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Abstract

Aim

In bioinformatics, the inference of biological networks is one of the most active research

areas. It involves decoding various complex biological networks that are responsible for

performing diverse functions in human body. Among these networks analysis, most of the

research focus is towards understanding effective brain connectivity and gene networks in

order to cure and prevent related diseases like Alzheimer and cancer respectively. How-

ever, with recent advances in data procurement technology, such as DNA microarray anal-

ysis and fMRI that can simultaneously process a large amount of data, it yields high-

dimensional data sets. These high dimensional dataset analyses possess challenges for

the analyst.

Background

Traditional methods of Granger causality inference use ordinary least-squares methods for

structure estimation, which confront dimensionality issues when applied to high-dimen-

sional data. Apart from dimensionality issues, most existing methods were designed to cap-

ture only the linear inferences from time series data.

Method and Conclusion

In this paper, we address the issues involved in assessing Granger causality for both linear

and nonlinear high-dimensional data by proposing an elegant form of the existing LASSO-

based method that we call “Elastic-Net Copula Granger causality”. This method provides a

more stable way to infer biological networks which has been verified using rigorous experi-

mentation. We have compared the proposed method with the existing method and demon-

strated that this new strategy outperforms the existing method on all measures: precision,

false detection rate, recall, and F1 score. We have also applied both methods to real HeLa

cell data and StarPlus fMRI datasets and presented a comparison of the effectiveness of

both methods.
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1 Introduction

In the modern age of bioinformatics, scientists are endeavoring to find ways to cure diseases at
their source, making the recuperation process faster and more efficient. For this reason,
researchers from diverse areas are striving to comprehend and replicate complex networks
involved in the operation of various functions in human body. Among those networks, most of
the research is focused on mapping of effective brain connectivity in the brain for specific task
and gene networks in the translation of different biological reactions.

1.1 Brain connectivity

The brain connectivity analysis is crucial for exploring the network topology and understand-
ing of the inter- and intra-communications involved during execution of any task as brain
function does not involve isolated regions but rather requires a network of various regions to
perform any task [1]. This motivated the researchers to develop the means to extract and repli-
cate that network information.

The review by Firston [2] and others [3] divided the brain connectivity studies into three
distinctive branches namely structural, functional, and effective connectivity. The Structural
connectivity analysis involves the study of the anatomical links of fiber tracks that associate the
neuron pools across different brain regions. Functional connectivitymaps the region of the
brains that are spatially distributed, but functionally connected. These functionalmaps are gen-
erated using statistical concepts that capture the deviation of statistical independence.How-
ever, the effective Connectivity represents an amalgamation of structural and functional
connectivity showing the directional effects within a network pool.

1.2 Gene Networks

Gene is the basic physical and functional unit of heredity that communicates and interacts with
each other to make proteins that help in performing various biological functions. Thus moti-
vating researchers to obtain a better understanding of protein’s functional interactions which
provide exceptionally valuable information for discovering susceptibilities of a disease to its
treatment.

In recent times, a wide range of methods for network analysis have been developed to detect
the brain connectivity and gene networks that use time series data extracted from fMRI and
DNA microarray. These time series data can be analyzed by utilizing a number of techniques
from various fields such as econometrics. Among several techniques, Granger causality is ubiq-
uitously used in biological network analysis (gene network analysis [4–7] and mapping of effec-
tive brain connectivity [8–12]) because of its simplicity in terms of its implementation and
interpretation [13, 14]. However, its use faces limitations when dealing with high dimensional
data.

The standard implementation of Granger causality as proposed in [15] was originally devel-
oped with the aim of analyzing direct or linear causality by using ordinary least-squares (OLS)
methods for causality estimation. However, the use of OLS implementation limits its use for
the high-dimensional biological dataset. Therefore, in this paper, we are proposing a new
method based on the elastic net and copula approaches for finding the Granger causality for
high-dimensional data. The proposedmethod will not only be able to detect direct causality
but will also analyze indirect causality as well.

This paper first reviews the concept of Granger causality, its existing implementations, and
their limitations in Section 2. In Section 3, we present our proposedmethod for addressing
these limitations. Section 4 covers the experimental details and results used to evaluate the
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performance of the proposedmethod. Finally, the discussion and conclusion are presented in
Section 5.

