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Abstract: Animal studies suggest a role for dietary advanced glycation end-products (dAGEs) in
bone health, but human studies on dAGEs in relation to bone are lacking. We aimed to study whether
dAGEs intake is associated with the parameters of bone strength namely, bone mineral density (BMD),
prevalent vertebral (VFs), and major osteoporotic fractures (MOFs = hip, wrist, proximal humerus,
and clinical VFs). 3949 participants (mean age 66.7 ± 10.5 years) were included from a Rotterdam
study for whom Carboxymethyllysine (CML—a dietary AGE) was estimated from food frequency
questionnaires combined with dAGEs databases. Multivariable linear and logistic regression models
were performed adjusting for age, sex, energy intake, dietary quality, physical activity, diabetes,
smoking, renal function, and cohort effect and for models on fractures, subsequently for BMD. We
observed no association of CML with BMD at both femoral neck (β = −0.006; p = 0.70) and lumbar
spine (β = −0.013; p = 0.38). A higher intake of CML was linearly associated with VFs (Odds
ratio, OR = 1.16, 95% CI (1.02–1.32) and a similar but non-significant trend with MOFs (OR = 1.12
(0.98–1.27). Additional adjustment for BMD did not change the associations. Our results imply a
positive association between dietary intake of CML and VFs independent of BMD. Future studies are
needed in order to elucidate whether associations found are causal.

Keywords: dietary advanced glycation end-products osteoporosis; fractures; bone mineral density;
trabecular bone score

1. Introduction

The impact of a healthy lifestyle, including diet, on bone health has been well established [1].
A healthy diet pattern rich in fruits and vegetables has been consistently associated with higher
bone strength parameters and lower incidence of fractures [2–5]. In contrast, a diet rich in saturated
fatty acids, meat, and processed foods has been associated with no or negative influence on bone
health [6,7]. Previous studies have shown that such diets rich in fats, meat, and processed foods
contain high amounts of dicarbonyl compounds (DCs), and their final by-product Advanced glycation
end-products (AGEs). AGEs are a heterogeneous group of compounds that formed as a result
of spontaneous glycation of amino groups of proteins, lipids, and nucleic acids both in vivo and
in vitro [8,9]. Endogenously, the formation of AGEs is enhanced by aging and under the circumstances
of oxidative and glycemic stress [10–12]. Exogenously, the major sources of AGEs are smoking and
diet [13,14].
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According to one estimate, an average human diet consists of approximately 1200 mg of DCs and
75 mg of AGEs per day [15]. DCs, such as methylglyoxal (MG), and AGEs, such as Carboxymethyllysine
(CML), constitute a major proportion of our dietary AGEs (dAGEs) intake [14]. The amount of AGEs
in Western diet is determined through macronutrient composition, along with processing temperature,
time and moisture levels [16–18]. Once ingested, it remains uncertain how much of these AGEs and
their precursor DCs would be absorbed through the alimentary canal into the circulation with reports
varying from 30 to 80% [19–21]. From circulation, these AGEs eventually bind to proteins with long
half-lives, such as collagen in bone. The accumulation of AGEs in bone has been associated not only
with increased collagen cross-linking and stiffness [22,23], but also with the activation of inflammatory
pathways and reduced bone turnover [24,25]. These mechanisms explain the implication of AGEs in
reduced bone quality, biomechanics, and high fracture risk [26].

Multiple studies using models of animals fed on a diet whose AGEs content was high showed a
negative impact on bone properties. In one study where rats were fed on bread crusts for 88 days,
an increased accumulation of AGEs was found in tibia and reduced mechanical properties [27].
Illien-Junger et al. found that a high AGE-diet led to disturbed vertebral microarchitecture and reduced
fracture resistance in young female non-diabetic, non-obese mice [28] when compared to young male
and aged female mice. The scales of zebra fish fed a high fat diet showed a rise in circulating AGEs
and impaired bone metabolism [29]. Together, these preclinical studies point to a role of dAGEs intake
in reducing both cortical and trabecular bone properties.

Although the contribution of dAGEs to reduced bone mechanical properties and decreased
fracture resistance has been observed in animal models [28,30], the role of dAGEs in human bone health
has hardly been studied. An unstandardized dAGE quantification technique (ELISA vs. UPLC MS/MS)
in current databases, heterogeneity of AGEs, and effect of different processing, cooking, and preserving
techniques on AGEs content of a food item makes the study in humans challenging [14,17,31].

The aim of our study was to investigate whether dAGEs intake is associated with bone health
measures, such as bone mineral density (BMD), and prevalent major osteoporotic fractures (MOFs)
and vertebral fractures (VFs).

