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Abstract: We theoretically investigate the dynamics of a quantum system which is coupled
to a fluctuating environment based on the framework of Kubo-Anderson spectral diffusion.
By employing the projection operator technique, we derive two types of dynamical equations, namely,
time-convolution and time-convolutionless quantum master equations, respectively. We derive the
exact quantum master equations of a qubit system with both diagonal splitting and tunneling coupling
when the environmental noise is subject to a random telegraph process and a Ornstein-Uhlenbeck
process, respectively. For the pure decoherence case with no tunneling coupling, the expressions of
the decoherence factor we obtained are consistent with the well-known existing ones. The results are
significant to quantum information processing and helpful for further understanding the quantum
dynamics of open quantum systems.

Keywords: quantum dynamics; open quantum systems; environmental fluctuations

1. Introduction

A quantum system loses coherence information in the dynamical evolution resulting from the
unavoidable environmental coupling. Understanding the dynamics of open quantum systems can help
us know the essence of decoherence and the reason for the transition from quantum to classical [1–6].
How to effectively obtain the exact quantum master equation for an open quantum system is an
extremely challenging but very meaningful problem, which helps us further understand the real
dynamical evolution of the system. During the last few decades, people have generally described the
dynamics of open quantum systems within Markov approximation [7,8]. Recently, it has increasingly
drawn much attention to study the dynamical evolution of open quantum systems with methods
beyond Markov approximation in the community of quantum information science, ranging from
quantum computing to quantum measurements [9–17].

In general, the environmental effects on open quantum systems can be dealt with by stochastic
noise processes within the framework of classical and quantum treatments [18–38]. For example,
Ornstein-Uhlenbeck noise (OUN), as an important Gaussian stochastic process, has been generally
used to model the environmental effects in a large number of quantum mechanical systems which
exhibit Gaussian fluctuations, such as, Berry phase, dynamical decoherence and construction of
robust quantum gates induced by classical fluctuating environments [39–42]. Random telegraph
noise (RTN), as an important non-Gaussian stochastic process, has been generally used to model
the environmental effects in various quantum mechanical systems, such as, dynamical decoherence
induced by low-frequency noise and fluorescence spectra of single molecules [43–54]. Investigation of
the quantum non-Markovian dynamics induced by the effects of the environmental noise resulting
from classical fluctuating environments is important to understand the environmental backaction
of coherence and useful for further potential applications in the manipulation and control of
quantum coherence.

In this paper, we theoretically investigate the quantum dynamics of a qubit system with
both diagonal splitting and tunneling coupling coupled to a fluctuating environment based on
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spectral diffusion model initiated by Kubo and Anderson. We derive two types of quantum master
equations, namely, time-convolution (TC) and time-convolutionless (TCL) quantum master equations
by employing the projection operator technique. The TC and TCL quantum master equations in
the second order expansion give the exact dynamical evolution of the qubit system induced by the
RTN and OUN, respectively. When there is no tunneling coupling, the qubit system undergoes pure
decoherence and we obtain the expressions of the decoherence factor which are consistent with the
well-known existing ones.

This paper is organized as follows. In Section 2 we introduce the stochastic model within the
framework initiated by Kubo and Anderson and derive the TC and TCL equations for the reduced
density matrix of the quantum system by employing the projection operator technique. In Section 3,
we study the quantum dynamics of a qubit system induced by the RTN and OUN, respectively.
In Section 4 we give the concluding remarks of the present study.

2. Theoretical Framework

We consider a quantum system which interacts with a fluctuating environment based on the
framework initiated by Kubo and Anderson. The environmental effects on the system are described by
means of stochastic Hamiltonian of the quantum system as [18,19]

H(t) = H0 + δH(t), (1)

where H0 is the unperturbed Hamiltonian of the system and δH(t) is caused by the environmental
fluctuations which yields a stochastic noise process.

The time evolution of the stochastic density matrix satisfies the Liouville-von Neumann equation

∂

∂t
ρ(t; δ(t)) = [L0 + Lδ(t)]ρ(t; δ(t)), (2)

where the notation ρ(t; δ(t)) indicates the dependence of the stochastic fluctuation term δH(t) and
we have used the super-operators for L0(·) = − i

h̄ [H0, (·)] and Lδ(t)(·) = − i
h̄ [δH(t), (·)]. By taking

the average over different realizations of the environmental fluctuations, wee can derive the reduced
density matrix as ρ(t) = 〈ρ(t; δ(t))〉.

