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Diabetes mellitus (DM) and Parkinson’s disease (PD) have been and will continue
to be two common chronic diseases globally that are difficult to diagnose during
the prodromal phase. Current molecular genetics, cell biological, and epidemiological
evidences have shown the correlation between PD and DM. PD shares the same
pathogenesis pathways and pathological factors with DM. In addition, β-cell reduction,
which can cause hyperglycemia, is a striking feature of DM. Recent studies indicated
that hyperglycemia is highly relevant to the pathologic changes in PD. However, further
correlation between DM and PD remains to be investigated. Intriguingly, polycystic
monoamine transporter 2 (VMAT2), which is co-expressed in dopaminergic neurons
and β cells, is responsible for taking up dopamine into the presynaptic vesicles and
can specifically bind to the β cells. Furthermore, we have summarized the specific
molecular and diagnostic functions of VMAT2 for the two diseases reported in this
review. Therefore, VMAT2 can be applied as a target probe for positron emission
tomography (PET) imaging to detect β-cell and dopamine level changes, which can
contribute to the diagnosis of DM and PD during the prodromal phase. Targeting VMAT2
with the molecular probe 18F-FP-(+)-DTBZ can be an entry point for the β cell mass
(BCM) changes in DM at the molecular level, to clarify the potential relationship between
DM and PD. VMAT2 has promising clinical significance in investigating the pathogenesis,
early diagnosis, and treatment evaluation of the two diseases.
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Abbreviations: 11C-CFT, 11C-methyl-N-2b-carbomethoxy-3b-(4-fluorophenyl) tropane; 11C-DTBZ, 11C-
dihydrotetrabenazine; 11C-DTBZ, 11C-dihydrotetrabenazine; 11C-RAC, 11C-raclopride; 18F-DOPA, L-3,4-dihydroxy-
6-18F-fluorophenylalanine; 18F-FP-(+)-DTBZ, 18F-fluoropropyl-(+)-dihydrotetrabenazine; AADC, L-aromatic amino
acid decarboxylase; BCM, β cell mass; DA, dopamine; DAT, dopamine transporter; DM, diabetes mellitus; DTBZ,
dihydrotetrabenazine; PD, Parkinson’s disease; PET, positron-emission tomography; SUVR, standardized uptake value ratio;
T1DM, type 1 DM; T2DM, type 2 DM; TH, tyrosine hydroxylase; VMAT2, vesicular monoamine transporter-2.
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INTRODUCTION

Parkinson’s disease (PD) is the most common progressive
neurodegenerative disorder and is characterized by severe motor
and non-motor symptoms including uncontrollable tremor,
bradykinesia, rigidity, and sleep disturbances. More than 6
million individuals worldwide have PD (Armstrong and Okun,
2020). However, in the prodromal phase, diagnosis based on the
clinical profiles is difficult. Diabetes mellitus (DM) is a metabolic
disorder characterized by an absolute or relative deficiency of β

cell mass (BCM), which manifests as persistent hyperglycemia
(Jonietz, 2012; Cinti et al., 2016). DM can be largely classified
into type I and type II. According to a 2019 epidemiological
survey, the global prevalence of diabetes was an estimated 9.3%
(463 million people) at publication, and it was predicted to rise
to 10.2% (578 million) by 2030 and 10.9% (700 million) by
2045. The prevailing evidence points to diabetes accounting for
a considerable global burden of chronic illness in aging societies
(Saeedi et al., 2019; Sinclair et al., 2020).

Both PD and DM are highly prevalent. Previous research
suggests that DM predisposes toward a Parkinson-like pathology
and induces a more aggressive phenotype in patients already
ill with PD (Pagano et al., 2018). In addition, studies have
shown that these two diseases exhibit common pathogenic
and pathological changes. Moreover, studies have demonstrated
that hyperglycemia, which is caused by decreased BCM
in DM patients, may lead to the occurrence of PD or
aggravate PD symptoms.

The β-cell marker, vesicular monoamine transporter-2
(VMAT2), is closely linked to the occurrence of PD. Therefore,
detecting progressive changes in BCM can both assist in the
diagnosis of PD and clarify the pathogenesis of DM. Positron–
emission tomography (PET) imaging using probes targeting
VMAT2 has been applied to the diagnosis of PD and DM.
Because of the low abundance of β cells, researchers use a notably
sensitive tracer, an 18F-labeled dihydrotetrabenazine derivative
(18F-FP-(+)-DTBZ), in their study (Wu et al., 2015). Researchers
have used VMAT2 imaging with 18F-FP-(+)-DTBZ to identify
DM as a risk factor for PD. In summary, this probe may, in
the future, reveal the pathogenesis of DM and permit the early
diagnosis of PD.