2 Granger Causality

Granger causality analysis was first introduced in econometrics [15] for studying causal rela-
tionships using different financial time series data. The classical literature, such as New Intro-
duction to Multiple Time Series Analysis by Lütkepohl [16], showed that Granger causality can
be applied using many modeling techniques such as vector autoregressive (VAR) models, infi-
nite order VAR, impulsive response functions and more. However, the literature in bioinfor-
matics indicates that the VAR modeling technique is commonly used because of its simplicity
and ease of interpretation [17].

To understand the concept of Granger causality, let us consider two-time series,X, and Y. If
previous values of both X and Y can be used to predict the current value of X, i.e.,X[n], then we
can conclude that YGranger-causes X. Thus, including both variables increases the prediction’s
effectiveness over that of using past values of X alone [15, 16].

Granger causality can be used to explain direct or indirect influences. To understand the
concept of direct (linear) influence and indirect (nonlinear) influence, consider a simple four-
variable scenario as shown in Fig 1. Direct influence is represented by direct links between
nodes, as exemplified by the edge betweenNode 2 and Node 1, whereas indirect influence can
be traced using the edge that is mediated by one or more nodes. In Fig 1, an indirect influence
can be observedby tracing the edge fromNode 4 to Node 1, mediated by Node 3 and Node 2.
If either Node 2 or Node 3 is blocked, then Node 4 will have no effect on Node 1.

Inference of biological networks using high-dimensional data extracted via various tech-
niques confronts two critical challenges in finding the temporal causal relationships: 1) not all
significant confounders in the data sets are known and 2) a large number of high-dimensional
time series need to be analyzed.

The first challenge centers on the fact that most data sets do not measure all confounders,
which makes surreptitious effects due to unobservedconfounders unavoidable. In this circum-
stance, prior knowledge of unobservedconfounders can be utilized to overshadow their effect.

The second challenge requires us to develop adaptive algorithms that can reveal temporal
dependencies by utilizing a substantial number of time series that have few observation values.

Fig 1. Direct and indirect influence.

doi:10.1371/journal.pone.0165612.g001
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In the past, several methods were used to handle such high-dimensional data, such as pair-
wise analysis [18], kernel-based algorithms [11, 19], and other regularization-basedmethods
[20, 21]. Another viable alternative, proposed by Nelsen [22], uses the copula to discover
dependencies between random variables. The use of probability theory in the form of copulas
counters the spurious effect of confounders by utilizingmarginal probabilities to incorporate
prior information about them.

Recently, Liu, Lafferty, and Wasserman [23] introduced the Gaussian copula with nonpara-
metric marginals, which can be used to estimate high-dimensional undirected graphs for infer-
ring influences between high-dimensional time series. This idea was taken forward by
Bahadori and Liu [24], who proposed a newmethod for finding Granger causality, called the
Gaussian non-paranormal (GNPN) model.

They defined the GNPNmodel by considering a time seriesX = (X1, . . ., Xn) having a
GNPN distribution of GNPN(X,B,F) as long as there are functions fFjg

n
j¼1

such that Fj(Xj) for

j = 1, . . ., n are jointly Gaussian and can be factored according to the VAR model through coef-
ficient B = {βi,j}. To bemore precise, variables Zi b¼FjðXjÞ can be factored as shown below:

pzðzÞ ¼ N ðzð1; . . . ; LÞÞ �
Yn

j¼1

YT

t¼Lþ1

pN zjðtÞ
�
�
�
�

XT

i;j

b
T
i;jz

t;Lagged
i ; sj

 !

where pN(z|μ,σ) is the Gaussian density function having variance σ2 and mean μ, L is the
maximal time delay, zit,Lagged = [zi(t − L), . . ., zi(t − 1)] is the history of zi till time t, and βi,j =
[βi,j(1), . . ., βi,j(L)] is the vector of coefficientsmodeling the effect of time series zi on the target
time series.

Based on this information, the time series zjGranger-causes zi if at least one value in the
coefficient vector βj is statistically nonzero.