2. Materials and Methods

2.1. Study Population

Our cross-sectional analysis was performed in the participants of the Rotterdam study (RS), a
population-based prospective cohort study. For the detailed design of the study, we refer to a recent
update in 2020 [32]. Briefly, the participants were included at three different points in time, namely in
1990, 2000, and 2006 and named in ascending order as RS-I, RS-II (≥55 years), and RS-III (≥45 years)
sub-cohorts based on year of inclusion, respectively. After inclusion visit, the participants were followed
regularly every 4–6 years. The Rotterdam Study has been approved by the Medical Ethics Committee
of the Erasmus MC (registration number MEC 02.1015) and by the Dutch Ministry of Health, Welfare,
and Sport (Population Screening Act WBO, license number 1071272-159521-PG). The Rotterdam Study
Personal Registration Data collection is filed with the Erasmus MC Data Protection Officer under
registration number EMC1712001. The Rotterdam Study has been entered into the Netherlands
National Trial Register (NTR; www.trialregister.nl) and the WHO International Clinical Trials Registry
Platform (ICTRP; www.who.int/ictrp/network/primary/en/) under shared catalogue number NTR6831.
All of the participants provided written informed consent to participate in the study and to have their
information obtained from treating physicians.

For this particular analysis, we eventually included 3949 participants from RS-I (5th follow-up,
N = 963 or 24%), RS-II (3rd, follow-up, N = 1250 or 32%), and RS-III (1st baseline visit, N = 1735 or
44%) with both available dietary data and bone parameters data obtained between years 2008–2012.
We excluded all participants with missing data on effective glomerular filtration rate (eGFR), body
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mass index (BMI), smoking status, diabetes status, physical activity, and bone mineral density (BMD)
(Figure 1).
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2.2. Dietary Advanced Glycation End-Products (dAGEs) Assessment

Food Frequency Questionnaire

A self-administered semi-quantitative 389-item food frequency questionnaire (FFQ) was employed
based on the category of foods consumed in the past one month in RS population between 2008 to 2012.
Those 389-items have been categorized into 25 groups. Most of the groups are self-explanatory, as an
example ‘sweets’, which included ice cream, chocolates, added sugar in tea and coffee, etc. [33]. The
FFQ collects information on the food types, serving sizes, frequency of consumption, and sometimes
preparation method. The FFQ has been validated in two other Dutch populations based on a nine-day
dietary record and 4-week dietary history [34,35].

2.3. dAGEs Databases

Two published dAGEs databases have been used to obtain the reference amount of AGEs in
a particular food item. Primarily, a Dutch database consisting of 190 food items for three AGEs,
namely CML, methylglyoxal-derived hydroimidazolone (MG-H1), and carboxyethyllysine (CEL)
consumed in current Dutch diet [31] and, secondarily, an Irish database consisting of 257 food items
for only CML [36] have been used. Briefly, both of the databases made use of ultra-performance liquid
chromatography tandem mass-spectrometry (UPLC–MS/MS) method for determination of protein
bound-AGEs in frequently consumed food items in a Western diet.

In RS, we assume that the usual Dutch cooking methods would have been applied. Nonetheless,
a difference in cooking time and temperature could not be taken into account when coupling to the
dAGEs database. There were a few special scenarios during AGEs estimation:

If a food item was not found in both the reference databases, but on FFQ, a similar type of food
item has been used.

If multiple AGE values are reported in dAGEs database for a single food item in the FFQ, then the
mean of all values was used.

For a combination of food items, AGEs from individual food items were derived by using
composition information on the package or a standard recipe online.

A detailed workflow from FFQ food item data to dAGEs has been previously published [37].
Briefly, daily intake of an AGE, such as CML, for one food item has been calculated by multiplying the
CML value (mg/100 g) with the serving size (grams). Afterwards, the CML values from individual food
items have been summed up to calculate the total intake of CML for a day (mg/day). Henceforth, we
used energy-adjusted CML to minimalize the effect of total energy intake per day, which is calculated
by using the residual method. We also performed similar calculations to estimate energy-adjusted
MG-H1 and CEL for a secondary analysis although CML intake seems to be an ideal representative of
dAGEs intake in relation to bone health.

A total dAGE score was calculated in three steps: firstly, the Z-scores were calculated for
individual dAGEs (CML, CEL, and MG-H1) by using this formula = (individual dietary AGE minus
total population mean dietary AGE/population standard deviation dietary AGE); secondly, an average
of the three Z-scores representing Z-score of total dAGEs intake; and lastly, we adjusted this for energy
intake to make a variable representing energy-adjusted total dAGEs intake.