In order to obtain the dynamical evolution of the reduced density matrix, we first transform
Equation (2) into the interaction picture

∂

∂t
ρI(t; δ(t)) = LI

δ(t)ρ
I(t; δ(t)), (3)

where we have defined ρI(t; δ(t)) = e−L0tρ̂(t; δ(t)) and LI
δ(t) = e−L0tLδ(t)eL0t.

We define the projection operator P [1,20]

PρI(t; δ(t)) =
〈
ρI(t; δ(t))

〉
≡ ρI(t). (4)

and the complementary projector Q = I − P

QρI(t; δ(t)) = ρI(t; δ(t))−
〈
ρI(t; δ(t))

〉
≡ ρI(t; δ(t))− ρI(t), (5)

with the properties of the projectors P2 = P , Q2 = Q and PQ = QP = 0. By performing the
projection operators on Equation (3), we obtain the evolution

∂

∂t
PρI(t; δ(t)) =P ∂

∂t
ρI(t; δ(t)) = PLI

δ(t)ρ
I(t; δ(t)), (6a)

∂

∂t
QρI(t; δ(t)) =Q ∂

∂t
ρI(t; δ(t)) = QLI

δ(t)ρ
I(t; δ(t)). (6b)
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In terms of the identity I = P +Q, we can rewrite Equation (6) as

∂

∂t
PρI(t; δ(t)) =PLI

δ(t)PρI(t; δ(t)) + PLI
δ(t)QρI(t; δ(t)), (7a)

∂

∂t
QρI(t; δ(t)) =QLI

δ(t)PρI(t; δ(t)) +QLI
δ(t)QρI(t; δ(t)). (7b)

The solution for QρI(t; δ(t)) in Equation (7b) can be expressed as

QρI(t; δ(t)) =
∫ t

0
dt′g(t, t′)QLI

δ(t
′)PρI(t′|ξ(t′)) + g(t, 0)QρI(0; δ(0)), (8)

where g(t, t′) is the forward propagator which can be written as

g(t, t′) = T← exp
[∫ t

t′
dτQLI

δ(τ)

]
, (9)

with the chronological time-ordering operator T←. The forward propagator g(t, t′) satisfies
the evolution

∂

∂t
g(t, t′) = QLI

δ(t)g(t, t′), (10)

initially with the condition g(t′, t′) = I .
By substituting the solution for QρI(t; δ(t)) back into Equation (7a), we obtain the evolution

∂

∂t
PρI(t; δ(t)) = PLI

δ(t)PρI(t; δ(t)) +
∫ t

0
dt′PLI

δ(t)g(t, t′)QLI
δ(t
′)PρI(t′; δ(t′)) +ITC(t), (11)

with the inhomogeneous operator induced by the initial environmental correlation

ITC(t) = PLI
δ(t)g(t, 0)QρI(0; δ(0)). (12)

If the quantum system and environment are initially uncorrelated, the initial state satisfies
PρI(0; δ(0)) = ρI(0) = ρI(0; δ(0)) and QρI(0; δ(0)) = 0 and the third term ITC(t) on the right-hand
side of Equation (11) vanishes.

Expanding the forward propagator g(t, t′) in Dyson series g(t, t′) = 1 + ∑∞
n=1 gn(t, t′) with

gn(t, t′) =
∫ t

t′ dt1 · · ·
∫ tn−1

t′ dtnQLI
δ(t1) · · · QLI

δ(tn) and in terms of the definitions in Equations (4)
and (5), we obtain the TC master equation for the time evolution of the quantum system

d
dt

ρI(t) =
〈

LI
δ(t)

〉
ρI(t) +

∫ t

0
dt′K(t, t′)ρI(t′) +ITC(t), (13)

where the time non-local operator satisfies

∫ t

0
dt′K(t, t′)ρI(t′) =

∞

∑
n=2

∫ t

0
dt1 · · ·

∫ tn−2

0
dtn−1

〈
LI

δ(t)LI
δ(t1) · · · LI

δ(tn−1)
〉

pcρI(tn−1), (14)

in terms of the partial cumulants〈
LI

δ(t)LI
δ(t1) · · · LI

δ(tn−1)
〉

pc = ∑(−1)q−1 ∏
〈

LI
δ(t) · · ·

〉〈
LI

δ(tj) · · ·
〉
· · · , (15)

with q denoting the quantity of averages in the term and according to the time chronological order
t > t1 > · · · > tn.