MOLECULAR GENETICS, CELL
BIOLOGY, AND EPIDEMIOLOGY:
CORRELATION BETWEEN PD AND DM

Studies in molecular genetics, cell biology, and epidemiology
have shown that the pathogeneses of PD and DM have common
characteristics. Approximately 60% of patients with PD have
impaired insulin signaling and impaired glucose tolerance
(Santiago and Potashkin, 2014). Moreover, 62% of patients with
PD and dementia have insulin resistance, and 30% of these
patients also have impaired glucose tolerance (Bosco et al.,
2012). PD is aggravated if the onset of comorbid DM is earlier
than that of PD (Cereda et al., 2012). In the pathogenesis and
progression of PD and DM, insulin and dopamine are regulated

mutually, and hypoinsulinemia induced by streptozotocin can
reduce the levels of dopamine transporter (DAT) and tyrosine
hydroxylase (TH) transcription in the substantia nigra pars
compacta (Lima et al., 2014). In addition, reduction of
dopamine in the striatum can attenuate insulin signaling in
the basal ganglia region. Pathways common to both diseases
are mitochondrial dysfunction, endoplasmic reticulum stress,
inflammatory response, vitamin D deficiency, and ubiquitin-
protease/autophagy-lysosomal-system dysfunction (Table 1).
Peroxisome proliferator-activated receptor gamma coactivator 1-
alpha (PGC-1α) is a key regulator of the enzymes involved in
the mitochondrial respiratory chain and of insulin resistance
and plays an important role in the pathogenesis of both
DM and PD. In addition, ATP-sensitive K+ channels, AMP-
activated protein kinases, glucagon-like peptide-1, and dipeptidyl
peptidase enzyme 4 show common pathological changes in DM
and PD. Hyperglycemia can cause disturbances in the energy
metabolism in the brain, damage neurons through various injury
mechanisms, and lead to abnormal expression of proteins in the
striatum and hippocampus. Consequently, recent studies have
focused on the relationship between PD and hyperglycemia.
One study found that thioredoxin-interacting protein (TXNIP),
an endogenous inhibitor of reactive oxygen species elimination,
regulates Parkin/PINK1-mediated mitophagy in dopaminergic

TABLE 1 | Common pathogenesis pathways in Parkinson’s disease (PD) and
diabetes mellitus (DM).

Common pathways Pathogenesis of PD Pathogenesis of DM

Mitochondrial
dysfunction (Bonnard
et al., 2008; Parker
et al., 2008)

Increased ROS
production—damage to
lipids, protein, and DNA.
Endoplasmic reticulum
stress.

Increased ROS production,
lipid accumulation.

Endoplasmic reticulum
stress.
Insulin resistance.

Autophagy (Webb
et al., 2003; Cuervo
et al., 2004; Matos
et al., 2018)

α-Synuclein aggregation.
Lipid accumulation

Inclusion bodies in the liver
and pancreas

Inflammatory response
(Allan and Rothwell,
2001; Chen et al.,
2008; Sun et al., 2011)

Increased production of
cytokines IL-1β and
TNF-α.
Anti-inflammatory
treatments are
neuroprotective.

Chronic inflammation
increases risk of diabetes.

Anti-inflammatory
treatments improve insulin
resistance.

Metabolism (Moroo
et al., 1994; Ogama
et al., 2018; Ter Horst
et al., 2018; Wang
et al., 2020)

60–80% of PD patients
exhibit impaired glucose
tolerance.
Dopamine release is
glucose sensitive

Loss of insulin-receptor
immunoreactivity in the
substantia nigra.

Insulin resistance is
associated with cognitive
decline.
Peripheral insulin
resistance leads to
ischemic cerebrovascular
disease.
Hyperglycemia is
associated with
neurodegeneration.

Vitamin D deficiency
(Derex and Trouillas,
1997; Boucher et al.,
2004; Evatt et al., 2008)

Reduced vitamin D levels
increase the risk of PD.

Vitamin D improves motor
function in human PD

Reduced vitamin D levels
increase the risk of
diabetes.
Vitamin D improves insulin
resistance in diabetes.
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neurons under high-glucose conditions (Su et al., 2020), which
revealed the neuronal impact of mitochondrial dysfunction
caused by hyperglycemia and hyperglycemia-induced oxidative
stress. In addition, the preferential occurrence of nigrostriatal
dopaminergic neurodegeneration in long-term hyperglycemia
suggests that hyperglycemia causes premature aging of the
central nervous system, fostering the development of age-related
neurodegenerative diseases (Renaud et al., 2018). However, these
studies did not sufficiently clarify the molecular link between
hyperglycemia and PD. Further research on this topic will help
elucidate the pathogenesis of PD, which is important for better
clinical diagnosis, prevention, and treatment.