Daily energy intake and macronutrient composition were calculated from Dutch food composition
database (NEVO) [33]. The dietary quality was assessed as a diet quality score (0–14) reflecting
adherence to Dutch dietary guidelines [33].

2.4. Measurement of Bone Mineral Density (BMD) and Trabecular Bone Score (TBS)

BMD was measured using iDXA Prodigy total body fan-beam densitometer (GE Lunar Corp.,
Madison, WI, USA) at two positions femoral neck (FN) and lumbar spine (LS) [38]. All scans were
performed by a certified bone densitometry technologist. Sex-specific T-scores for FN and LS-BMD
were calculated using the NHANES III reference population [39].
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TBS was analyzed using TBS iNsight software version 3.0.0.0 (Med-Imaps, Geneva, Switzerland).
Briefly, TBS is a novel grey-level texture measurement, extracted from DXA images, which correlates
with 3D parameters of bone micro-architecture, connectivity density, trabecular separation, and
trabecular number. For each region of measurement, TBS was evaluated based on grey-level analysis of
the DXA images as the slope at the origin of the log-log representation of the experimental variogram.
The method of TBS assessment has been described in detail elsewhere [40]

2.5. Prevalent Major Osteoporotic Fractures (MOFs)

Fracture events that occurred after the age of 45 years for RS-III and after the age of 55years for
RS-I and RS-II were included until the end of 2012. All of the fracture events were reported by general
practitioners in the research area by means of computerized systems and by research physicians or
trained nurses outside the research area or through hospital records. All reported events were verified
by research physicians who independently reviewed and coded the information. Subsequently, a
medical expert reviewed all inconsistencies in coded events for final classification.

Fractures were included if they are a component of major osteoporotic fractures (MOF), which
includes a fracture of the hip, vertebra (clinical), wrist, or proximal humerus. All of the fractures were
coded according to ICD-10 classification. These fractures are the basis for the 10-year absolute fracture
risk estimates via FRAX used in multiple large-scale clinical studies [41]. Clinical vertebral fractures
were defined as those that came to medical attention when subjects with symptoms (mainly back pain)
visited the medical practitioner and the confirmation of fractures occurred on spine radiographs.

2.6. Prevalent Vertebral Fractures (VFs)

All if the thoracolumbar radiographs were obtained by a digitalized Fuji FCR system (FUJIFILM
Medical Systems, Stanford, CA) according to a standardized protocol described elsewhere [42].
Radiographic vertebral assessment data were available for 3039 subjects with available dAGEs
measurements till the end of 2008. Vertebral fractures were classified using vertebral morphometry
grading 1 to 3 (OPTASIA-Spina Analyzer) [43]. Because there is doubt as to whether grade 1 (mild)
deformities represent true osteoporotic vertebral fractures or a normal variant, we considered grade 2
(moderate) and grade 3 (severe) fractures as radiographic vertebral fractures [44].

Prevalent vertebral fractures (VFs) were then defined as a combination of any vertebral fracture
identified on either a radiograph as grade 2 (moderate) or grade 3 (severe) deformity or a clinically
reported spine fracture. In this manner, we performed analyses on the most clinically relevant vertebral
fractures [44].

2.7. Assessment of Covariates

Height (cm) and weight (kg) were measured in the research center with the individuals in
standing position wearing indoor clothing without shoes. Body mass index was computed as weight
in kilograms divided by height in meters squared (kg/m2). The physical activity levels were estimated
using an adapted version of the LASA Study Physical Activity Questionnaire [45,46]. Values were
recorded in metabolic equivalent of task (MET) hours per week based on questions regarding walking,
cycling, sports, gardening, hobbies, and housekeeping. Type 2 diabetes mellitus (T2DM) was defined
by combining information on fasting blood glucose levels, antidiabetic medication use, or self-reported
medical history. Smoking status was classified as current, former, or never smokers collected through
self-report during home interviews. Serum creatinine and serum fasting glucose were measured
through automated enzymatic method. Estimated glomerular filtration rate (eGFR) was calculated by
the CKD-EPI equation while using serum creatinine concentration, age, and sex data [38].

2.8. Statistical Methods

Statistical analyses were performed through IBM SPSS statistics for Windows Version 25.0,
Armonk, NY: IBM Corp. The normality of data was determined by the use of histograms and
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Shapiro–Wilk test. Depending on the distribution of data, it is presented as mean ± SD or median
(interquartile range, IQR). The means of continuous variables among groups were compared via the
use of Mann–Whitney–Wilcoxon test when a non-normal distribution was assumed or independent
samples t-test or ANOVA when the variable was normally distributed. Chi-square test was adopted to
compare the categorical variables.