We further derive the TCL master equation for the dynamical evolution of the quantum system.
On the right-hand side of Equation (8), we replace the expression of the stochastic density matrix by

ρI(t′; δ(t′)) = G(t, t′)ρI(t; δ(t)), (16)
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where G(t, t′) is the backward propagator expressed as

G(t, t′) = T→ exp
[
−
∫ t

t′
LI

δ(τ)dτ

]
, (17)

with T→ indicating the antichronological time-ordering, we can express the solution for QρI(t; δ(t)) in
Equation (8) as

QρI(t; δ(t)) =
∫ t

0
dt′g(t, t′)QLI

δ(t
′)PG(t, t′)(P +Q)ρI(t; δ(t)) + g(t, 0)QρI(0; δ(0)). (18)

Introducing the super-operator

Σ(t) =
∫ t

0
dt′g(t, t′)QLI

δ(t
′)PG(t, t′), (19)

the solution for QρI(t; δ(t)) can be reexpressed as

QρI(t; δ(t)) = [1− Σ(t)]−1 Σ(t)PρI(t; δ(t)) + [1− Σ(t)]−1 g(t, 0)QρI(0; δ(0)). (20)

Substituting the solution for QρI(t; δ(t)) in Equation (20) back into Equation (7a) gives the evolution

∂

∂t
PρI(t; δ(t)) = PLI

δ(t)[1− Σ(t)]−1PρI(t; δ(t)) +ITCL(t), (21)

with the inhomogeneous operator caused by the initial environmental correlation

ITCL(t) = PLI
δ(t) [1− Σ(t)]−1 g(t, 0)QρI(0; δ(0)). (22)

The second term ITCL(t) on the right-hand side of Equation (21) vanishes if the quantum system
and environment are initially uncorrelated due to the fact that PρI(0; δ(0)) = ρI(0) = ρI(0; δ(0)) and
QρI(0; δ(0)) = 0.

Expanding the super-operator Σ(t) in series Σ(t) = ∑∞
n=1 Σn(t) and in terms of the definitions

in Equations (4) and (5), we obtain the TCL master equation for the dynamical evolution of the
quantum system

d
dt

ρI(t) = K(t)ρI(t) +ITCL(t), (23)

where the time-local operator can be expressed as

K(t) =
∞

∑
n=1

∫ t

0
dt1 · · ·

∫ tn−2

0
dtn−1〈LI

δ(t)LI
δ(t1) · · · LI

δ(tn−1)〉oc, (24)

based on the time-order cumulants

〈LI
δ(t)LI

δ(t1) · · · LI
δ(tn−1)〉oc = ∑(−1)q−1 ∏

〈
LI

δ(t) · · · LI
δ(ti)

〉〈
LI

δ(tj) · · · LI
δ(tk)

〉
· · · . (25)

with the sum taken over all possible divisions by keeping the time chronological order t > · · · >
ti, tj > · · · > tk and so on.

We have formally derived above two types of quantum master equations for dynamical evolution
of the reduced density matrix of the system by employing the projection operator technique which are
closely associated with the statistical properties of the environmental noise ξ(t). However, only for a
few simple cases, we can obtain the exact expression of the reduced density matrix of the quantum
system based on the two types of quantum master equations we have derived. In most cases, we need
to take some approximations to obtain the reduced density matrix of the system or we should know
the closure of the higher-order correlation functions of the environmental noise ξ(t) [33,36]. In the
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following section, we will study two special models of which the reduced density matrix can be
exact solved.

3. Application and Discussion

We consider a two state qubit system with the intrinsic Hamiltonian

H0 =
h̄
2
(ω0σz + ∆0σx), (26)

where σx,z represent the Pauli matrices and ω0 and ∆0 denote the diagonal splitting and tunneling
coupling between the states |1〉 and |0〉, respectively, In principle, the environmental effect gives
rise to the stochastic fluctuations in both longitudinal and transverse directions in the presence of
a fluctuating environment. We focus, here and in the following, mainly on the case that fluctuates
longitudinally in diagonal splitting with the stochastic fluctuations

δH(t) =
h̄
2

ξ(t)σz, (27)

where ξ(t) denotes the environmental noise subject to a stochastic process. The case of transverse
fluctuations in tunneling coupling can be dealt with in a similar way. For simplify, we make the
assumption that the quantum system and environment are uncorrelated initially.