Both type 2 diabetes (T2DM) and PD are involved in the
accumulation of misfolded proteins in amyloid aggregates. In
diabetic patients, the accumulation of islet amyloid polypeptide
(IAPP) in pancreatic cells can cause cell dysfunction. In patients
with PD, α-synuclein eventually aggregates into the Lewy bodies
(Wang and Raleigh, 2014; Bridi and Hirth, 2018). Researchers
have found that IAPP and α-synuclein cross-interact in the
two diseases, and IAPP in patients with T2DM can promote
α-synuclein aggregation, which leads to the occurrence of
PD (Horvath and Wittung-Stafshede, 2016). Another study
showed that insulin-degrading enzymes (IDE) can bind to
synuclein oligomers to prevent further aggregation. Moreover,
insulin resistance can inhibit IDE and promote the formation
of α-synuclein fibrils, which may enhance PD progression
(Sharma et al., 2015).

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)
can lead to neuronal death by inhibiting the mitochondrial
respiratory chain enzyme, which is a PD animal model
inducer (Jing et al., 2017). In addition, studies have shown
that mitochondrial dysfunction occurs in patients with DM
and PD, and insulin resistance in diabetic mice can lead
to mitochondrial destruction and dopaminergic neuron
degeneration (Khang et al., 2015).

According to many case–control studies, longitudinal studies,
and meta-analyses, DM is a risk factor for PD (some of these
results are shown in Table 2). DM can accelerate the development
and progression of PD, especially in young women aged between
8 and 12 years (Sun et al., 2012; Aviles-Olmos et al., 2013a;
Ahn et al., 2015; Santiago et al., 2017; Pagano et al., 2018).
Several studies in the late 1990s showed that, in the diabetic
mouse, the levels of DAT in the V9 and V10 regions (Del Pino
et al., 2017) and in the medial forebrain bundle of the midbrain
(Petrisic et al., 1997) were decreased significantly. A positive
correlation was established between insulin reduction in DM
and decreases in the levels of DAT, VMAT (mainly VMAT2),
and TH. Insulin regulates DAT and VMAT2 levels through the
PI3K/AKT pathway, and insulin deficiency leads to DAT and
VMAT2 dysfunction. Dopamine D2 receptors can also regulate
DAT and VMAT2 expression through the ERK signaling pathway
(Carvelli et al., 2002; Owens et al., 2012; Samandari et al., 2013;
Bini et al., 2019).

There are also other molecular targets that tightly link PD
and DM. For example, glucose-dependent insulin-promoting
polypeptide (GIP) is not only an endogenous hormone of the
incretin family but also a neurotrophic factor. It activates cell

TABLE 2 | Recent studies on the correlation between diabetes mellitus (DM) and
Parkinson’s disease (PD).

Study Study design Sample size Main results

Hu et al., 2007
(Hu et al., 2007)

Cohort PD: 633
Controls: 51,552

T2DM is associated
with an increased risk
of PD.

Moran and
Graeber, 2008
(Moran and
Graeber, 2008)

Meta-analysis N/A Shared biological
pathways between PD,
T2DM, cancer, and
inflammation.

D’Amelio et al.,
2009 (D’Amelio
et al., 2009)

Case–control PD: 318
Controls: 318

Inverse association
between PD and DM
preceding PD onset.

Palacios et al.,
2011 (Palacios
et al., 2011)

Case–control PD: 1931
Controls: 9651

T2DM is associated
with an increased risk
of PD, especially
younger-onset PD.

Xu et al., 2011
(Xu et al., 2011)

Cohort DM: 21,611
Controls: 267,051

T2DM is associated
with an increased risk
of PD.

Bosco et al.,
2012 (Bosco
et al., 2012)

Case–control PD+dementia: 53
PD: 57

Insulin resistance is
associated with an
increased risk of
dementia in PD.

Sun et al., 2012
(Sun et al.,
2012)

Case–control DM: 603,416
Controls: 472,118

DM is associated with
an increased risk of PD
onset.

Wahlqvist et al.,
2012 (Wahlqvist
et al., 2012)

Case–control DM: 64,166
Controls: 698,587

T2DM is associated
with an increased risk
of PD.
Metformin-sulfonylurea
therapy reduces the
risk of PD.

