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Abstract: Acute kidney injury (AKI) is a frequent complication in hospitalized patients, which is
associated with worse short and long-term outcomes. It is crucial to develop methods to identify
patients at risk for AKI and to diagnose subclinical AKI in order to improve patient outcomes. The
advances in clinical informatics and the increasing availability of electronic medical records have
allowed for the development of artificial intelligence predictive models of risk estimation in AKI. In
this review, we discussed the progress of AKI risk prediction from risk scores to electronic alerts to
machine learning methods.
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1. Introduction

Acute kidney injury (AKI) is a complex syndrome caused by multiple etiologies and characterized
by a sudden decrease in kidney function, defined by an increase in serum creatinine or a decrease in
urine output [1,2]. AKI is a frequent complication in hospitalized patients, which is associated with
worse short and long-term outcomes, namely, increased length of hospital stay, increased health care
costs, increased risk of in-hospital and long-term mortality, long-term progression to chronic kidney
disease, and long-term risk of cardiovascular events [3–7].

The incidence of AKI has increased in the past decades due to the population aging and rising
incidence of comorbidities, such as chronic kidney disease, diabetes, and hypertension [2,8–10].
Furthermore, the development of a standardized definition for AKI and the acknowledgment of
the impact of AKI on patient outcomes are also responsible for the increased recognition of this
syndrome [2]. Despite the decrease in mortality rates associated with AKI, these remain significant,
ranging from 15% among hospitalized patients to more than 50% in critically ill patients [11–13].

Considering the impact of AKI on short and long-term outcomes, it is of high importance to
develop methods to identify patients at risk for AKI and to diagnose subclinical AKI in order to
improve patient outcomes [4]. The advances in clinical informatics and the increasing availability
of electronic medical records (EMR) have allowed for the development of predictive models of risk
estimation in AKI [14].

In this review, we discussed the progress of AKI risk prediction from risk scores to electronic
alerts to machine learning (ML) methods.

2. AKI Definition and Biomarkers

The Kidney Disease Improving Global Outcomes workgroup defines AKI as an increase in serum
creatinine (SCr) of at least 0.3 mg/dL within 48 h, or an increase in SCr to more than 1.5 times of baseline
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level, which is known or presumed to have occurred within the prior 7 days, or a urine output (UO)
decrease to less than 0.5 mL/kg/h for 6 h [15].

Despite the importance of the development and use of this standardized classification in the
epidemiology of AKI, SCr and UO are insensitive and unspecific markers of AKI, which do not account
for the duration or cause of AKI [16]. Values of SCr are influenced by age, gender, muscle mass, fluid
balance, and medications, which limit its secretion, and values of UO are influenced by patient volemic
status and diuretic use. Baseline SCr is frequently unknown, and UO assessment is complex without a
urinary catheter.

Novel biomarkers have been investigated in multiple settings to increase diagnostic accuracy,
which so far include cystatin C (Cys-C), neutrophil gelatinase-associated lipocalin (NGAL),
N-acetyl-glucosaminidase (NAG), kidney injury molecule 1 (KIM-1), interleukin-6 (IL-6), interleukin-8
(IL-8), interleukin 18 (IL-18), liver-type fatty acid-binding protein (L-FABP), calprotectin, urine
angiotensinogen (AGT), urine microRNAs, insulin-like growth factor-binding protein 7 (IGFBP7), and
tissue inhibitor of metalloproteinases-2 (TIMP-2) [17–27].

Important weaknesses have limited the generalization of the use of these biomarkers in clinical
practice [19]. These have not consistently distinguished pre-renal from renal AKI; several patient
characteristics and comorbidities can produce range variations that limit their validity; cost-effectiveness
is limited due to the increased costs associated with these biomarkers and need for multiple assessments,
and evidence of outcome improvement is still lacking [28,29]. Given the complexity of AKI, perhaps
the use of a panel of several biomarkers covering different stages of the syndrome could provide a
better understanding of its pathophysiology and identify future treatment targets [29,30].

3. AKI Risk Factors

Several investigators have focused on determining significant risk factors for AKI [31–33]. Both
patient susceptibilities and exposures are important risk factors for AKI. Patient age is an important
non-modifiable risk factor [34–36]. The loss of renal reserve and physiologic decline of glomerular
filtration rate (GFR) may place older patients at risk for AKI [37,38].

