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Purposes. Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world. Recent researches have
demonstrated that m6A methylation regulators play a key role in various cancers, such as gastric cancer and colon
adenocarcinoma. Several m6A methylation regulators are reported to predict the prognosis of HCC. Therefore, there is a need
to further identify the predictive value of m6A methylation regulators in HCC. Methods. We utilized The Cancer Genome Atlas
(TCGA) database to obtain the gene expression profile of m6A RNA methylation regulators and clinical information for
patients with HCC. Besides, we identified two clusters of HCC with various clinical factors by consensus clustering analysis.
Then the least absolute shrinkage and selection operator (LASSO) and the Cox regression analysis were applied to construct a
prognostic signature. Results. Except for ZC3H13 and METTL14, a majority of the thirteen m6A RNA methylation regulators
were significantly overexpressed in HCC specimens. HCC patients were classified into two groups (cluster 1 and cluster 2). The
cluster 1 was with a significantly worse prognosis than cluster 2, and most of the 13 known m6A RNA methylation regulators
were upregulated in cluster 1. Besides, we developed a prognostic signature consisting of YTHDF2, YTHDF1, METTL3,
KIAA1429, and ZC3H13, which could successfully differentiate high-risk patients. More importantly, univariate and
multivariate Cox regression analysis indicated that the signature-based risk score was an independent prognostic factor for
patients with HCC. Conclusions. Our study showed these five m6A RNA methylation regulators can be used as practical and
reliable prognostic tools of HCC, which might have potential value for therapeutic strategies.

1. Introduction

Hepatocellular carcinoma (HCC), accounting for up to 90%
of all primary liver cancers, is the 4th most common cause
of death worldwide in 2018. The incidence and mortality of
HCC continue to increase in almost all countries [1]. Clini-
cally, some curative treatment strategies, such as surgical
resection and liver transplantation, are feasible for most early
stage patients [2, 3]. Unfortunately, most patients with HCC
are in an advanced stage of the disease at the time of diagno-
sis. Although target therapy and immune checkpoint inhibi-
tors have been proven to improve survival in metastatic
patients in recent years, the median survival is still less than
two years [4, 5]. Therefore, exploring novel biomarkers and
therapeutic targets for HCC diagnosis and treatment is still
a challenging issue.

N6-methyladenosine (m6A) is the most common
internal modification found in messenger RNAs (mRNAs),
microRNAs, and long noncoding RNAs, where it plays
critical regulatory roles in transcription, processing, and
metabolism [6]. Several enzymes responsible for m6A
RNA modifications, which are composed of methyltrans-
ferases (writers), binding proteins (readers), and demethy-
lases (erasers), have been identified. METTL3, METTL14,
KIAA1429, WTAP, RBM15, and ZC3H13 are involved in
the methylated modification of RNA, while FTO and
ALKBH5 could exhibit efficient m6A demethylase activity.
Expect for HNRNPC, all known m6A readers are mem-
bers of the YTH domain-containing family that include
YTHDF and YTHDC subtypes [7].

Recent evidence has proved that the expression of m6A
modulators is closely tied to distinct pathological processes,
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including stem cell differentiation, tumorigenicity, and
metastasis [8]. Some findings suggest that m6A RNAmethyl-
ation regulators serve as potential clinical molecular markers,
thereby offering fresh insights into the treatment of cancers,
such as cervical cancer, pancreatic cancer, hepatocellular car-
cinoma, and acute myeloid leukemia [9–12]. Although
METTL3 is upregulated in HCC and acts as an oncogene in
HCC [13], we have little knowledge of the relationship
between m6A-related regulators and HCC. Therefore, there
is a need to further identify the prognostic significance of
m6A methylation regulators in HCC.

In our article, we analyzed gene expression characteristics
and evaluated associations between m6Amethylation regula-
tors and clinical and pathological features in 374 patients
with HCC. Five candidate genes were identified from 13
m6A-related genes, which may be independent prognostic
biomarkers.

2. Methods

2.1. Datasets. We obtained the RNA-Seq transcriptome data
and relevant clinical data for patients with primary HCC from
The Cancer Genome Atlas (TCGA, https://cancergenome.nih
.gov/). All RNA-Seq gene expression data have been normal-
ized by using Perl. A total of 374 HCC cases and 50 normal
control samples were included for subsequent analysis.

2.2. Differentially Expressed m6A RNAMethylation Regulator
in HCC. There are thirteen m6A RNA methylation regula-
tors, including YTHDC1, YTHDC2, ZC3H13, METTL3,
METTL14, YTHDF1, YTHDF2, KIAA1429, ALKBH5, FTO,
WTAP, HNRNPC, and RBM15. We identified those differen-
tially expressed regulators between HCC samples and stan-
dard control samples by using the “EdgeR” package.