Yue et al., 2016
(Yue et al.,
2016)

Meta-analysis Based studies: 7
Sample total:
1,761,632

Diabetes is associated
with an ∼38% increase
in the risk of PD.

De Pablo-
Fernandez
et al., 2017 (De
Pablo-
Fernandez
et al., 2017)

Cohort PD: 79
Controls: 4919

Diabetes duration might
be an important factor
in the association of PD
and diabetes.

De Pablo-
Fernandez
et al., 2018 (De
Pablo-
Fernandez
et al., 2018)

Cohort DM: 2,017,115
Controls:
6,173,208

Significantly elevated
rates of PD following
T2DM.

Pagano et al.,
2018 (Pagano
et al., 2018)

Case–control PD+DM: 25
PD without DM: 25
DM: 14
Controls: 14

DM may predispose
toward a Parkinson-like
pathology and, when
present in patients with
PD, can induce a more
aggressive phenotype.

T2DM, type 2 diabetes mellitus.

proliferation and protects the neurons by promoting cell repair
and preventing apoptosis, which enhances the survival ability of
β-cells in the pancreas and neurons in the brain (Maino et al.,
2014; Altmann et al., 2016). Besides, the GIP receptor is a G
protein-coupled receptor that belongs to the glucagon family and
increases insulin secretion during the onset of hyperglycemia
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(Park et al., 2013). In addition, studies have revealed that
treatment with GIP analogs can increase the level of reduced TH
in PD patients (Li et al., 2016).

Another incretin hormone, glucagon-like peptide-1 (GLP-1),
which is functionally similar to GIP, also plays a role in DM
and PD pathogenesis. The GLP-1 receptor agonists have been
approved for the treatment of T2DM and have a good therapeutic
effect on the clinical symptoms of PD including motor and
cognitive dysfunctions. Their neuroprotective effect is shown
in the protection of dopaminergic neurons in the substantia
nigra, and they reduce the accumulation of synuclein proteins
(Aviles-Olmos et al., 2013b; Ji et al., 2016). In addition, GLP-
1 treatment reduces oxidative stress and lipid peroxidation and
increases the level of brain-derived neurotrophic factor (BDNF),
alleviating the symptoms of neuroinflammation in the brain
(Li et al., 2017). Studies on the effects of GLP1 analogs on
MPTP rodents have revealed that by inhibiting inflammation
and excitatory cytokines and stimulating antioxidant enzymes,
striatum dopamine levels can be improved and neuronal damage
can be reduced (Elbassuoni and Ahmed, 2019).

After treatment with GLP1/GIP receptor agonists, TH in the
brain increases and microglial activation decreases, promoting
the production of dopamine and providing neuroprotection
for dopaminergic neurons. These two peptides can be used as
evidence for the connection between PD and DM.

Although these studies proved that DM is a risk factor for
PD, the mechanistic basis of the relationship has not been
fully elucidated. In addition, because a deficiency in BCM is
the absolute or relative characteristic of DM, early, effective
evaluation of BCM levels in patients with DM will be of great
significance for the prevention, early diagnosis, and treatment
of PD. VMAT2 is expressed in brain monoaminergic neurons,
especially in the striatum, which is a regulator of monoaminergic
neuronal function. Besides, VMAT2 is also a potential target
for the assessment of BCM, and decreases in BCM level in
the human pancreases correlate with decreases in insulin level
in the blood (Anlauf et al., 2003; Fu et al., 2019). Jiang et al.
(2020) found a decreased VMAT2 expression in the striatum
due to the β-cell impairment in a type 1 DM (T1DM) rat
model. Furthermore, VMAT2 expression in the striatum was also
increased with the recovery of BCM and glucose levels in DM
rats after streptozotocin injection treatment (Jiang et al., 2020).
VMAT2 is, therefore, a key factor in connecting PD and DM.

Considering the correlation between DM and PD, researchers
have employed a molecular imaging probe for VMAT2, the PET
radioligand [18F]fluoropropyl-(+)-dihydrotetrabenazine (18F-
FP-(+)-DTBZ or 18F-AV-133), as a molecular marker that can
be used to objectively analyze dopamine and β cells.