In order to show the convergence of Copula Granger is consistent like LASSOGranger,
Bahadori and Liu [24] use the mathematical concept discussed in [23, 25] which uses the linear
model:

y ¼ b
Tx þ ε

where x is a p x 1 is a random vector having zero mean and unit variance, β is the coefficient
vector and ε is noise having zero mean and unit variance.

The real n observation samples exi f or i = 1,. . .,n, yields the covariance that follows the fol-
lowing rate as suggested by [23]

max
j;k
j eSnjk � bSnjk j ¼ Op

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log p log 2p

n1
2

r !

Where bSnjk ¼ ðXT XÞjk and eSnjk ¼ ðeX
T eXÞjk is our estimate of covariance using the actual and

noisy samples xi and exi and assuming that the matrix D ¼ eC � C is positive semi-definite. This
assumption is bound by following equation which is modified version of equation (22) of [25]:

gTeCg � l
ffiffi
s
p
kgk2 þ φmaxðDÞ
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Provided φmaxðDÞ � K2max j eSnjk � bSnjk j is bounded for some constant K2 and deriving the
lower bound in Eq 26 using the fact that φmin(Δ)� 0 yields the following equation:

K;minkgk
2

2
�

l

n

ffiffi
s
p

K;min þ φmax

Since φmax(Δ) diminishes with respect to ;min ðeCÞ according to results from [23] and having
the incoherent design assumption [25] for lower bound of ;min ðeCÞ, the proof is established fol-
lowing the steps in [25].

Further mathematical details and proof of the concepts are explicitly not discussed here and
can be referred to in the original article [24]. However, the gist of their technique is to isolate
the marginal properties of the data from their dependency structures. In order to implement
this idea, they used ℓ1 (LASSO) regularization to estimate dependency structures for high-
dimensional data. In this way, they used the advantage of LASSO scalability for higher dimen-
sions and at the same time used copulas to handle the nonlinearity of the data.

2.1 Limitations of Existing Work

In the standard LASSO estimator [26], the ℓ1 penalty is used to obtain the sparse solution to
the following optimization problem:

bðLASSOÞ ¼ min
b
ky � Xbk

2

2
þ lkbk1

where kbk
1
¼
Pp

i¼1
jbij is the ℓ1-norm penalty on β and induces sparsity in the solution, and λ

� 0 is a tuning parameter.
The use of the ℓ1-norm penalty helps in the simultaneous operations of regularization and

shrinkage and thus makes LASSO an appealing variable selectionmethod. However, despite
these advantages, LASSO faces some limitations, as discussed by Zou [27], that makes it unsta-
ble when used for high-dimensional data and limits the variable selection before saturation
when the number of variables is greater than the number of observation points.

These LASSO problems mainly arise when dealing with either highly correlated predictors,
which usually results in the random selection of predictors, or when all predictors are identical,
as discussed in detail in Friedman, Hastie, and Tibshirani [28].

3 Elastic-Net Copula Granger Causality

The instabilities of LASSO can be circumvented using an extension of LASSO called elastic net.
It is robust to high correlations among predictors [27] and can select more than p variables
when n>> p (that is, the number of variables>> the number of observation points). It uses a
mixture of the ℓ1 (LASSO) and ℓ2 (ridge regression) penalties and can be formulated as:

bðenetÞ ¼ min
b
ky � Xbk

2

2
þ l1kbk1

þ l2kbk
2

2

where kbk
1
¼
Pp

i¼1
jbij, kbk

2

2
¼
Pp

i¼1
b

2

i , λ1 is the tuning parameter for ℓ1 (LASSO), and λ2 is
the tuning parameter for ℓ2 (ridge regression).

As we know, ℓ2 (ridge regression) [29] works well with a large number of predictors that
either have nonzero coefficients, or are drawn from a normal distribution and are highly corre-
lated [28]. Therefore, its presence in elastic net helps improve variable selection, whereas the ℓ1
(LASSO) penalty induces the grouping effect and stabilizes the solution paths with respect to
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random sampling [30]. Thus, using the combination of both penalties should greatly improve
the predictions.