Chronic kidney disease (CKD) is another major risk factor for AKI [38] The loss of autoregulation,
abnormal vasodilation, susceptibility to antihypertensive agents and nephrotoxins, and the side effects
of medication contribute to the development of AKI in CKD patients [38].

Patient comorbidities, such as diabetes mellitus, hypertension, cardiovascular disease, chronic
liver disease, and chronic obstructive pulmonary disease, have also been identified as important
AKI predictors [15,31–33,36,39,40]. It is also important to note that HIV infection is a risk factor,
predisposing patients to AKI, given the increasing incidence of HIV-infected patients in the past
decades. Furthermore, AKI remains an important predictor of mortality in these patients despite the
decrease in the incidence of AKI with the widespread use of antiretroviral therapy [41,42].

Exposure to sepsis, surgery, nephrotoxins, and shock are specific modifiable factors, which
contribute to AKI [8,15]. Large cohort studies focusing on critically ill patients report that the two most
important causes of AKI are sepsis and surgery [9,10,43–45].

More recent research has reported that hyperuricemia, hypoalbuminemia, obesity, anemia, and
hyperglycemia may be new predictors of AKI [36].

Uric acid can contribute to AKI in several settings due to intratubular crystal precipitation, but
also by inducing renal vasoconstriction and impairing autoregulation, and due to proinflammatory
and antiangiogenic effects [46–49].

Hypoalbuminemia has been used as a nonspecific marker of patient nutrition, inflammation,
hepatic function, and catabolic state and has been reported as an independent predictor of AKI in
multiple settings [50–54].

The increasing incidence of obesity has raised the interest to study its association with AKI.
Although the exact mechanisms are still uncertain, there is substantial evidence that obesity is an
independent predictor of AKI in multiple medical and surgical settings [55–58].
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Anemia has been associated with increased AKI risk, mainly in the surgical setting [59,60].
Furthermore, transfusions of red blood cells are also associated with increased risk of AKI [61,62]. The
mechanisms are likely multifactorial, including reduced renal oxygen delivery, worsening oxidative
stress, systemic inflammation, and impaired hemostasis [36,59,63]. Stored red blood cells have an
impaired ability to carry oxygen and proinflammatory effects, associated with the direct toxic effect of
by-products of red blood cell storage, contributing to organ failure in critically ill patients [59,64].

Hyperglycemia is another novel risk factor, which has been associated with increased AKI
development [65–70]. However, the target level of glucose to decrease AKI risk has not been
determined. The exact mechanism is still uncertain, but hyperglycemia might contribute to AKI
through stimulation of oxidative stress, vasoconstriction and reduced renal oxygen delivery, and
volume depletion due to osmotic diuresis [68,70].

4. AKI Risk Scores

A precise risk prediction score should be able to identify at-risk patients and guide clinicians
on performing further diagnostic tests and prompting preventive and/or treatment measures. A risk
score is produced by the combination of independent predictors of AKI and assigning relative impact,
ideally with external validation analysis [14].

Risk prediction scores for AKI have been reported in several clinical settings, mostly in critical
care, surgery, and contrast-induced nephropathy [71–77]. Still, most AKI cases are reported in general
hospital wards, and risk scores in this setting are scarce [78–81].

Most models include age, gender, baseline kidney function, comorbidities, such as chronic
kidney disease, diabetes, liver failure, and heart failure, medication history, namely, diuretics,
angiotensin-converting-enzyme inhibitors and angiotensin-receptor blockers, and intra-procedure data
to predict the risk of AKI [76,82]. An ideal risk prediction score for AKI should include a combination
of demographic, clinical, and biological factors, along with biomarkers [76,77].

Malhotra et al. developed an easily calculated risk prediction score for AKI in critical care
patients [77]. This risk score combines chronic kidney disease, chronic liver disease, congestive heart
failure, hypertension, atherosclerotic coronary vascular disease, acidemia, nephrotoxin exposure,
sepsis, mechanical ventilation, and anemia and has demonstrated good calibration in the test and
external validation cohorts [77].