2.3. Consensus Clustering Analysis. We removed 50 normal
cases and grouped 374 cancer cases by clustering the cases
based on consensus expression of m6A RNA methylation
regulators with the ConsensusClusterPlus package [14].
Principal component analysis (PCA) was employed to verify
the results of the cluster by the limma package [15].

2.4. Risk Characteristics and Prognosis. To evaluate the asso-
ciation between 13-gene expression and patients’ survival,
Cox regression analysis and least absolute shrinkage and
selection operator (LASSO) were performed. After indepen-
dent m6A regulatory genes were identified and their coeffi-
cients were determined, we used m6A regulatory gene-
based risk score prediction model to stratify HCC patients
into high-risk and low-risk groups. The receiver operating
characteristic (ROC) curve was used to detect the predictive
efficiency of the survival model [16]. The valuable influence
factors (including age, sex, histologic grade, and pathologic
stage) of HCC patients were filtrated and formulated with a
multivariate Cox regression analysis model.

2.5. Statistical Analysis. All statistical data were analyzed by
using R version 3.6.1 (https://www.r-project.org/). All statis-
tical tests were 2-sided, and p values < 0.05 were considered
statistically significant. If some information is missing, we

will delete the associate sample from the analysis. One-way
ANOVA compared the expression of 13 regulators in HCC
and normal tissues in TCGA samples. The association
between clinical characteristics and m6A RNA methylation
regulatory genes was analyzed with the chi-square test. The
Kaplan–Meier curve with a log-rank test was adopted to
compare the survival outcome.

3. Results

3.1. Profiling of m6A RNA Methylation Regulators in HCC.
Heatmap and violin plot were presented to summarize the
specially expressed m6A RNAmethylation regulators between
HCC samples and control samples (Figures 1(a) and 1(b)).
Most increased regulators in tumor cases compared to normal
cases were YTHDF2 (p < 0:001), FTO (p < 0:001), YTHDC1
(p < 0:001), YTHDC2 (p < 0:001), YTHDF1 (p < 0:001),
KIAA1429 (p < 0:001), METTL3 (p < 0:010), WTAP
(p < 0:001), RBM15 (p < 0:001), HNRNPC (p < 0:001), and
ALKBH5 (p = 0:001). ZC3H13 (p = 0:831) and METTL14
(p = 0:062) showed no significant difference. We also per-
formed the correlation analysis among the 13 m6A RNA
methylation regulators and found that HNRNPC and
METTL3 were most relevant. FTO, YTHDC1, WTAP,
HNRNPC, and METTL3 were correlated with all the other
12 genes, respectively (Figure 1(c)).

3.2. Consensus Clustering of 13 m6A RNA Methylation
Regulators. Due to small numbers in one of these clusters,
we did not divide HCC samples into three groups. Then,
we clustered 374 HCC samples into two groups (termed as
cluster 1 and cluster 2, respectively) based on the expression
of m6A RNAmethylation regulators in TCGA (Figures 2(a)–
2(c)). We further proved the correctness about our grouping
by PCA. Significant variance between the two subgroups is
shown in the PCA modal (Figure 2(d)).

Notably, we also observed that HCC patients in cluster 1
were with an obviously worse prognosis than cluster 2
(Figure 3(a), p value = 6:197e − 04). In addition, we discov-
ered that most of m6A RNAmethylation regulators were sig-
nificantly expressed in the cluster 1 group. In HCC, some
clinical characteristics, such as tumor stage, tumor topogra-
phy, lymph nodal, and metastasis, did not vary significantly
between two subgroups. However, compared with the cluster
2 group, the cluster 1 group was strongly associated with
females, higher grade, and younger age (Figure 3(b)).

3.3. Construction and Validation of the Five Prognostic
Signatures. The expression of m6A RNAmethylation regula-
tors was exposed to univariate COX regression, and nine
genes (YTHDF2, YTHDF1, METTL3, KIAA1429, HNRNPC,
WTAP, YTHDC1, RBM15, and ZC3H13) related to the over-
all survival (OS) were measured as predictive genes (p < 0:05)
for LASSO analysis. Finally, these five regulators were
selected to construct a risk signature, and the coefficients
were extracted from the LASSO algorithm (Figures 4(a)–
4(c)). The risk score formula to predict OS was developed as
follows: risk score = ð0:068 ∗ YTHDF2Þ + ð0:023 ∗ YTHDF1Þ
+ ð0:113 ∗METTL3Þ + ð0:038 ∗KIAA1429Þ + ð−0:109 ∗ ZC
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3H13Þ. Therefore, patients were separated into high-risk group
(n = 182) and low-risk group (n = 183) based on the median
risk score. The distributions of risk scores and patients’ survival
time and status are shown in Figure 4(d). The survival analysis
presented that patients in the high-risk group generally had
poorer OS than those in the low-risk group (p = 1:969e − 04).
We also assessed the prognostic value of these five risk genes
using time-dependent ROC analysis. The results demonstrated