For all primary analysis, unless specified otherwise, we used energy-adjusted CML as exposure.
For our sensitivity analysis, we also used total dAGE score, MG-H1, and CEL as exposure instead
of CML. Potential confounders have been identified and included in the models in order to study
the relationship between exposure (CML) and outcomes (BMD/TBS/fractures) based on a common
cause approach and on the literature evidence. A consistent approach was used, as follows: Model 1
included age, sex, and RS-cohorts; Model 2 additionally physical activity, dietary quality score, and
energy intake, eGFR, type 2 diabetes (yes/no), smoking (never, former, current); Model 3 included
model 2 plus BMI and for fracture as an outcome; and, Model 4, including Model 3 plus BMD. Linear
regression analysis was used to assess the relationship between dAGEs intake and LS-BMD, FN-BMD
and TBS. Logistic regression analysis was performed to assess whether dAGEs intake was associated
with the presence of prevalent VFs or prevalent MOFs. A non-linear association was being explored
by adding a quadratic term to the original model. However, for all analyses, a linear model had the
best fit. Although a linear model fitted best to study these relationships, we also studied dAGEs in
quartiles to specifically compare the subjects with highest energy-adjusted AGEs intake.

We tested for interaction terms between CML intake and smoking status and eGFR in the
multivariate fully adjusted models. Because AGEs have been repeatedly implicated in pathogenesis of
increased fracture risk in T2DM we performed stratified analyses in participants with and without
T2DM and both sexes, irrespective of statistically significant interaction.

3. Results

3.1. Descriptives

Table 1 shows the demographic and clinical characteristics of the participants. The mean age of
the population is 66.7 ± 10.5 years, with a BMI of 27.4 ± 4.2 kg/m2 and eGFR of 77.9 ± 14.9 mL/min. Our
population consisted of 43% males, 12% subjects with T2DM and 12% with a eGFR less than 60 mL/min.
Total daily energy intake was 2154.6 ± 682.7 kcal/day with a median physical activity of 41.5 (64.6)
MET h/week. 332 participants (8.4%) had a prevalent MOF and 294 (7.5%) had a prevalent VF.

A comparison of subjects with and without T2DM showed that T2DM participants were older
(72.0 ± 9.2 vs. 66.2 ± 10.6), have more males (49.7% vs. 42.2%), and higher BMI (29.7 ± 4.8 vs.
27.0 ± 3.9). Subjects with T2DM have significantly higher intake of energy-adjusted MG-H1 (29.1 ± 7.8
vs. 28.3 ± 7.7 mg/day) and CEL (2.57 ± 0.97 vs. 2.39 ± 0.86 mg/day) and no difference in CML intake
(2.49 ± 0.93 vs. 2.41 ± 0.86 mg/day), although a trend towards higher intake, but they have lower
energy intake (2045 ± 690 vs. 2170 ± 680 kcal/day) and physical activity (31.6 (54.9) vs. 42.7 (65.8) MET
h/week) than subjects without T2DM. Despite having higher BMD, subjects with T2DM have not lower
prevalence of fractures than those without T2DM (see Table 1).
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Table 1. Demographic and clinical characteristics of total participants with complete data and a
comparison between subjects with (T2DM) and without type 2 diabetes mellitus (non-T2DM).

Total Participants
(N = 3949) T2DM (n = 473) 12% Non-T2DM (n = 3476)

88%

CML (mg/day, energy
adjusted) 2.42 ± 0.88 2.49 ± 0.93 2.41 ± 0.86

MGH1 (mg/day, energy
adjusted) 28.4 ± 7.73 29.1 ±7.8 * 28.3 ± 7.7

CEL (mg/day, energy
adjusted) 2.42 ± 0.87 2.57 ± 0.97 * 2.39 ± 0.86

Age (years) 66.7 ± 10.5 72.0 ± 9.2 * 66.2 ± 10.6
Males, n (%) 1703 (43%) 235 (49.7%) * 1469 (42.2%)
BMI (kg/m2) 27.4 ± 4.2 29.7 ± 4.8 * 27.0 ± 3.97

eGFR (mL/min per 1.73 m2) 77.9 ± 14.9 77.6 (22.9) * 79.5 (19.6) *
eGFR < 60, n (%) 466 (12%) 92 (19.5%) * 378 (10.9%)

Never smokers, (%) 32% 27.7% 33.1%
Ex-smokers, (%) 52% 59.0% 50.8%

Current smokers, (%) 16% 13.3% 16.1%
Total energy intake, kcal/day 2154 ± 683 2045 ± 690 * 2169 ± 680