Based on these findings, we are proposing a method called elastic-net copula Granger cau-
sality (ECGC) that we expect to be more precise than the existing GNPNmethod. In this new
method, we employ elastic-net regularization instead of ℓ1 (LASSO) regularization to estimate
dependency structures. The use of elastic net will overcome the shortcomings of the existing
LASSOmethods and will also exploit the advantages of copula to handle the nonlinearity of
data.

Therefore, instead of solving the optimization problem proposed by Bahadori and Liu [24],
i.e.,

min
b

XT

t¼Lþ1
XiðtÞ �

Xp

i¼1

b
T
i;jX

t;Lagged
i























2

2

þl kbk
1

where λ is the tuning parameter, we are proposing to use the following optimization problem:

min
b

XT

t¼Lþ1

XiðtÞ �
Xp

i¼1

b
T
i;jX

t;Lagged
i























2

2

þl1 kbk1 þ l2kbk
2

2

where λ1 and λ2 are tuning parameters for ℓ1 (LASSO) and ℓ2 (ridge regression) penalties,
respectively and are calculated using as follow: λ1 = α and λ2 = (1-α)/2. The pseudocode for
implementing elastic-net copula Granger causality is summarized below:

1. Find the marginal distribution for each time series:

bFnðtÞ ¼
number of elements in the sample � t

n
:

2. Map the observations into copula space:

bf iðX
t
i Þ ¼ bmi þ bs iF

� 1ðbFiðX
t
i ÞÞ

In practice, as proposed by Bahadori and Liu [17], to avoid large numbers F−1(0+) and
F−1(1−) we use theWinsorized estimator of the distribution function:

eFj ¼

dn; if bFjðXjÞ < dn

eFjðXjÞ; if dn �
bFjðXjÞ � 1 � dn

ð1 � dnÞ; if bFjðXjÞ > 1 � dn

8
>>><

>>>:

3. Find Granger causality using elastic net and copula for different values of tuning parame-
ters among bFiðXt

iÞ.

4. Select Granger causality based on the minimumAkaike information criteria [31].

To evaluate our proposedmethod, we performed extensive experiments, which are dis-
cussed in the next section.
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4 Experimentation and Performance Evaluation

4.1 Experimentation

For the implementation of our proposedmethod, we usedMATLAB together with the Sparse
Learning with Efficient Projections (SLEP) toolbox [32]. SLEP is a well-known toolbox that has
functions related to regularization and has been used in the past by many researchers [33, 34].

For the comparison exercise, we used the code provided in [35], which implements LASSO
copula Granger causality, and the Glmnet toolbox [36] in MATLAB.

In order to remain unbiased in our comparison, instead of using self-created data sets, we
used the same data that have already been used by other authors to test similar kinds of
algorithms.

4.1.1 Simulated Data. The first set of data was used in [37] and [38]; it simulates the sce-
nario of three variables (genes) and uses the following set of mathematical equations:

x1ðtÞ ¼ 0:8 x1ðt � 1Þ � 0:5 x1ðt � 2Þ þ 0:4 x3ðt � 1Þ þ ε1 ðtÞ

x2ðtÞ ¼ 0:9 x2ðt � 1Þ � 0:8 x3ðt � 2Þ þ ε3ðtÞ

x3ðtÞ ¼ 0:5 x3ðt � 1Þ � 0:2 x3ðt � 2Þ þ 0:5 x2ðt � 1Þ þ ε3ðtÞ

The second set of simulated data was first used by Schelter et al. [39] and later in [18, 40, 41]
and [42]. It simulates the scenario of five variables and uses the following set of equations:

x1ðtÞ ¼ 0:6 x1ðt � 1Þ þ 0:65 x2ðt � 2Þ þ ε1ðtÞ

x2ðtÞ ¼ 0:5 x2ðt � 1Þ � 0:3 x2ðt � 2Þ � 0:3x3ðt � 4Þ þ 0:6 x4ðt � 1Þ þ ε2ðtÞ

x3ðtÞ ¼ 0:8 x3ðt � 1Þ � 0:7 x3ðt � 2Þ � 0:1 x5ðt � 3Þ þ ε3ðtÞ

x4ðtÞ ¼ 0:5 x4ðt � 1Þ þ 0:9 x3ðt � 2Þ þ 0:4 x5ðt � 2Þ þ ε4ðtÞ

x5ðtÞ ¼ 0:7 x5ðt � 1Þ � 0:5 x5ðt � 2Þ � 0:2 x3ðt � 1Þ þ ε5ðtÞ

We generated the desired quantities of data from these sets of equations, as is done by other
authors [18, 37, 38, 40, 41] and [42], by first initializing the equations with white Gaussian
noise having zero mean and unit variance; we then used the iterative process to generate the
remainder of the data.