Flechet et al. developed four prediction scores, which can be used successively, based on the
clinical information available [83]. The variables included in the baseline risk score are age, baseline
SCr, surgical or medical category, diabetes, and planned admission. For the admission risk score, it
includes blood glucose, suspected sepsis, hemodynamic support, and previous risk score variables.
On day 1, the risk score includes SCr, Acute Physiology And Chronic Health Evaluation (APACHE) II
score, maximum lactate, bilirubin, hours of ICU stay, and previous risk score variables. The risk score
to be used after the first day includes the previous risk score variables and the total amount of urine,
urine slope, mean arterial pressure, and hemodynamic support. One of the main strong points of this
study is the availability of the online calculator of this risk score, which enhances its use in clinical
practice and promotes further validation [83].

The most widely validated risk prediction score for AKI in cardiac surgery was developed by
Thakar et al. and comprises 13 pre-operative variables, namely, gender, heart failure, left ventricular
ejection fraction, preoperative use of intra-aortic balloon pump, chronic obstructive pulmonary disease,
diabetes, previous cardiac surgery, emergency setting, type of surgery, and pre-operative SCr [84].

The clinical application of these risk prediction scores has been limited by the lack of external
validation of several studies, the use of heterogeneous definitions of AKI, the difficulty in assessing
baseline renal function, and importantly the lack of impact analysis studies and lack of evidence of
clinical use [14,76].
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5. Automated Electronic Alerts

The use of automated electronic alerts (E-alerts) has received considerable consideration in the
past years [85]. E-alerts consist of algorithms configured from patients’ EMRs and clinical information
to notify early or imminent AKI, prompting an earlier clinical evaluation and prompt prevention and
treatment strategies [86,87].

Theoretically, this would prompt early treatment and improve patient outcomes. Nevertheless, a
recent systematic review of randomized AKI E-alert trials pooled data from six studies and 10,165
patients and found that these did not reduce mortality (OR 1.05; 95% CI, 0.84–1.31), need for renal
replacement therapy (OR 1.20; 95% CI, 0.91–1.57), or change patient care practices (OR 2.18; 95% CI,
0.46–10.31) [88]. In these studies, E-alerts were issued within one hour, following the detection of
changes in SCr; however, there was significant variability in study design, alert format, and targeted
providers [88].

Beyond the limitations of SCr as a marker of AKI, other important challenges of the use of E-alerts
are the distinction of community and hospital-acquired AKI cases, the presence of multiple alerts per
patient, the assessment of significance of small SCr changes in patients with CKD, and the limitations
on cases without baseline renal function [14].

A care bundle is a group of evidence-based and easily applicable interventions that have a better
outcome when performed together than if performed individually [14]. There is no current specific
treatment for AKI, and the most recent guidelines suggest supportive management, including treatment
of sepsis, shock, and hypovolemia, avoidance of nephrotoxins, appropriate investigations, and referral
to specialists when indicated [15].

Kolhe et al. demonstrated that implementing a care bundle with E-alerts improved outcomes
in patients with AKI in two cohort studies. The care bundle consists of standardized investigations
and interventions, namely, Assessment of history and examination, Urinalysis, establishing a clinical
Diagnosis of AKI, plan Investigations, and Treatment and Seeking advice from a nephrologist
(AUDITS) [89,90].

These findings were also reported in a study by Chandrasekar et al., in which an E-alert was
combined with a care bundle consisting of treatment of Acute complications, Blood pressure control,
Catheterization, review Drug prescription, Investigate the cause, and Treat the underlying cause
(ABCD-IT) [91]. The authors reported a decrease in mortality and length of stay [91].

A recent study by Hodgson et al. evaluated the impact of combining care bundles to a risk
prediction score and to E-alerts. This study demonstrated a decrease in hospital-acquired AKI and a
decrease in AKI-associated mortality [92].

Therefore, it may not be enough to merely alert for the presence of AKI but important to initiate
appropriate care to lead to improved outcomes [14].

We believe that it is essential to incorporate these scientific advances in daily clinical practice in
the near future.

6. The Era of Artificial Intelligence

The past decade has seen significant development of electronic technology in medicine, namely,
in EMR, data registries and management, and analytic methodologies [93].

Indeed, a new era of AKI prediction and detection has started with the increasing use of risk
prediction scores and E-alerts [93]. More recently, artificial intelligence (AI), namely, ML techniques,
has been reported to identify AKI predictors [94].