3.1. Quantum Dynamics Induced by the RTN Process

We first consider the dynamical evolution of the qubit system when the environmental noise ξ(t)
yields a stationary RTN process of which the amplitude jumps between the two values ±ν randomly
with an constant switching rate λ. The time evolution of the conditional probability for the RTN
process obeys the master equation

∂

∂t
P(ν, t|ξ ′, t′) =− λP(ν, t|ξ ′, t′) + λP(−ν, t|ξ ′, t′),

∂

∂t
P(−ν, t|ξ ′, t′) =− λP(−ν, t|ξ ′, t′) + λP(ν, t|ξ ′, t′),

(28)

where the initial condition is given by P(ξ, t′|ξ ′, t′) = δξ,ξ ′ for ξ = ±ν. The solution of the conditional
probability in Equation (28) can be written as

P(ξ, t|ξ ′, t′) =
1
2
[1 + e−2λ(t−t′)]δξ,ξ ′ +

1
2
[1− e−2λ(t−t′)]δ−ξ,ξ ′ . (29)

For positive λ and large time difference λ(t− t′)� 1, we obtain the stationary distribution

Pst(ξ) =
1
2
(δξ,ν + δξ,−ν). (30)

Considering the noise process is Markov, the n-point probability distribution can be expressed as

P(ξn, tn; · · · ; ξ1, t1) =
n−1

∏
i

P(ξi+1, ti+1|ξi, ti)Pst(ξ1). (31)

Based on the stationary and Markovian statistical properties, the average of the noise process
is zero

〈ξ(t)〉 = 0, (32)
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and its second-order correlation function is exponential

〈ξ(t)ξ(t′)〉 = ν2e−2λ(t−t′). (33)

Its higher order correlation functions satisfy the factorization relation [55,56]

〈ξ(t)ξ(t1) · · · ξ(tn)〉 = 〈ξ(t)ξ(t1)〉〈ξ(t2) · · · ξ(tn)〉, (34)

for all sets of the time sequences with t > t1 > · · · > tn(n ≥ 2). We can, based on the statistical
characteristics of the environmental noise ξ(t) obtained above, derive that its partial cumulants beyond
second order are zero

〈ξ(t)ξ(t1) · · · ξ(tn)〉pc = 0. (35)

As a consequence, we can use the TC master equation to describe the time evolution for the
reduced density matrix of the quantum system as [36]

d
dt

ρ(t) =− i
2
(ω0Lσz + ∆0Lσx )ρ(t)−

1
4

∫ t

0
dt′〈ξ(t)ξ(t′)〉

× Lσz exp
[
− i

2
(ω0Lσz + ∆0Lσx )(t− t′)

]
Lσz ρ(t′),

(36)

where we use the definitions Lσz(·) = [σz, (·)] and Lσx (·) = [σx, (·)]. The dynamical evolution of the
reduced density matrix elements can be written as

d
dt

ρ11(t) =
i
2

∆0[ρ10(t)− ρ01(t)],

d
dt

ρ00(t) =−
i
2

∆0[ρ10(t)− ρ01(t)],

d
dt

ρ10(t) =− iω0ρ10(t)− ν2
∫ t

0
e−2λ(t−t′)

[ ∆2
0

2Ω2 +
Ω2 + ω2

0
2Ω2 cos Ω(t− t′)− i

ω0

Ω
sin Ω(t− t′)

]
ρ10(t′)

+
ν2∆2

0
2Ω2

∫ t

0
e−2λ(t−t′)[1− cos Ω(t− t′)]ρ01(t′) +

i
2

∆0[ρ11(t)− ρ00(t)],

d
dt

ρ01(t) =iω0ρ01(t)− ν2
∫ t

0
e−2λ(t−t′)

[ ∆2
0

2Ω2 +
Ω2 + ω2

0
2Ω2 cos Ω(t− t′) + i

ω0

Ω
sin Ω(t− t′)

]
ρ01(t′)

+
ν2∆2

0
2Ω2

∫ t

0
e−2λ(t−t′)[1− cos Ω(t− t′)]ρ10(t′)−

i
2

∆0[ρ11(t)− ρ00(t)],

(37)

where Ω =
√

ω2
0 + ∆2

0 denotes the eigen-splitting of the qubit system. We can take the Laplace
transform over Equation (37) to obtain the solution of the reduced density matrix elements.

It is worth mentioning the uncoupled case ∆0 = 0 and the system undergoes pure decoherence.
For this case, the time evolution of the reduced density matrix elements in Equation (37) can be
reduced to

d
dt

ρ11(t) =0,

d
dt

ρ00(t) =0,

d
dt

ρ10(t) =− iω0ρ10(t)− ν2
∫ t

0
e−2λ(t−t′)e−iω0(t−t′)ρ10(t′),

d
dt

ρ01(t) =iω0ρ01(t)− ν2
∫ t

0
e−2λ(t−t′)eiω0(t−t′)ρ01(t′).