Fat intake, g/d 77.9 ± 35.4 74.2 ± 35.1 77.9 ± 34.7
carbohydrate intake, g/day 243.0 ± 87.0 229.6 ± 87.8 * 245.1 ± 85.3

protein intake, g/day 82.6 ± 26.2 81.6 ± 27.9 82.7 ± 25.5
Physical activity (MET

hours/week) 41.5 (64.6) 31.6 (54.9) * 42.7 (65.8)

Major osteoporotic fractures,
n (%) 334 (8.5%) 42 (9%) 292 (8.4%)

Vertebral fractures, n (%) 296 (7.5%) 261 (7.5%) 35 (7.4%)
Femoral neck BMD, g/cm2 0.901 ± 0.137 0.916 ± 0.142 * 0.899 ±0.136
Lumbar spine BMD, g/cm2 1.140 ± 0.217 1.194 ± 0.215 * 1.132 ± 0.216

TBS (unitless) 1.311 ± 0.101 1.297 ± 0.107 1.313 ± 0.101

Carboxymethyllysine, CML; Carboxyethyllysine, CEL; Methylglyoxal-derived hydroimidazolones, MG-H1; Dietary
advanced glycation end-products, dAGE; Body mass index, BMI; effective glomerular filtration rate, eGFR; Bone
mineral density, BMD; trabecular bone score, TBS; major osteoporotic fractures, MOFs; Vertebral fractures, VFs; Data
are presented as mean ± SD, median (interquartile range) and number (%). * Represents a p-value < 0.05 between
subjects with T2DM and non-T2DM.

3.2. Linear Regression Analysis of Energy-Adjusted CML Intake (CML) with Bone Mineral Density (BMD)
and Trabecular Bone Score (TBS)

Table 2 show the results of the linear regression analysis describing the association of dietary CML
intake with BMD and TBS. In linear regression models for all the covariates (as mentioned), we did not
observe any associations between CML intake and FN-BMD (β = −0.006; p = 0.70), CML intake and
LS-BMD (β = −0.013; p = 0.38) and CML intake and TBS (β = −0.015; p = 0.48). There was also no
interaction by sexes, diabetes, and smoking status and eGFR.

Table 2. Association of energy-adjusted carboxymethyllysine (CML) with femoral neck and lumbar
spine bone mineral density (BMD) and trabecular bone score (TBS) in the whole population (N = 3949).

Outcome
Standardized Coefficient β (p-Value)

Model 1 Model 2 Model 3

Femoral Neck BMD 0.000 (0.97) −0.001 (0.73) −0.006 (0.70)
Lumbar spine BMD −0.012 (0.41) −0.012 (0.42) −0.013 (0.38)

Trabecular bone score 0.003 (0.89) −0.008 (0.73) −0.015 (0.48)

Model 1: Energy-adjusted CML + age + sex + RS-cohorts. Model 2: Model 1 + physical activity + dietary quality
score + total energy intake per day. Model 3: Model 2 + eGFR + diabetes status + smoking status + BMI.
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3.3. Logistic Regression Analysis for the Association between Energy-Adjusted CML Intake (CML) and
Prevalence of Fractures

3.3.1. Major Osteoporotic Fractures (MOFs)

In Model 3 (fully adjusted model), the odds ratio OR (95% CI, p-value) of the CML intake for MOFs
was 1.12(0.98–1.27, p = 0.10). After additional adjustment for FN-BMD, there is minimal attenuation
of the OR to 1.11(0.98–1.26, p = 0.12) (Table 3). The prevalence of MOFs was 11.1% in females and
4.4% in males. Stratification on the basis of sex showed that CML intake is not significantly associated
with higher risk of fracture in females (OR = 1.10 (0.94–1.28, p = 0.24) and males (OR = 1.17 (0.91–1.49,
p = 0.28). The prevalence of MOFs is 9.4% in subjects without T2DM and 9.9% in those with T2DM.
Stratification on the basis of diabetes status showed that the association between CML intake and
MOFs in subjects with T2DM (OR = 1.38 (0.97–1.98, p = 0.08) is marginally non-significant although
the effect size is quite high. No significant association was found in those without T2DM (OR = 1.08
(0.93–1.24, p = 0.31) (Figure 2/Supplementary Table S1).

Table 3. Odds ratio of energy-adjusted CML for Major Osteoporotic Fracture (MOF) and vertebral
fractures (VFs) in total population with available BMD measurements (N = 3949).