AI is a branch of engineering, generally defined as the ability of a machine to reason, communicate,
and function with the minimal human intervention [95]. In the medical field, AI can be applied as two
branches: physical or virtual [95]. The physical branch includes medical devices and sophisticated
robots, which contribute to the delivery of care [95]. The virtual branch refers to ML, which includes
the algorithms and statistical models that learn from data from which they are able to recognize and
deduce patterns [95].
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There are numerous types of ML algorithms, which have the ability to find patterns, to classify and
predict algorithms based on previous examples, and to create a strategy for prediction by sequences
of rewards and punishments [94–98]. The dynamic ability of these algorithms is key to identify and
integrate variables from numerous electronic data [94]. Thus, ML techniques can be used alone or
combined to analyze datasets and determine AKI predictors. The description of each available ML
algorithm is out of the scope of this review.

Currently, logistic regression is the most frequently used statistical algorithm of multivariate
analysis to determine risk predictors in the short-term [99]. In complex settings in which clinical
features and outcomes have a non-linear relationship and for big data analysis, many investigators
support the use of more advanced ML algorithms in detriment of logistic regression to develop
predictive models [100].

Considering that AKI can be determined from the calculation of SCr levels and the increasing
integration of the available EMRs, ML algorithms are promising in the development of AKI risk
prediction models.

The development of risk prediction models has flourished in recent years. However, inefficient
statistical methods, the use of small samples, missing data, and lack of validation are common faults,
which limit the use of these models [99]. The development of risk prediction models should include
internal validation within the original study sample to quantify the predictive ability of the model and
should preferably also include external validation to evaluate the predictive ability of the model in
other participant data [99]. To improve the quality of reporting of published prediction model studies,
the Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis
(TRIPOD) Statement produced a checklist of items to include in studies developing or validating a
multivariable prediction model [99].

Furthermore, it is important to consider the specificity and sensitivity of these models, which
will have a clinical impact [101]. High specificity values lead to fewer false-positive results, and high
sensitivity values lead to fewer false negatives [101]. This has an important impact on prognostic
modeling and decision-making, namely, high specificity would trigger less often to prompt interventions
with higher risk, and high sensitivity would trigger more often to prompt interventions with lower
risk [101].

The first study to compare logistic regression models and ML algorithms was a retrospective study
by Kate et al., who analyzed EMRs of 25,521 hospital stays of elderly patients and aimed to predict
within the first 24 h of admission whether a patient would develop AKI during hospitalization. This
study demonstrated only modest performance in all ML models (support vector machines, decision
trees, and naïve Bayes), with an area under the receiver operating characteristic curve (AUROC)
ranging from 0.621–0.664, and better performance of logistic regression with an AUROC of 0.743 [102].

A research group led by Bihorac performed a retrospective study of 50,318 adult surgical patients
and compared four predictive ML modeling approaches for two major postoperative complications,
using data from EMRs [103]. This study demonstrated that the choice of predictive modeling approach
affected the risk prediction performance for postoperative AKI and sepsis; specifically, generalized
additive models showed the best performance with an AUROC of 0.858 [103].

Davis et al. also compared several ML models (random forest, neural network, and naïve Bayes)
and logistic regression methods to predict AKI in a retrospective study of 2003 patients [104]. Both
methods had a good performance in detecting AKI, but importantly, over-time logistic regression
methods required more updates than random forest or neural network methods to compensate
overprediction [104].

Cheng et al. developed ML-based AKI prediction models using EMRs from 48,955 hospital
admissions and concluded that the best model for predicting AKI within 24 h had an AUROC of 0.76
achieved by a random forest algorithm [105]. Indeed, this ML algorithm could predict AKI 2-days
with AUC of 0.73 and 3-days prior with AUC of 0.700 [105].
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Ibrahim et al. developed a clinical and proteomics AKI risk predictor with an ML approach (least
absolute shrinkage and selection operator (LASSO) with logistic regression) in a prospective study of
889 patients undergoing coronary angiography [106]. The risk predictor included a history of diabetes,
blood urea nitrogen/creatinine ratio, c-reactive protein, osteopontin, CD5 antigen-like, and Factor VII
and had an AUROC of 0.790 for predicting procedural AKI [106].

