from novel. Cardiomyocyte molecules miR-
208a-3p and miR-208b-3p belong to the miR-208 family, which
participates in ventricular remodeling (Liu et al., 2016) by
promoting myocardial fibrosis (Shyu et al., 2015) and
apoptosis of cardiomyocytes (Shannon et al., 2003; Luo et al.,
2004; Moreau et al., 2011; Tsai et al., 2013; Huang et al., 2016).
TABLE 3 | miRNA–target gene set analyses with schizophrenia in validation dataset.

miRNA nGenes Beta S.E. p

hsa-miR-494-5p 3 0.971 0.506 0.030
hsa-miR-208a-3p 8 0.097 0.349 0.391
hsa-miR-208b-3p 4 -0.133 0.48 0.608
March 2020 | Volume 11 | Artic
FIGURE 2 | miRNA–target regulatory network connecting miR-208a-3p, miR-208b-3p, and miR-494-5p. Red dashed lines denote protein–protein interactions; solid
arrowed lines denote miRNA–target bindings.
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Both miR-208a-3p and miR-208b-3p reduce the expression of
the RNA-binding protein Quaking, encoded by gene QKI, which
inhibits the apoptosis of cardiomyocytes under ischemia/
reperfusion condition (de Bruin et al., 2017; Wang F. et al.,
2017). Peculiarly, the dysmyelinating mouse mutant shaking
(shk), a model of schizophrenia, is a quaking (qk) allele
consisting of a 105-nucleotide insertion in the qk regulatory
region that decreases the transcription of qk (Chaverneff et al.,
2015). Downregulation of the QKI gene was also noted in the
brains of schizophrenic patients (Haroutunian et al., 2006). It
was hypothesized that deregulation of QKI underlines the defects
of oligodendrocyte differentiation and in myelination detected in
schizophrenia (Rosenbluth and Bobrowski-Khoury, 2013) as well
as in—as described in a separate study—at least some cases of
intellectual disability (Darbelli and Richard, 2016). Moreover, in
yet another model tissue, auditory nerves, function of both QKI
and its protein product substantially decreases in response to
noise exposure, leading to demyelination and hearing deficiency
(Panganiban et al., 2018). When QKI-regulating molecules of the
miR-208 family are overexpressed, their effects are similar to the
decrease in the transcription of QKI and should promote the
development of the myelination defects. Remarkably, at clinically
relevant concentrations of Haloperidol, the expression levels of
QKI-encoding mRNA may be restored (Jiang et al., 2009), which
would, in turn, alleviate demyelination-related symptoms.

There is no doubt that miR-208-regulated QKI defines the
phenotypic plasticity of the vascular smooth muscle cells (van
der Veer et al., 2013; Cochrane et al., 2017). These functional
pieces of evidence of the involvement of QKI into the
development of cardiovascular conditions are also supported
by the GWAS, which pointed atQKI as a contributor to coronary
heart disease (Dehghan et al., 2016). Patients with schizophrenia
are known to have higher mortality rates for all major
cardiovascular diagnoses (Wu et al., 2015; Westman et al.,
2018). It is tempting to speculate that the connection between
these two major disabilities may be, at least in part, explained by
the sharing of regulatory networks, particularly ones connecting
miRNAs of the miR-208 family and QKI.

Another pathophysiological process characterized by
alterations in QKI is the development of gliomas. This gene
serves as a tumor suppressor that promotes endolysosome-
mediated degradation and suppresses the display of receptors
essential for maintaining the self-renewal of neural stem cells
outside their niche (Shingu et al., 2017). Consequently, the QKI
gene tends to be eliminated in gliomas, either through a complete
delet ion or through a disruption by translocat ion
(Bandopadhayay et al., 2016). While the roles for upstream
regulators of QKI, hsa-miR-208b-3p and hsa-miR-208a-3p, in
glioma have not yet been described, another miRNA that affects
schizophrenia risk, hsa-miR-494-5p, is a definite glioma
suppressor (Li et al., 2015; Zhang et al., 2015; Xu et al., 2018).
Importantly, in the case of the latter miRNA, protection against
the development of the tumors comes at a cost of elevated
susceptibility to neurotoxicity, after exposure to ischemia/
reperfusion for example. Notably, knockdown of hsa-miR-494-
5p reverses the neurotoxic phenotype in multiple models (Song
Frontiers in Genetics | www.frontiersin.org 6
et al., 2017; Deng et al., 2019; Zhao et al., 2019a; Zhao et al.,
2019b). Hsa-miR-494-5p-dependent antagonistic relationships
between gliomagenesis and neurotoxicity are intriguing, as they
support previously noted decrease in odds of the development of
brain tumors in patients with schizophrenia (Grinshpoon et al.,
2005; Levav et al., 2007; Wang Y. et al., 2017).

CONCLUSION

In summary, the presented results point at an orchestrating role of
miRNAs in the pathophysiology of schizophrenia. Cellular effects of
risk-associated miRNAs, namely, hsa-miR-208b-3p, hsa-miR-494-
5p, and hsa-miR-208a-3p, align with the primary etiological
hypotheses of schizophrenia and suggest that the three molecules,
as well as their target genes, should be investigated for possible
pharmacological interventions. The sharing of regulatory networks
between schizophrenia and other pathologies may explain higher
cardiovascular mortality and lower odds of glioma previously
reported in psychiatric patients. Molecular tools for manipulating
miRNA activity, including miRNA sponges, are already being
developed for cancers (Jung et al., 2015; Fang et al., 2017) and for
cardiovascular disease (Bernardo et al., 2018). There is a hope that
similarly designed therapeutic interventions may find their utility in
the treatment of schizophrenia and other life-long
psychiatric illnesses.
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