Major Osteoporotic Fractures (MOFs) Vertebral Fractures (VFs)

ORs (95% CI) p-Value ORs (95% CI) p-Value

N (%) 334 (8.5%) 296 (7.5%)
Model 1 1.08 (0.95–1.24) 0.23 1.13 (0.98–1.27) 0.06
Model 2 1.12 (0.98–1.28) 0.10 1.15 (1.01–1.31) 0.02
Model 3 1.12 (0.98–1.27) 0.11 1.16 (1.01–1.31) 0.02

Model 4 (BMD) 1.11 (0.98–1.27) 0.11 1.15 (1.01–1.31) 0.025

Model 1: Energy-adjusted CML + age + sex + RS-cohorts. Model 2: Model 1 + physical activity + dietary quality
score + total energy intake per day. Model 3: Model 2 + eGFR + diabetes status + smoking status + BMI. Model 4
Model 3 + femoral neck BMD.

3.3.2. Vertebral Fractures (VFs)

In Model 3 (fully adjusted model), the odds ratio OR (95% CI, p-value) of the CML intake for VFs
was 1.16(1.02–1.32, p = 0.02). After additional adjustment for FN-BMD, there was no change in the
OR: 1.16(1.02–1.31, p = 0.025) (Table 3). The prevalence of VFs was 7.1% in females and 8.0% in males.
Stratification by sex showed that CML intake was associated with significantly higher risk of fracture
in females (OR = 1.22 (1.02–1.45, p = 0.03), but not in males (OR = 1.11 (0.92–1.34, p = 0.28). Prevalence
of VFs is 7.5% in subjects without T2DM and 7.4% in those with T2DM. Stratification by diabetes status
showed that CML intake was associated with significantly higher risk of fracture in subjects without
T2DM (OR = 1.16 (1.01–1.33, p = 0.03), but not in those with T2DM (OR = 1.10 (0.76–1.61, p = 0.61)
(Figure 2/Supplementary Table S1).
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Figure 2. Odds ratio (ORs) of energy-adjusted CML for MOF and VFs in non-type 2 diabetics (non-Table 2.
DM), diabetics (T2DM), females and males in N = 3949 with complete data on all covariates.

3.4. Logistic Regression Analysis for the Association between Top Food Categories Contributing to CML and
Prevalence of Fractures

The food items of the FFQ were identified into 25 major food categories. The contribution of
individual food categories to daily CML intake was calculated by dividing the CML intake derived
from that food category by the total CML intake daily. Figure 3 shows the top 10 food categories
contributing to more than 85% of daily dietary CML intake, namely: sweets, whole grains, unprocessed
meat, refined grains, processed meat, nuts, pulses, fish and seafood, and yogurt.

Table 4 shows the top 10 categories independently and a comparison with top six combined and
top 10 combined in terms of odds contributing to MOFs and VFs in fully adjusted models.
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Table 4. Odds ratio of MOFs and VFs for energy-adjusted CML from the top food categories contributing
the total CML intake.

N = 3949 Fully
Adjusted Models

Major Osteoporotic Fractures (MOFs) Vertebral Fractures (VFs)

ORs (95% CI) p-Value ORs (95% CI) p-Value

Sweets 1.04 (0.80–1.38) 0.77 1.09 (0.83–1.43) 0.52
Whole grains 1.02 (0.90–1.17) 0.73 1.02 (0.90–1.15) 0.78

Milk 1.06 (0.92–1.18) 0.51 1.09 (0.97–1.22) 0.15
Unprocessed meat 1.06 (0.95–1.18) 0.33 1.11 (0.997–1.24) 0.06

Refined grains 1.07 (0.94–1.21) 0.30 1.05 (0.94–1.18) 0.38
Processed meat 1.40 (0.62–3.12) 0.42 1.74 (0.83–3.67) 0.15

Nuts 1.03 (0.29–1.12) 0.10 0.62 (0.32–1.20) 0.15
Pulses 0.87 (0.49–1.55) 0.63 1.05 (0.63–1.77) 0.85

Fish and Seafood 0.40 (0.12–1.37) 0.15 0.52 (0.16–1.71) 0.28
Yogurt 1.21 (0.96–1.54) 0.11 1.14 (0.88–1.48) 0.33

Top 6 combined 1.09 (0.97–1.22) 0.17 1.15 (1.03–1.29) 0.02
Top 10 combined 1.11 (0.98–1.27) 0.10 1.15 (1.01–1.30) 0.03

Fully adjusted model: Energy-adjusted CML + age + sex + RS-cohorts + physical activity + dietary quality score +
total energy intake per day + eGFR + diabetes status + smoking status + BMI.