Koola et al. analyzed a retrospective cohort of 504 cirrhotic patients and compared the ability of
ML methods (logistic regression, naïve Bayes, support vector machines, random forest, and gradient
boosting) to predict hepatorenal syndrome (HRS) [107]. This study demonstrated the ability to create a
high-performance risk prediction algorithm to detect cases of HRS, with AUROC ranging between
0.730–0.930 [107].

Another mortality prediction model was constructed using the random forest algorithm in 19,044
AKI patients by Lin and colleagues [100]. Urine output, systolic blood pressure, age, serum bicarbonate,
and heart rate were the most significant variables, predicting AKI-associated mortality [100]. This
model had a great performance with an AUROC of 0.866 and could prove useful in avoiding delays of
AKI treatment in high-mortality risk patients [100].

Koyner et al. developed a gradient boosting model, which could predict AKI in the emergency
department, wards, and ICU [108]. Their model included data from 121,158 admissions, such as patient
demographics, vital signs, laboratories, clinical interventions, and diagnostics, and demonstrated
increasing accuracy across AKI severity, providing AUROC greater than 0.900 for renal replacement
therapy requirement within 72 h [108].

Huang et al. performed a retrospective study of 947,091 patients submitted to percutaneous
coronary intervention and compared logistic regression and gradient descent boosting to detect if ML
algorithms could enhance AKI prediction [109]. Their algorithm had a good performance in detecting
AKI with an AUROC 0.728 [109]. The risk prediction model included 12 variables, namely, age, heart
failure, cardiogenic shock within 24 h, cardiac arrest within 24 h, diabetes, coronary artery disease,
baseline renal function, admission source, body mass index, emergency status, and left ventricular
ejection fraction [109].

In another retrospective study of 2,076,694 patients submitted to percutaneous coronary
intervention, Huang et al. applied an ML method to predict AKI risk according to contrast volume [110].
The generalized additive model produced an AUROC of 0.777 (95% CI, 0.775–0.779) for predicting the
risk of a creatinine level increase of at least 0.3 mg/dL [110]. The model was developed from a random
50% of the cohort, and performance was evaluated in the remaining 50% of the cohort. The association
of contrast volume with AKI risk was nonlinear, and this model proved useful to quantify individual
risk and adjust contrast volume to decrease AKI risk [110].

Tomasev et al. developed a recurrent neural network model, which predicted 55.8% of all inpatient
episodes of AKI and 90.2% of all dialysis, requiring AKI up to 48 h in advance in 703,782 adult patients
from inpatient and outpatient sites [111]. This ML model had a great performance with an AUROC of
0.921, and, at each time point, this model outputted the risk of AKI occurrence within the next 48 h,
thus allowing for the prompt implementation of preventive and treatment strategies [111].

MySurgeryRisk is an ML algorithm recently developed and internally validated from a retrospective
single-center cohort of 2911 adults who underwent surgery [112]. This random forest model combined
preoperative and intraoperative variables and had an AUROC of 0.860 to predict the risk of developing
postoperative AKI [112].

Flechet et al. conducted a prospective observational study of 252 critically ill patients and compared
the AKI predictions by physicians and a random forest method, AKIpredictor [113]. There was no
statistically significant difference in discrimination between physicians and AKIpredictor; however,
physicians overestimated the risk, and AKIpredictor allowed for the selection of high-risk patients or
reducing false positives, and AKIpredictor provided its prediction earlier than physicians [113].

Parreco et al. developed and compared different ML models (gradient boosted trees, logistic
regression, and deep learning) to predict AKI from the laboratory values, vital signs, and slopes in
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151,098 ICU admissions [114]. Gradient boosted trees method was the most accurate model with an
AUROC of 0.834, for which the most important variable was the slope of the minimum creatinine [114].

Xu et al. investigated ML models (logistic regression, random forest. and gradient boosting
decision tree) for predicting the mortality risk of 58,976 AKI patients admitted to an ICU, stratified
according to AKI severity stages [115]. Gradient boosting decision tree presented a better performance
than other models for mortality prediction [115].