(38)

By taking the Laplace transform over Equation (38), the reduced density matrix elements in the Laplace
domain can be expressed as
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ρ̃11(p) =
1
p

ρ11(0),

ρ̃10(p) =
p + iω0 + 2λ

(p + iω0)(p + iω0 + 2λ) + ν2 ρ10(0),

ρ̃01(p) =
p− iω0 + 2λ

(p− iω0)(p− iω0 + 2λ) + ν2 ρ01(0),

ρ̃00(p) =
1
p

ρ00(0).

(39)

We can, by means of the inverse Laplace transform of Equation (39), write the reduced density matrix
in time domain as

ρ(t) =

(
ρ11(0) ρ10(0)e−iω0tF(t)

ρ01(0)eiω0tF(t) ρ00(0)

)
, (40)

where F(t) denotes the decoherence factor quantifying the coherence evolution of the quantum system

F(t) = e−λt


cosh(βt) + λ

β sinh(βt), ν < λ,

1 + λt, ν = λ,

cos(βt) + λ
β sin(βt), ν > λ.

(41)

where β =
√
|λ2 − ν2|. This expression is consistent with the well-known results obtained in

References [57–59].
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Figure 1. Decoherence factor F(t) as a function of the evolution time induced by the random telegraph
noise (RTN) for different jumping amplitude ν.

Figure 1 displays the decoherence factor F(t) as a function of the evolution time in the presence
of the RTN for different jumping amplitude ν. As depict in the figure, with the increase of the jumping
amplitude ν, the behavior in the decoherence factor F(t) displays a transition from monotonic decay
to nonmonotonic oscillatory decay: the decoherence factor F(t) decays monotonically for the jumping
amplitude ν < λ (weak coupling region), which reflects that the decoherence dynamics of the quantum
system is Markovian. The decoherence factor F(t) decays nonmonotonically with coherence revivals
for the jumping amplitude ν > λ (strong coupling region), which indicates that the decoherence
dynamics of the quantum system becomes non-Markovian. In the weak coupling region, the decay of
the decoherence factor F(t) increases with the increase of the jumping amplitude ν, which indicates
that the strength of the coupling can enhance the decoherence dynamics of the quantum system. In the
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strong coupling region, the nonmonotonic oscillations in the decoherence factor become obvious,
which reveals that the non-Markovian behavior in the decoherence dynamics of the quantum system
is pronounced.

3.2. Quantum Dynamics Induced by the OUN Process

We now consider the dynamical evolution of the qubit system when the environmental noise
ξ(t) obeys a stationary OUN process with the width γ and decay rate λ of the Gaussian distribution.
The time evolution for the conditional probability of the OUN process satisfies the master equation

∂

∂t
P(ξ, t|ξ ′, t′) = λ

∂

∂ξ

(
ξ + γ2 ∂

∂ξ

)
P(ξ, t|ξ ′, t′), (42)

where the initial condition is given by P(ξ, t′|ξ ′, t′) = δ(ξ − ξ ′). The expression of the conditional
probability in Equation (42) can be solved as

P(ξ, t|ξ ′, t′) =
1√

2πγ2[1− e−2λ(t−t′)]
exp

{
− [ξ − ξ ′e−λ(t−t′)]2

2γ2[1− e−2λ(t−t′)]

}
. (43)

For positive λ and large time difference λ(t − t′) � 1, the stationary distribution of the noise
process satisfies

Pst(ξ) =
1√

2πγ2
exp

(
− ξ2

2γ2

)
. (44)

Considering the noise process is Markov, the n-point probability distribution can be expressed as

P(ξn, tn; · · · ; ξ1, t1) =
n−1

∏
i

P(ξi+1, ti+1|ξi, ti)Pst(ξ1), (45)

Based on the stationary and Markovian statistical properties of the noise process, the average
is zero

〈ξ(t)〉 = 0, (46)

and its correlation function of second-order is exponential

〈ξ(t)ξ(t′)〉 = γ2e−λ(t−t′). (47)

All the cumulants beyond second order are zero [55,56]

〈ξ(t)ξ(t1) · · · ξ(tn)〉c = 0, (48)

for every ordered set of time instants t > t1 > · · · > tn(n ≥ 2). We can, in terms of the statistical
characteristics of the environmental noise ξ(t) obtained above, derive that the time-order cumulants
beyond second order vanish