3.4.1. Major Osteoporotic Fractures (MOFs)

Comparing effect size from individual categories showed that processed meat, yogurt, milk, and
grains are a major contributor to the observed odds for MOFs, if any. A comparison of the top six
AGEs food categories with top 10 showed a very slight difference in the effect size measured as odds
ratio (top six OR = 1.09 (0.97–1.22) vs. top 10 OR = 1.11 (0.98–1.27)).

3.4.2. Vertebral Fractures (VFs)

Comparing effect size from individual categories showed that unprocessed and processed meat,
yogurt, milk, and sweets are a major contributor to the association of total CML intake with the presence
of VFs. A comparison of the top six AGEs food categories with top 10 did not show any difference in
the effect size measured as odds ratio (top six OR = 1.15 (1.03–1.29) vs. top 10 OR = 1.15 (1.01–1.30)).
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3.5. Subgroup and Sensitivity Analysis

We observed neither an association for MOFs with respect to total dAGEs score [1.07 (0.88–1.30)],
MG-H1 [1.00 (0.98–1.02)], or CEL [1.00 (0.88–1.15)] as continuous variables nor when comparing the
participants in different quartiles (Q1 to Q4).

We observed no association for VFs with respect to total dAGEs score [1.08 (0.89–1.31), MG-H1
[1.00 (0.98–1.01)], and CEL [1.02 (0.90–1.17)] as continuous variables; however, when comparing the
participants with values in bottom three quartiles (Q1 to Q3) of total dAGEs to top quartile [Q4: 1.40
(1.00–1.96)], the odds for VFs were significantly higher. We observed no associations for both MG-H1
and CEL with VFs when comparing different quartiles to each other (Supplementary Table S2).

4. Discussion

This study investigated the association of dietary intake of AGEs, in the form of CML, estimated
from a FFQ and dAGEs database with bone health parameters in a cross-sectional way. We observed a
linear positive association between CML intake and VFs independent of BMD, but not between CML
intake and MOFs, even though there was a similar trend. High consumption of CML had no relation
to BMD in our cohort.

Higher CML intake was associated with higher prevalence of VFs in our cohort. A recent study
showed that high AGEs diet led to increased total fluorescent AGEs accumulation in cortical and
cancellous vertebral bone, inferior vertebral microstructure, and mechanical properties primarily
in six-month old female mice, but not in six-month old male mice and mice that were fed a low
AGEs diet [28]. Their conclusion that young female mice, without diabetes or overweight, seem to
be at increased risk of developing vertebral fracture by high AGEs diet seems to be consistent with
our findings of 16% increased risk of VFs with high CML intake in females and subjects without
diabetes and.

High CML intake showed a similar trend towards higher prevalence of MOFs in our cohort, but
the results were not significant. Studies on animals consuming diets rich in AGEs, such as bread crusts
(CML) [47] or high fat showed an increased accumulation of AGEs in tibia and reduced mechanical
functioning of cortical bone [27,48]. In contrast, Karim et al. showed a higher correlation between
pentosidine, (a cross-linking AGE) and total fluorescent AGEs in human cancellous bone specimens
compared to cortical bone specimens (n = 170). Moreover, in vitro glycation of a subset of bone
specimens (n = 28) revealed increased AGEs accumulation in cancellous versus cortical bone, owing
to higher surface to volume ratio of cancellous bone [49]. Whether there is a difference in AGEs
accumulation in cortical and cancellous bone based on the type of AGEs consumed still needs to
be explored.

We did not observe any association between CML intake and BMD or TBS as a surrogate of bone
strength. Interestingly, skin AGEs have been associated with measures of bone strength other than
BMD [1–3]. Whether dietary AGEs or AGEs measured in tissues have a relationship to microarchitecture
using sophisticated techniques, such as high-resolution Quantitative Computed Tomography, would
be interesting for future research.

Various studies investigated the effect of Mediterranean diet on bone health and reported a
positive association [50–52] or no association [53,54]. A traditional Mediterranean diet is characterized
by low intake of meat and meat products, moderate intake of dairy products, and high amounts of
fruits and vegetables (rich in antioxidants and polyphenols), fish, and cereals in unprocessed form [55].
Adherence to the Mediterranean diet has recently been associated with lower hip fracture incidence
in a meta-analysis, including 140,775 middle-age subjects [56]. Interestingly, Sanchez et al. reported
that higher adherence to Mediterranean diet is inversely associated with skin AGEs accumulation in
2646 middle-aged subjects [57,58]. Similarly, a positive association between the dietary intake of meat
and meat products and skin AGEs accumulation was found [59]. Lastly, multiple clinical trials using
polyphenols showed reduced AGEs-induced inflammation in tissues, including bone, particularly
in subjects with T2DM [60,61]. In conclusion, one of the underlying mechanisms of Mediterranean
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diet in improving bone health could be related to reduced AGEs intake and the inhibition of AGEs by
antioxidants and polyphenols.