Tran et al. developed an ML method (k-nearest neighbor) to predict AKI in 50 burn patients,
which included measurements of neutrophil gelatinase-associated lipocalin (NGAL), UO, SCr, and
N-terminal B-type natriuretic peptide (NT-proBNP) measured within the first 24 h of admission. This
method performed greatly with an AUROC of 0.920 and achieved a 90%–100% accuracy for identifying
AKI, with a mean time-to-AKI recognition within 18 h [116].

In 6682 critical care patients, Zhang et al. identified predictors of volume responsive AKI, such as
age, urinary creatinine concentration, maximum blood urea nitrogen concentration, and albumin using
ML methods [117]. Their model (gradient boosting) had an AUROC of 0.860 and could prove useful to
stratify patients with oliguria responsive to fluids and prompt immediate therapeutic measures [117].

Zimmerman et al. conducted a retrospective cohort of 23,950 adult critical care patients and
developed a predictive model by logistic regression for early prediction of AKI in the first 72 h.
following ICU admission with an AUROC of 0.783 [118]. Their model included first-day measurements
of physiologic variables but not medications and procedures, in order to detect which deterioration of
patients’ physiologic baselines are predictive of AKI [118]. This was cross-validated with ML algorithms,
demonstrating an accurate and early prediction of AKI with their risk prediction score [118].

Rashidi and colleagues developed, internally validated, and compared ML models for early
recognition of AKI in 50 burn and 51 trauma patients, including NGAL, NT-proBNP, SCr, and UO into
the predictive model [119]. Their models were able to accurately predict AKI 62 h in advance [119].

Overall, ML algorithms have performed impressively, and sensitivity is favored over specificity in
order to early detect as many cases of AKI, allowing for a higher number of false positives. The ML
algorithms have also performed better than the currently used logistic regression in the majority of
studies. These studies are summarized in Table 1.
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Table 1. Machine learning studies on acute kidney injury (AKI) prediction.

Study Design Setting N AKI
Definition

Timing of
AKI ML Algorithm Predictive

Ability

Sensitivity;
Specificity;

Confidence Interval

External
Validation

Kate et al. (2016) retrospective medical and
surgical 25,521 AKIN during

hospitalization

naïve Bayes;
support vector

machine;
decision trees;

logistic regression

AUROC
0.654

AUROC
0.621

AUROC
0.639

AUROC
0.660

75%;
61%;

-
no

Thottakkara et al.
(2016) retrospective surgical 50,318 KDIGO post surgery

naïve Bayes;
generalized

additive model;
logistic regression;

support vector
machine

AUROC
0.819

AUROC 0.858
AUROC

0.853
AUROC

0.857

77%;
-;
-

no

Davis et al. (2017) retrospective medical and
surgical 2003 KDIGO during

hospitalization

random forest;
neural network;

naïve Bayes;
logistic regression

AUROC 0.730
AUROC

0.720
AUROC

0.690
AUROC 0.780

-;
-;

95% CI
no

Cheng et al.
(2018) retrospective medical and

surgical 60,534 KDIGO,
AKIN, RIFLE

during
hospitalization

random forest;
AdaBoostM1;

logistic regression

AUROC 0.765
AUROC

0.751
AUROC

0.763

69%;
71%;

-
no

Ibrahim et al.
(2018) prospective contrast 889 KDIGO pre and post

intervention logistic regression AUROC 0.790
77%;
75%:

-
no
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Table 1. Cont.

Study Design Setting N AKI
Definition

Timing of
AKI ML Algorithm Predictive

Ability

Sensitivity;
Specificity;

Confidence Interval

External
Validation

Koola et al. (2018) retrospective medical and
surgical 504 KDIGO during

hospitalization

logistic regression;
naïve Bayes;

support vector
machines;

random forest;
gradient boosting

AUROC 0.930
AUROC

0.730
AUROC

0.900
AUROC

0.910
AUROC

0.880

87%;
76%;

-
no

Lin et al. (2018) retrospective ICU 19,044 KDIGO during
hospitalization

support vector
machine AUROC 0.860 - no

Koyner et al.
(2018) retrospective medical and

surgical 121,158 KDIGO 24 h post
admission gradient boosting AUROC 0.900 95% CI no