VMAT2 FUNCTION AND ANATOMICAL
DISTRIBUTION

VMAT2, a glycoprotein bound to secretory vesicle membranes
and a constitutive protein in humans, is a subtype of the vesicle
monoamine transporter (Stahl, 2018). A large number of studies
have shown that VMAT2 is pivotal in the pathogenesis of PD

(Ma et al., 2019; Shi et al., 2019), which is well known as
a disease of dopamine deficiency. In endocrine islets, a large
number of genes expressed by β cells have homologs in neural
cells, one of which is VMAT2 (Harris et al., 2008). In 2003,
Anlauf et al. (2003) determined the distribution of VMAT2 in
human and monkey pancreas by immunohistochemistry and
in situ hybridization. This was the first confirmation of VMAT2
localized in islet β cells. The monoamine neurotransmitters
transported by VMAT2 are important paracrine and/or autocrine
regulators of islet β cells and include dopamine, which inhibits
insulin release via dopamine D2 receptors on β cells (Pecic et al.,
2019). Recent studies have found that VMAT2 also mediates
the release of the inhibitory neurotransmitter γ-aminobutyric
acid (Tritsch et al., 2012), which plays a protective role by
inhibiting β-cell apoptosis (Purwana et al., 2014). Exocytosis or
endocytosis of the vesicles is important for the regulation of
cellular signal transduction. Although glucose is an important
factor in stimulating insulin secretion, VMAT2 also regulates
glucose and insulin homeostasis (Raffo et al., 2008; Rodriguez-
Diaz et al., 2011). Neuroendocrine cells accumulate biogenic
amines and peptides, and the VMAT2 that they express serves
to take up monoamines from the cytoplasm, which are then
stored in the secretory vesicles for use in signaling (Bernstein
et al., 2012). Accumulating evidence shows that VMAT2 is a
contributor in PD progression (Ma et al., 2019; Shi et al., 2019).
The accumulation of toxic α-synuclein in the prodromal phase
of PD can impair VMAT2 activity, which eventually increases
the cytosolic levels of dopamine (Bridi and Hirth, 2018). The
metabolites of dopamine itself are cytotoxic; thus, an abnormal
level of dopamine can exacerbate PD symptoms (Lotharius and
Brundin, 2002). Moreover, disturbances of VMAT2 expression
decrease neurogenesis in the olfactory nerve, causing hyposmia,
which is another symptom of PD (Ma et al., 2019). It is known
that the main histopathological change observed in PD is the
selective degeneration of dopaminergic neurons in the substantia
nigra pars compacta and of dopaminergic nerve endings in
the striatum. A previous study identified a correlation between
decreased striatal VMAT2 and multiple non-motor symptoms in
patients with PD (Shi et al., 2019).

Furthermore, physiological effects of knocking out the
VMAT2 mouse model were studied. Homozygous (VMAT2-/-)
mice die within a few days after birth due to poor eating. The
number of monoaminergic cells in the brain of knockout mice
is lower than that of wild-type littermates (Fon et al., 1997). In
addition, heterozygosity (VMAT2 +/−) shows low sensitization
to dopamine agonist synaptic apomorphine, psychostimulant
cocaine, and other neurotoxins (Wang et al., 1997). In
VMAT2 knockout mice, disruption of vesicle trafficking leads
to enhanced methamphetamine (METH)-induced dopaminergic
neurotoxicity. METH produces greater dopamine consumption
and metabolite content in the VMAT2 +/− striatum. DAT
expression in the striatum of VAT2 +/− mice was further
reduced, and the dopamine transporter content was lower than
that of the wild type after treatment with METH (Fumagalli et al.,
1999). Moreover, neurotoxin MPTP to heterozygotes’ dopamine
cells is more than two times lower than that in wild-type mice
(Takahashi et al., 1997). These results suggest that monoamine
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function, post-synaptic sensitization, and neurotoxin mechanism
of action are linked to VMAT2 expression. In summary, VMAT2
may play an important role in the pathogenesis of PD.