The direct and indirect influence structure of the simulated autoregressive models 1 and 2
are depicted by the directed graphs in Fig 2 and Fig 3, respectively. In both figures, a directed
edge represents the Granger causality between two nodes or variables.

The third simulated dataset used in this paper is from the Dialogue for Reverse Engineering
Assessments and Methods (DREAM). DREAM is one of the major platforms for genetic
research, in which series of challenges are given to researchers. The aim of these challenges is
to provide researchers, the means to find and implement new and existing theories in the areas
of cellular network inference and quantitative model building in systems biology.

The “In Silico Network Challenge,” one of the DREAM4 challenges, has the objective of
inferring gene regulation network structures via reverse engineering from the given in silico
gene expression data sets using any possible means. For this paper, we used the dataset for the
InSilico_Size10 sub-challenge, entitled “In Silico Network of Size 10” [43–45].
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4.1.2 Real Data. HeLa Cancer Cell Dataset: The real data used in this paper is from the
HeLa human cancer cell line that is collected by Whitfield et al. [46] by performingmultiple
experiments using DNA microarray analysis of the HeLa cell line. In this paper, we are using
their experiment 3 data set, which has been used by other researchers as well [6, 47].

The experiment 3 data set identifiedmore than 1100 genes that are periodically expressed
during the cancer cell cycle. From these genes, we used 19 preselected genes that are regarded
as highly influential and have been investigated by other researchers [6, 47, 48]. The 19 prese-
lected genes that we considered are: “PCNA, NPAT, E2F1, CCNE1, CDC25A, CDKN1A,
BRCA1, CCNF, CCNA2, CDC20, STK15, BUB1B, CKS2, CDC25C, PLK1, CCNB1, CDC25B,
TYMS, and DHFR”.

Fig 2. Influence graph for simulated data set 1.

doi:10.1371/journal.pone.0165612.g002

Fig 3. Influence graph for simulated data set 2.

doi:10.1371/journal.pone.0165612.g003
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As the data was not collected at homogeneous intervals, it was interpolated by cubic
smoothing splines [49] before being used as advised in [6, 47].

fMRI StarPlus Dataset: The Second real dataset used in this study is called StarPlus dataset
collected by [50] that can be freely accessed from [51]. This dataset had been used in past by
several researchers [8, 48, 52, 53] and contained the data that was acquired to study the brain
activity involved during comprehension of the relationship between sentence and pictures.

During the study, they performed series of experiments on 13 normal subjects and divided
these experiments into 40 trials. In each trial, every subject had to relate a sentence with a pic-
ture and then decide the relation between sentence and picture. These 40 trials were further
divided into two equal parts. In one part, they first introduced the sentence and asked to relate
it to a picture whereas for the next part, they showed picture followed by a sentence.

In either setting, both stimuli were provided only for 4-second exposure and a 4-second
blank screen in between. Then after the second stimulus, the subjects were asked to answer the
question then rest for 15 seconds before the start of next trial. More details about experimental
settings, sentences, and pictures are explicitly not discussed here and can be referred to [50].

The images that were acquired during the experiments were pre-processed using FIASCO
program [54] to reduce some artifacts (signal drift and headmotions) introduced during image
acquisition process. Then pre-processed images were analyzed, and 25 distinct anatomical
regions of interest (ROIs) were selected for further study. These regions includes: “left dorsolat-
eral prefrontal cortex (LDLPFC) and right dorsolateral prefrontal cortex (RDLPFC), calcarine
sulcus (CALC), left frontal eye fields (LFEF), right frontal eye fields (RFEF), left inferior parietal
lobule (LIPL), right inferior parietal lobule (RIPL), left intraparietal sulcus (LIPS), right intrapar-
ietal sulcus (RIPS), left inferior frontal gyrus (LIFG), left opercularis (LOPER), right opercularis
(ROPER), supplementarymotor areas (SMA), left and right inferior temporal lobule (LIT, RIT),
left and right posterior precentral sulcus (LPPREC, RPPREC), left and right supramarginal gyrus
(LSGA, RSGA), left temporal lobe (LT), right temporal lobe (RT), left and right triangularis
(LTRIA, RTRIA), left superior parietal lobule (LSPL) and right superior parietal lobule (RSPL)”.