A major contribution of dietary CML more than 70% came from following food categories: sweets,
milk, whole and refined grains, processed and unprocessed meat. Additionally, the observed fracture
risk, although not very strong, could be explained to a large extent through these top contributors
to CML independent of BMD. Higher candy consumption has previously been associated with low
BMD [62]. High milk consumption (≥3 glasses per day) has been associated with higher hazards of
any and hip fracture in women (N = 61,433), but not in men after a median follow-up of 22-years [63].
A potential explanation of increased fracture risk that is associated with high milk consumption is
its high D-galactose content. The administration of D-galactose is an established animal model of
premature aging, partially through its effect on the accumulation of AGEs [64]. Meat intake has been
variably associated with negative bone health, for example, by interfering with calcium metabolism
by increasing acid load and as a consequence of high sodium content in processed meat [65]. It is
important to realize, in this respect, that the contribution to body’s AGEs pool is owed not only to
crude AGEs content in a food item, but also to the preparation techniques, such as dry heat, long
cooking time, and high temperature, which accelerate AGEs formation. In the current study, we still
could not establish that the observed effect on fracture risk comes solely from AGEs and not from
the other constituents of these food categories. Future studies on the tissue AGEs accumulation with
routine high AGEs food categories, processed in different ways, would provide interesting insights
into the pathophysiological mechanisms.

CML served as a representative of dAGEs intake in relation to bone health in our study due to
the following reasons: Firstly, CML is among the best studied AGEs [66], not only in all of the dAGE
databases, but also in bone research [67,68] while MG-H1 and CEL have hardly been studied in relation
to bone (disregarding pentosidine, an AGE that is not yet a part of any dAGEs database). Secondly,
CML is a very stable and a relatively inert AGE that is expected to be least influenced by the processing
and cooking techniques. Lastly, the correlation among different AGEs in food items, namely CML and
CEL (r = 0.79), CML and MG-H1 (r = 0.78), and CEL and MG-H1 (r = 0.90), is quite strong.

There are several strengths of our study. De AGEs database used to estimate dAGEs used a
state-of-the-art ultra-performance liquid chromatography/tandem mass spectrometry (UPLC/MS/MS),
which is superior to ELISA [31]. The FFQ and dAGEs database have both been primarily designed for
Dutch population, which points to a reliable representation of dAGEs. Our cohort was entrenched
from a Rotterdam study that is a well-characterized population with a consistent way of data collection.

Several limitations merit further discussion. AGEs are such a heterogeneous group of compounds
that the information on the dietary content of a few AGEs may not be sufficient for generalization. Our
population based FFQ did not contain information on cooking time, moisture, and temperatures used.
Lastly, the quantity, type, and form of AGEs (free adducts vs. protein-bound) in food could affect their
bioavailability and eventual contribution to the circulating and tissue pool. These limitations could
have led to an over- or underestimation of our findings. We did not correct for multiple testing due
to exploratory character of our findings and strong correlation between different AGEs and between
different types of fractures, but we observed a consistent trend in all subcategories. To finish, we did
not use medications that could influence bone health, as a covariate. Importantly, our results call for
replication in independent cohorts in the future.

5. Conclusions

This study demonstrated a positive association between dCML intake and prevalence of VFs
and a similar but non-significant trend for prevalent MOFs, independent of BMD. Dietary AGEs
intake showed no association with BMD and TBS. The observed effect of dCML intake on VFs came
primarily from the top six food categories, namely, sweets, milk, grains, and meat. The replication
of our findings in independent cohorts will be needed and could lead to potential interesting public
health consequences. Future studies with a longitudinal design are mandatory. Additionally, short
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clinical trials focusing on better quantification of AGEs, by using specially designed questionnaires,
including food preparation conditions, could provide interesting insights into the causal mechanisms
underlying dAGEs and tissue pathology.
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Table S1: Odds ratio (ORs) of energy-adjusted CML for MOF and VFs in non-type 2 diabetics (non-T2DM),
diabetics (T2DM), females and males in N = 3949 subset with complete data on all covariates. Table S2: Odds ratio
(ORs) of energy-adjusted total dAGE score, CEL and MG-H1 as a continuous variable and quartiles (Q1-4) for
MOFs and VFs in total population.
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CML Carboxymethyllysine
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dAGEs dietary advanced glycation end-products
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