T1DM is caused by the reductions in BCM due to an
autoimmune reaction, resulting in an absolute deficiency of
endogenous insulin secretion (Wilcox et al., 2016; Yu et al., 2019).
T2DM stems from metabolic disorders and insulin resistance,
and the toxic downstream effects of these metabolic disorders can
further exacerbate BCM reduction by up to 60% (Ashcroft and
Rorsman, 2012; Johnson and Olefsky, 2013; Derakhshan et al.,
2015). Significant losses of BCM precede rises in blood glucose;
therefore, an in-depth study of β-cell numbers can provide
new clues to the pathology, early diagnosis, and treatment of
DM. A non-invasive method for determining the residual BCM
of patients with DM would be extremely useful. Great efforts
have been devoted to improving the diagnostic accuracy of
DM/BCM determination using highly β-cell-specific molecular
imaging probes. Considering the necessity of tracking dynamic
changes in BCM over time, PET imaging seems to be a feasible
method for accessing BCM (Wei et al., 2019). Moreover, VMAT2
is one of the β-cell biomarkers, and the binding of VMAT2
with specific radioactive probe substances is well correlated
with the amount of insulin secretion observed after a glucose
challenge (Naganawa et al., 2018). Compared with the approach
of directly determining insulin levels, determining VMAT2 as
a proxy for BCM has the advantages of not being affected by
insulin secretion, metabolism, inflammation, etc. (Freeby et al.,
2012). In addition, multiple molecular probes are available for
imaging β cells, including the voltage-dependent Ca2+ channel
(VDCC), the glucose transporter (GLUT), the radiotracer 18F-
fluorodeoxyglucose (18F-FDG), VMAT2, dihydrotetrabenazine
(DTBZ), 5-hydroxytryptophan (5-HTP), and GPL-1 receptor
(GLP-1R) (Wei et al., 2019). VMAT2 has high specific binding
and a high density in β cells, which makes it a promising target
for BCM imaging (Yang et al., 2017). Dopaminergic neuron
damage in PD primarily begins with the nigrostriatal neurons,
subsequently affecting the nigrostriatal pathway and finally the
mesolimbic system. The striatum has the highest VMAT2 level
(Hsiao et al., 2014). VMAT2 is located in the presynaptic
neurons, which are responsible for storing and packing the
neurotransmitter to regulate the cytoplasmic dopamine level
(Figure 1; Hefti et al., 2010). Moreover, previous studies have
delineated a strong correlation between the density of striatal
VMAT2 and the non-motor symptoms of PD (Shi et al.,
2019). Therefore, VMAT2 is promising as an imaging target for
the diagnosis PD.

IMAGING THE MONOAMINERGIC
SYSTEM: VMAT2

Role in PD Research
At present, the positron–emission molecular probes used in
the diagnosis of PD mainly employ dopaminergic targets and
are divided into presynaptic and post-synaptic imaging agents
according to their binding targets. Targets on the presynaptic
membrane include the following: (1) The dopamine transporter

(DAT) of dopaminergic neurons, which transports DA from
the synaptic gap back to the presynaptic compartment. Its
signal is closely related to the number of dopaminergic
neurons. Therefore, DAT imaging can assess the function of
dopaminergic nerve endings. 11C-methyl-N-2b-carbomethoxy-
3b-(4-fluorophenyl)tropane (11C-CFT) is a DAT radiotracer
widely used in clinical practice. However, DAT is commonly
downregulated in the early stages of disease, resulting in an
overestimation of the amount of degeneration (Lee et al.,
2000). (2) L-Aromatic amino acid decarboxylase (AADC) is
one of the most important enzymes in dopamine synthesis,
being responsible for converting levodopa into dopamine.
The activity of AADC is measured by the tracer L-3,4-
dihydroxy-6-18F-fluorophenylalanine (18F-DOPA) (Stormezand
et al., 2020). (3) VMAT2 is responsible for taking up cytoplasmic
dopamine into presynaptic vesicles. The main tracers used are
11C-dihydrotetrabenazine (11C-DTBZ) and 18F-FP-(+)-DTBZ
(Bohnen et al., 2006). Furthermore, post-synaptic dopamine
receptors are mainly in the D1 family (D1 and D5) and D2
family (D2, D3, and D4). The main tracers used are 11C-FLB 457,
18F-fallypride, and 11C-raclopride (11C-RAC), which bind to D2
(Laruelle, 2000; Ray et al., 2012), and 11C-PHNO, which binds to
D3 (Figure 2; Payer et al., 2016).

The diagnostic imaging agent most used to assess DAT
expression in cases of PD is 11C-CFT, but its use is limited
by the short half-life of 11C (20 min). Recent studies have
shown that, in the primate PD model, the changes in DAT and
VMAT2 binding sites in the striatum of surviving substantia
nigra neurons are similar, suggesting that targeting VMAT2
with the 18F-labeled dihydrotetrabenazine derivative (18F-FP-
(+)-DTBZ) for imaging can provide results similar to those of
the DAT imaging presently used to diagnose PD (Lin et al., 2014;
Wood, 2014; Cho et al., 2019), but with the further advantage
that 18F-FP-(+)-DTBZ imaging can also be used to assess the
severity of PD (Hsiao et al., 2014). Another advantage is that it
is less affected by compensation or pharmacological regulation
(Wilson and Kish, 1996).