4.2 Performance Evaluation

The performance evaluation of both methods was done by comparing our proposedmethod
with the existingmethod using the following measures: precision, false detection rate (FDR),
recall, and F1 score. These measures were calculatedmore than 5000 times for each scenario,
and then their average values were used as results, to minimize impulsive errors.

Results for simulated data sets 1, and 2 are shown in Tables 1 and 2, respectively, whereas
the results for the DREAM4 data are summarized in Fig 4. Moreover, the effective brain map
involved in human deductive reasoning is shown in Fig 5.

Table 1. Results for Simulated Data Set 1.

Number of Time Points 15 20 35 75 150 500 1000

False Discovery Rate LASSO Copula GC 0.52 0.59 0.7 0.76 0.76 0.81 0.8

Elastic-Net Copula GC 0.41 0.45 0.44 0.35 0.45 0.53 0.52

Recall LASSO Copula GC 0.41 0.41 0.41 0.41 0.41 0.4 0.41

Elastic-Net Copula GC 0.51 0.57 0.69 0.84 0.79 0.86 0.91

F1 Score LASSO Copula GC 0.42 0.39 0.33 0.3 0.3 0.26 0.27

Elastic-Net Copula GC 0.51 0.53 0.58 0.70 0.64 0.61 0.62

Precision LASSO Copula GC 0.48 0.51 0.30 0.24 0.24 0.19 0.20

Elastic-Net Copula GC 0.59 0.56 0.56 0.65 0.55 0.48 0.48

doi:10.1371/journal.pone.0165612.t001
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For the real HeLa cell data, as there are no means to compare the effectiveness against other
methods, we extracted the top 20 significant interactions.We looked up these 20 interactions
in the BioGRID database [55] to see whether they had been reported earlier. Once all 20 inter-
actions were analyzed, we compared the number of matches found by each method. This
approach for evaluation has been used and suggested by other researchers [56]. The results of
our proposedmethod and the LASSO copula method are summarized in Table 3.

5 Discussion and Conclusion

For the evaluation of performance, we divided the simulated data into two groups: high-dimen-
sional data and low-dimensional data. High-dimensional cases were defined as those having
less than 100-time points, whereas low-dimensional cases are those having more than 100-time
points. These definitions were determined based on the fact that techniques similar to DNA
microarray analysis or fMRI, which can analyze multiple genes simultaneously, usually gener-
ate 15–75-time points because of their data procurement procedures.

Table 2. Results for Simulated Data Set 2.

Number of Time Points 15 20 35 75 150 500 1000

False Discovery Rate LASSO Copula GC 0.7 0.67 0.61 0.59 0.6 0.55 0.59

Elastic-Net Copula GC 0.59 0.56 0.51 0.55 0.54 0.54 0.55

Recall LASSO Copula GC 0.15 0.36 0.58 0.58 0.53 0.91 0.80

Elastic-Net Copula GC 0.35 0.44 0.67 0.78 0.8 0.91 0.95

F1 Score LASSO Copula GC 0.19 0.33 0.46 0.48 0.46 0.6 0.55

Elastic-Net Copula GC 0.36 0.42 0.54 0.57 0.58 0.61 0.61

Precision LASSO Copula GC 0.31 0.33 0.39 0.41 0.4 0.45 0.42

Elastic-Net Copula GC 0.41 0.44 0.49 0.45 0.46 0.46 0.45

doi:10.1371/journal.pone.0165612.t002

Fig 4. Results for DREAM4 In Silico Network Challenge.

doi:10.1371/journal.pone.0165612.g004
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Based on this division, the results for simulated data sets 1 and 2 show that for high-dimen-
sional data, on the average, elastic-net copula has 14.8% better precision, 15.92% lower FDR,
19.18% higher recall, and a 16.33% higher F1 score. For the low-dimensional cases, the elastic-
net copula has 16.5% better precision, 16% lower FDR, 29.3% higher recall, and a 20.75%
higher F1 score.