that the area under the ROC curve (AUC) for 0.5-, 1-, 3-, and 5-
year OS was 0.731, 0.765, 0.723, and 0.619, respectively
(Figure 5(b), AUC for 1-year OS). Figure 5(a) shows the expres-
sion of five prognostic genes between the high-risk set and low-
risk set. For instance, four risk genes (KIAA1429, YTHDF2,
YTHDF1, and METTL3) were highly expressed, and the pro-
tective ZC3H13 was lowly expressed in the high-risk set. More-
over, we found significant differences of five selected m6A RNA
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Figure 1: The profiling of m6A RNA methylation regulators in hepatocellular carcinoma. (a) The heatmaps of 13 m6A RNA methylation
regulators in tumor tissues and normal tissues (red is upregulated and green is downregulated; ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗ p < 0:001).
(b) Vioplot visualizing the differentially m6A RNA methylation regulators in hepatocellular carcinoma (red is gastric cancer and blue is
normal). (c) Spearman’s correlation analysis of the 13 m6A modification regulators in hepatocellular carcinoma.
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methylation regulators between two groups with respect to T
status (p < 0:05), stage (p < 0:01), and grade (p < 0:001).

To investigate whether the prognostic signature-based
risk score was an independent negative prognostic indica-
tor, the univariable and multivariable Cox regression anal-
yses were used in 231 samples containing the complete
data. The univariate Cox regression showed that stage, T
status, metastasis, and risk score (stage: p < 0:001; T sta-
tus: p < 0:001; metastasis: p = 0:023; risk score: p < 0:001;

Figure 5(c)) were predictors for OS. Moreover, multivariate
Cox regression analysis further identified that risk score
(HR = 1:193, 95%CI = 1:111 − 1:281, p < 0:001; Figure 5(d))
was the only significant independent risk factor.

The risk signature for different clinicopathological var-
iables (age, gender, grade, and stage) also had the merits
of prognosis (Figures 6(a)–6(h)). These results suggested
that patients in the low-risk set had an obviously longer OS
than those in the high-risk set for those with age ≤ 60
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Figure 2: Identification of consensus clusters by m6A RNA methylation regulators. (a) Consensus clustering matrix for k = 2. (b) Consensus
clustering cumulative distribution function (CDF) for k = 2 to 9. (c) Relative change in area under CDF curve for k = 2 to 9. (d) Principal
component analysis of the total RNA expression profile in the TCGA dataset. Hepatocellular carcinoma in the cluster 1 subgroup is
marked with orange, and the cluster 2 subgroup is marked with green.
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(p = 0:0099), male cases (p = 0:002), G1-G2 (p = 0:0097), or
stages I-II (p = 0:0071). However, there was no significant
difference between these two groups in terms of age > 60
(p = 0:1232), female cases (p = 0:3022), G3-G4 (p = 0:2906),
and stages III-IV (p = 0:1844).

4. Discussion

Epidemiological and clinical evidence suggests that hepato-
cellular carcinoma is caused by the interaction of viruses,
environmental factors, and genetic predisposition [17].
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Figure 3: Differential clinicopathological features and overall survival of hepatocellular carcinoma in the cluster 1/2 subgroups. (a) The
Kaplan–Meier overall survival (OS) curves for 374 TCGA hepatocellular carcinoma patients. Gastric cancer patients in the cluster 1
subgroup are marked with red, and those in the cluster 2 subgroup are marked with blue. (b) Heatmap and clinicopathologic features of
the two clusters defined by the m6A RNA methylation regulators consensus expression (red is upregulated and green is downregulated; ∗
p < 0:05, ∗∗p < 0:01, and ∗∗∗ p < 0:001).
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Except for the epigenetic changes on DNA, RNA modifica-
tion has also attracted much attention from researchers
recently. There are over 100 known RNA modifications
identified by high-throughput sequencing [18]. The most
abundant RNA modification, N6-methyladenosine (m6A),
has been found in human diseases, including infection, type
II diabetes, heart disease, and cancer [19–22]. M6A RNA
methylation regulator was observed to be tightly related to
carcinogenesis and poor prognosis in patients with HCC
[23]. In our research, we compared the expression of thir-
teen m6A RNA methylation regulators in HCC and control

samples using data from TCGA and found that the majority
of these regulators were upregulated in tumor samples.
Besides, the HCC cases were separated into two clusters with
significant differences for OS and clinical features. Then,
remarkable differences in OS were found between high-risk
and low-risk groups. Finally, a risk signature including five
m6A RNAmethylation regulators could serve as a prognostic
factor for patients with HCC.