18F-FP-(+)-DTBZ in the Diagnosis of DM
11C-Dihydrotetrabenazine (11C-DTBZ) is a specific VMAT2
radioligand currently used in PD research and in clinical imaging
of the brain for the diagnosis of PD (Lin et al., 2013). In rodents,
a model of type-1 DM showed a good correlation between 11C-
DTBZ uptake in the pancreas and blood glucose homeostasis
(Naganawa et al., 2016).

A limitation of PET technology in VMAT2 imaging is
its low spatial resolution. Moreover, β cells account for a
small proportion (1–2%) of the pancreas and are relatively
dispersed. To overcome these challenges, it is necessary to further
improve the signal-to-noise ratio of the images provided by
the radiotracer. Therefore, the 18F-labeled dihydrotetrabenazine
derivative 18F-FP-(+)-DTBZ (18F-AV-133), which improves
upon certain properties of 11C-DTBZ, is preferred. Compared
with 11C-DTBZ, 18F-FP-(+)-DTBZ has better affinity for VMAT2
and lower fat solubility, which translates into less non-specific
binding (Wu et al., 2015). In addition, 18F has a longer half-life
than 11C, making it suitable for a wider range of applications.
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FIGURE 1 | Dual distribution of the vesicular monoamine transporter-2 (VMAT2). VMAT2 is expressed in both β cells (A) and dopaminergic neurons (B). (A) In
pancreatic β cells, VMAT2 can accumulate cytoplasmic insulin in secretory vesicles. (B) VMAT2 is also responsible for accumulating cytoplasmic dopamine in
synaptic vesicles in the classical dopaminergic neuron in the central nervous system.

FIGURE 2 | Radiotracers for imaging the dopaminergic system. Shown are the radiotracers used for the in vivo imaging of the dopaminergic system for the
diagnosis of PD. Tracers can be used for imaging either presynaptic (AADC, VMAT2, or DAT) or post-synaptic (D2/D3 receptors) dopaminergic function through
positron–emission tomography (PET).

In the most recent primate experiments, the renal cortex,
which contains no VMAT2, has been used as a control for non-
specific binding in estimations of the specific binding ability of
18F-FP-(+)-DTBZ to VMAT2. Recent experiments on sputum
have confirmed that the probe’s specific binding capacity to such
samples can reach 85% of that in the striatum, and pancreatic

BCM has been successfully reevaluated by PET scanning in
humans (Naganawa et al., 2016). 18F-FP-(+)-DTBZ can be both
precise and accurate. A quantitative display of PET results,
therefore, can be used as a non-invasive means to effectively
quantify the BCM and thus the secretion of insulin, which has
broad application in the diagnosis, treatment, and monitoring of

Frontiers in Neuroscience | www.frontiersin.org 6 July 2020 | Volume 14 | Article 682

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00682 July 10, 2020 Time: 18:41 # 7

Kong et al. VMAT2 Between DM and PD

DM (Singhal et al., 2011). The 18F-FP-(+)-DTBZ-standardized
uptake value (SUV), the total volume of distribution, and the
binding potential in the pancreas were shown to be reduced by 38,
20, and 40%, respectively, in patients with T1DM compared with
those in healthy controls (Normandin et al., 2012). Moreover, the
new procedure reduced the patient’s exposure to radioactivity.
In addition, the extent of tracer uptake correlated with the
rate of insulin secretion. The PET Center of Huashan Hospital
in China conducted a study in baboons on the use of 18F-
FP-(+)DTBZ for imaging the pancreas and reached similar
conclusions (Naganawa et al., 2016).

VMAT2 Imaging Reveals a Correlation
Between PD and DM
Using 18F-FP-(+)DTBZ imaging of rat models of T1DM and
T2DM, previous studies at the Huashan Hospital PET Center
demonstrated that the uptake of 18F-FP-(+)DTBZ in the striatum
and the fasting blood glucose of the two groups were significantly
negatively correlated. This indicates that BCM is closely related to
VMAT2 expression in the brain. At the same time, T2DM caused
a decrease in the expression of VMAT2 in the dopaminergic

pathway in the brain. In addition, it was found that in the
dopamine neurological abnormalities caused by T2DM, the
abnormal expression of VMAT2 appeared earlier than that of
DAT, and to a greater degree. These results suggest that DM and
PD have a common pathogenesis.