Based on these findings on simulated data, we observe that our method is consistent with
both low- and high-dimensional data with respect to precision, FDR, and F1 score. For recall,
we believe that the drastic increase of performance for low-dimensional cases is due to the
greater availability of information as more time point values are considered.

Fig 5. Brain Connectivity map involves in deductive reasoning.

doi:10.1371/journal.pone.0165612.g005
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Similar trends for precision, FDR, recall, and F1 score can be seen from the DREAM4 data
(Fig 4), where we observe improved results with the use of elastic-net copula Granger causality.

For brain connectivitymap, there is no standard way to verify the resultant network other
than performing some clinical trials. However, clinical trials and their results are out of scope
of this paper.

However, for the results on real HeLa data (among those top 20 significant interactions
listed in Table 3), we were able to detect 7 reported interactions using the elastic-net method,
whereas only 5 interactions were found using the LASSO-basedmethod. These matched inter-
actions are shown in bold in Table 3. Of those seven interactions found by the elastic-net
method, we note two interesting interactions (highlighted in Table 3) that were not detected at
all by the LASSO copula method. These interactions are related to different cancer cell cycles,
as reported in [57–59].

In this paper, we have proposed a newmethod called elastic-net copula Granger causality,
which can use high-dimensional data for assessing both linear and nonlinear gene and brain
networks.We have compared the performance of the newmethod with its predecessor, LASSO
copula Granger causality. Based on the evidence from extensive experimentation, it is clear
that elastic-net copula outperforms the existing LASSO copula. Moreover, when applied to real
cancer cell data, it shows the capacity to detect some significant interactions that the other
method is not able to detect, further reinforcing the effectiveness of our approach. Therefore,
in our view, our proposedmethod provides a more stable regularization based technique to
study gene and brain networks thus helping the researcher to manage and treat diseasemore
meritoriously and proficiently.

Table 3. Top 20 Significant Gene Interactions using Elastic-Net Copula Granger Causality and LASSO Copula Granger Causality.

Elastic-Net LASSO

Copula Granger Copula Granger

CCNB1 $ CDC25B CCNB1 $ CDC25B

E2F1 $ CCNE1 E2F1 $ CCNE1

CCNE1 $ CDC25A CCNE1 $ CDC25A

PLK1 $ CCNB1 PLK1 $ CCNB1

CDKN1A $ BRCA1 PCNA $ NPAT

PCNA $ NPAT PCNA $ PCNA

CDC25A $ CDKN1A CDC25A $ CDKN1A

PCNA $ PCNA CDKN1A $ BRCA1

CCNB1 $ CCNF BRCA1 $ CDC25B

CDC25C $ PLK1 CDC25C $ PLK1

CDC25B $ TYMS CDC25B $ TYMS

CCNB1 $ STK15 NPAT $ E2F1

BUB1B $ CKS2 BUB1B $ CKS2

NPAT $ E2F1 DHFR $ DHFR

DHFR $ DHFR CDC20 $ CDC25B

STK15 $ BUB1B CCNA2 $ CDC20

CCNA2 $ CDC20 STK15 $ BUB1B

CKS2 $ CDC25C CKS2 $ CDC25C

PCNA $ E2F1 NPAT $ NPAT

CCNB1 $ CKS2 BUB1B $ CDC25B

doi:10.1371/journal.pone.0165612.t003
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Consent and Sources of Real Data

Although this study involves human participants, formal consents or ethical committee
approval is not required as experimental data used in this research is not collected by current
authors and is freely accessible. HeLa cell Genetic is acquired from published article of Michael
et al. and can be accessed from http://genome-www.stanford.edu/Human-CellCycle/Hela/data.
shtml. Similarly, StarPlus fMRI data is acquired from published work of Mitchell et al. and can
be accessed freely from http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-81/www/.
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