〈ξ(t)ξ(t1) · · · ξ(tn)〉oc = 0. (49)

Consequently, we can employ the TCL master equation to describe the time evolution forthe
reduced density matrix of the quantum system [36]

d
dt

ρ(t) =− i
2
(ω0Lσz + ∆0Lσx )ρ(t)−

1
4

∫ t

0
dt′〈ξ(t)ξ(t′)〉

× Lσz exp
[
− i

2
(ω0Lσz + ∆0Lσx )(t− t′)

]
Lσz exp

[ i
2
(ω0Lσz + ∆0Lσx )(t− t′)

]
ρ(t).

(50)
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The dynamical evolution of the reduced density matrix elements can be written as

d
dt

ρ11(t) =
i
2

∆0[ρ10(t)− ρ01(t)],

d
dt

ρ00(t) =−
i
2

∆0[ρ10(t)− ρ01(t)],

d
dt

ρ10(t) =− iω0ρ10(t) +
i
2

∆0[ρ11(t)− ρ00(t)]

− γ2
∫ t

0
e−λ(t−t′)

{[ ∆2
0

2Ω2 +
Ω2 + ω2

0
2Ω2 cos Ω(t− t′)

]2
+

ε2
0

Ω2 sin2 Ω(t− t′)
}

ρ10(t),

d
dt

ρ01(t) =iω0ρ01(t)−
i
2

∆0[ρ11(t)− ρ00(t)]

− γ2
∫ t

0
e−λ(t−t′)

{[ ∆2
0

2Ω2 +
Ω2 + ω2

0
2Ω2 cos Ω(t− t′)

]2
+

ε2
0

Ω2 sin2 Ω(t− t′)
}

ρ01(t).

(51)

We consider the uncoupled case ∆0 = 0. The system undergoes pure decoherence and the time
evolution of the reduced density matrix elements in Equation (51) can be reduced to

d
dt

ρ11(t) =0,

d
dt

ρ00(t) =0,

d
dt

ρ10(t) =− iω0ρ10(t)− γ2
∫ t

0
e−λ(t−t′)ρ10(t),

d
dt

ρ01(t) =iω0ρ01(t)− γ2
∫ t

0
e−λ(t−t′)ρ01(t).

(52)

We can, by taking the integral over Equation (52), express the reduced density matrix of the quantum
system as

ρ(t) =

(
ρ11(0) ρ10(0)e−iω0tF(t)

ρ01(0)eiω0tF(t) ρ00(0)

)
, (53)

where the decoherence factor F(t) can be written as

F(t) = exp
[
− γ2

λ2 (e
−λt − 1 + λt)

]
. (54)

This expression is compatible with the well-known results obtained in References [20,24].
Figure 2 displays the decoherence factor F(t) as a function of the evolution time induced by the

OUN for different width of the distribution γ. The decoherence factor F(t) decays monotonically for
arbitrary values of the width of the distribution γ, which indicates that the decoherence dynamics of
the quantum system is always Markovian. In addition, as the width of the distribution γ increases,
the decay of the decoherence factor F(t) increases, which reveals that the width of the distribution γ

can make the decoherence dynamics of the quantum system pronounced.
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Figure 2. Decoherence factor F(t) as a function of the evolution time in the presence of the
Ornstein-Uhlenbeck noise (OUN) for different values of the width of the distribution γ.

4. Conclusions

We have theoretically studied the dynamics of a quantum system which is coupled to a fluctuating
environment within the framework of Kubo-Anderson spectral diffusion. By employing the projection
operator technique, we derived the TC and TCL master equations for the dynamical evolution of the
quantum system, respectively. Induced by the RTN and OUN, the second order expanded TC and TCL
quantum master equations give the exact dynamical evolution of the qubit system, respectively. For the
case with no tunneling coupling, the qubit system undergoes pure decoherence. The expressions of
the decoherence factor we obtained return to the well-known existing ones. Induced by the RTN,
the decoherence dynamics of the quantum system displays a transition from Markovian behavior with
monotonic decay to non-Markovian behavior with nonmonotonic oscillatory decay. In the presence of
the OUN, the decoherence dynamics of the quantum system decays monotonically and always only
shows Markovian behavior. We hope that our investigation will contribute to further understanding of
quantum dynamics and will be effective in the suppression and control of the dynamical decoherence
of open quantum systems.
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