Huang et al.
(2018) retrospective PCI 947,091 AKIN during

hospitalization
gradient boost;

logistic regression

AUROC 0.728
AUROC

0.717

-;
-;

95% CI
no

Huang et al.
(2019) retrospective PCI 2,076,694 AKIN pre and post

intervention
generalized

additive model AUROC 0.777
-;
-;

95% CI
no

Tomašev et al.
(2019) retrospective medical and

surgical 703,782 KDIGO during
hospitalization

recurrent neural
network AUROC 0.921

95%;
70.3%;

-
no

Adhikari et al.
(2019) retrospective surgical 2901 KDIGO post surgery random forest AUROC 0.860

68%;
-;
-

no

Flechet et al.
(2019) prospective ICU 252 KDIGO during

hospitalization random forest AUROC 0.780
-;
-;

95% CI
no
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Table 1. Cont.

Study Design Setting N AKI
Definition

Timing of
AKI ML Algorithm Predictive

Ability

Sensitivity;
Specificity;

Confidence Interval

External
Validation

Parreco et al.
(2019) retrospective medical and

surgical 151,098 KDIGO during
hospitalization

gradient boosting;
logistic regression;

deep learning

AUROC 0.834
AUROC

0.827
AUROC

0.817

-;
-;

95% CI
no

Xu et al. (2019) retrospective medical and
surgical 58,976 KDIGO during

hospitalization gradient boosting AUROC 0.749 - no

Tran et al. (2019) prospective burn 50 KDIGO during
hospitalization

k-nearest
neighbor AUROC 0.920

90%;
-;
-

no

Zhang et al.
(2019) retrospective ICU 6682 KDIGO 24 h post

admission gradient boosting AUROC 0.860
-;
-;

95% CI
no

Zimmerman et al.
(2019) retrospective ICU 46,000 KDIGO 72 h post

admission

logistic regression;
random forest;
neural network

AUROC 0.783
AUROC

0.779
AUROC

0.796

68%;
34%;

-
no

Rashidi et al.
(2020)

retrospective
and

prospective

burn and
trauma 50/51

KDIGO vs
New

Biomarkers

1st week post
ICU

admission

recurrent neural
network AUROC 0.920

-;
-;

92% CI
no

AKI-acute kidney injury, AKIN-acute kidney injury network, AUROC-area under the receiver operating characteristic curve, ICU-intensive care unit, KDIGO-kidney disease improving
global outcomes, ML-machine learning, PCI-percutaneous coronary intervention, RIFLE-risk, injury, failure, loss of kidney function, end-stage kidney disease.
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These studies have demonstrated the efficacy of ML algorithms to detect clinical and laboratory
characteristics associated with AKI risk and detection in big data studies. The future widespread use
of ML algorithms could improve risk stratification of patients, early detection of AKI, and provide
decision aid on treatment, ultimately improving patient care and increasing time and cost-efficiency.
Furthermore, these algorithms could predict further adverse events and long-term prognosis, therefore,
providing useful information to establish an individualized follow-up plan.

Despite the promising results, important limitations have to be considered [82]. Firstly, most ML
approaches have performed positively in retrospective cohorts, and prospective implementation of
these methods is still challenging [95,101]. None of these studies have external validation, and the
variability in the availability of EMRs across centers limits the widespread use of these models [95,101].
The development of these risk prediction models requires a substantial amount of data from EMRs
and computer-assisted risk prediction [82]. Furthermore, to guarantee detailed information on
comorbidities, physiological and laboratory parameters and medication, and electronic connections
between community and hospital data are necessary [82]. Logistic regression models are more familiar
to clinicians than ML models, limiting data interpretation [103]. It is also important to note that
neural networks are developed and tested in the same dataset, which limits generalizability [95,101].
Additionally, from a legal and ethical perspective, the inability to clarify what contributes to
decision-making in neural networks is an important restriction in these models, which is conflicting to
general data protection requirements [95,101].

7. Conclusions

AKI has a significant negative impact on short and long-term outcomes; thus, it is crucial to
develop methods to identify patients at risk for AKI and to diagnose subclinical AKI. The increasing
amount of evidence is encouraging the real-time implementation of these ML risk models as this does
not require additional AKI biomarker testing. Combining these risk prediction models with early care
bundles in the future is likely to improve patient outcomes.
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