Furthermore, imaging of the pancreas in patients with T1DM,
patients with T2DM, and normal controls revealed that the
uptake of 18F-FP-(+)-DTBZ was significantly lower in T1DM
and T2DM than in controls (Figures 3, 4; Donglang et al.,
2018; Jianfei et al., 2019). Quantification of 18F-FP-(+)-DTBZ
can be used to evaluate BCM in the pancreas of diabetic
patients. 18F-FP-(+)-DTBZ imaging in the caudate nucleus and
putamen of patients with comorbid PD and T2DM showed
that the standardized uptake value ratio (SUVR) of the caudate
nucleus in the comorbid group was significantly lower than
that of PD patients and normal controls. The SUVR was also
lower in the putamen in the comorbid group than in PD
patients. This result indicates that T2DM exacerbates the decline
in VMAT2 expression in the caudate and putamen of the
brain (Figure 5; Jiang et al., 2020). Previous clinical studies
have also found that DM aggravates the symptoms of PD
(Yue et al., 2016).

FIGURE 3 | PET imaging of the pancreas in type 2 DM (Donglang et al., 2018) (E-produced/adapted from Chin J Endocrinol Metab, used with permission)
Representative PET imaging of the pancreatic head, body, and tail in the baboon in type 2 DM and in healthy controls. (a) Normal pancreas; (b) type 2 DM; white
arrow, pancreatic head; yellow arrow, pancreatic body and tail; SUV, standardized uptake value.
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FIGURE 4 | PET imaging of the pancreas in type 1 DM (Jianfei et al., 2019) (E-produced/adapted from Chin J Endocrinol Metab, used with permission) Shown are
representative 18F-PF-(+)-DTBZ PET images of the pancreas (black arrows) of rats with type 1 diabetes mellitus (T1DM) and control rats, 0.5, 1, 4, 6, and 12 months
after model induction.

FIGURE 5 | VMAT2 expression in the striatum in type 1 DM (Jiang et al., 2020) (E-produced/adapted from Nuclear Medicine and Biology, used with permission)
Shown is the decreased VMAT2 expression in the striatum in a rat model of T1DM, and in control rats, 0.5, 1, 4, 6, and 12 months after model induction, as imaged
by 18F-FP-(+)-DTBZ-PET/CT; SUVR, standardized uptake ratio.

As a protein that transports neurotransmitters, the
distribution and expression of VMAT2 in human pancreas
and its presence in sputum cells have clinical applications. The
homology of the human, mouse, and rat VMAT2 amino acid

sequences can be above 90% (German et al., 2015; Wu et al.,
2016). Thus, studies based on diverse animal models suggest
a correlation between BCM reduction and PD in humans
(Jiang et al., 2020). In summary, diabetes is a demonstrated risk
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factor for PD, and a correlation between DM and PD has been
established by the above experiments.

FUTURE PERSPECTIVES

The physiological function of VMAT2 in islet β cells needs further
study to determine the molecular mechanisms affecting BCM
and insulin secretion and how VMAT2 participates in regulating
the secretion of neurotransmitters. This information will provide
new molecular therapeutic targets and an important theoretical
basis for the early prediction, diagnosis, and treatment of DM.
Future research should use PET scans to compare VMAT2
distributions among patients with T2DM, patients with obesity
but without DM, and participants without DM. Undoubtedly,
the advantages of using VMAT2 as a BCM marker will lead to
useful information.

Positron emission tomography has shown prominent features
compared with other molecular imaging approaches. PET
can trace suspicious malignant lesions and provide functional
imaging of those areas, which is useful for early diagnosis of
diseases (Kang et al., 2004; Machtens et al., 2004). Although
magnetic resonance imaging (MRI) has a higher resolution, the
specificity of its related contrast agents for β cells is not as good as
PET imaging. Moreover, the radiation exposure of PET imaging
is much lower than that of CT scan. In addition, the evaluation of
the BCM level has a significant effect through PET imaging (Wei
et al., 2019; Yang et al., 2019). However, the high cost of PET has
limited its promotion.

Molecular imaging allows qualitative and quantitative studies
of biological processes in vivo at the cellular and molecular levels.
The establishment of a functional imaging platform based on PET
technology to observe physiological and pathological changes in
the BCM can objectively, intuitively, and quantitatively reveal the
key factors affecting insulin secretion and insulin resistance. Such
a platform will advance our understanding of the pathogenesis of
DM and the evaluation of the efficacy of experimental treatments,
resulting in great clinical and social benefits.

CONCLUSION

Targeting VMAT2 with the molecular probe 18F-FP-(+)-DTBZ
provides an entry point for revealing the relationship between
DM and PD. Interest in the use of imaging methods in research
on BCM determination and DM has steadily increased because
of their practicality, non-invasiveness, and safety. At present,
radionuclide labeling remains the most sensitive imaging method
for human β cells. This approach serves to clarify the role
of BCM in the pathogenesis and progression of DM and has
practical, clinical, and social value for the early diagnosis and
treatment of DM.
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