In the present study, it should be noted that all m6A RNA
methylation regulators were upregulated in cancerous tis-
sues, and the expression of almost all regulators increased
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Figure 4: The effect of m6A RNA methylation regulators on the prognosis of hepatocellular carcinoma. (a) Cox univariate analysis of m6A
RNAmethylation regulators. (b, c) The coefficients calculated by multivariate Cox regression using LASSO are shown. (d) The Kaplan–Meier
overall survival curves for patients in the TCGA datasets assigned to high- and low-risk groups based on the risk score.
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most significantly except ZC3H13 and METTL14. These
results may imply that dysregulation of m6A might play an
important role in HCC tumorigenesis. Recent researches
have shown that some regulators play essential and diverse
biological functions in the genesis and development of vari-
ous cancers [24]. Similar to HCC, Cai et al. conclude that

METTL3 was overexpressed in breast cancer and colorectal
cancer compared to normal control and might behave as an
oncogene in tumorigenesis [25, 26]. Surprisingly, a study by
Deng et al. found that METTL3 is not only lowly expressed
in colorectal cancer, but its high expression was also corre-
lated with longer survival time [27]. METTL3 was also
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Figure 5: Effects of the risk score and clinicopathological variables on the prognosis of hepatocellular carcinoma patients. (a) The heatmap
shows the expression of five m6A RNA methylation regulators and the distribution of clinicopathological variables between the high- and
low-risk groups (red is upregulated and green is downregulated; ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗ p < 0:001). (b) ROC curves showed the
predictive efficiency of the risk signature. (c) Cox univariate analyses of clinicopathological variables (including the risk score) and overall
survival. (d) Cox multivariate analyses of clinicopathological variables (including the risk score) and overall survival.
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Figure 6: Continued.
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observed to be significantly decreased in endometrial cancer
tissues compared to the adjacent normal tissues [28]. It was
known that the catalytic activity of m6A “writer” and addi-
tional “reader” was essential, and m6A modification relied
on reader proteins to elicit a variety of biological functions.
Chen et al. demonstrate that METTL3 epigenetically
silenced suppressor of cytokine signaling 2 in HCC through
an m6A-YTHDF2-dependent mechanism [13]. Interest-
ingly, YTHDF2 has dual functions in pancreatic cancer by
promoting proliferation and restraining migration and inva-
sion [29]. These controversial findings could provide differ-
ent insights into the underlying mechanism of related
regulators in the progression of human malignancies, even
in the same cancer, and more work remains to be done in
this field.

Our study indicated that all five final regulators were cor-
related with the prognosis of HCC patients. COX regression
analysis for risk score and clinical features confirmed that
YTHDF2, YTHDF1, METTL3, KIAA1429, and ZC3H13
could serve as markers to predict prognosis and may even
be targeted in novel therapies of HCC. KIAA1429 was dem-
onstrated to be correlated with the proliferation and metasta-
sis of the hepatocellular carcinoma. After the disjunction of
HuR and the downregulation of GATA3 pre-mRNA,
KIAA1429 mediates m6A methylation on the 3′ UTR of
GATA3 pre-mRNA in liver cancer cells guided by GATA3-
AS [30]. Lan et al. revealed that KIAA1429 was a redoubtable
driver of liver cancer development and metastasis, which
showed that KIAA1429 could be used as a novel gene for
treating HCC patients.

Our results suggested that ZC3H13 had no significant
difference between HCC cases and normal cases. Further-
more, by comparing the expression of m6A RNA regulators
in cluster 1 and 2 subgroups, the difference of ZC3H13
expression between the two subgroups was not significant.
Interestingly, our prognostic model demonstrated that the
expression level of ZC3H13 was positively correlated with
the prognosis of HCC, suggesting that it might function as

a tumor suppressor in HCC. It was reported that the down-
regulation of ZC3H13 expression regulated KRAS and ERK
signaling expression, which could inhibit the invasion and
proliferation of colorectal cancer cells [31]. More and more
evidence suggested that a variety of growth factors promote
HCC cell multiplication through the activation of the
Ras/Raf-1/ERK pathway, and the RAS-ERK pathway plays
a crucial role in the tumorigenesis of HCC [32, 33]. How-
ever, the role of ZC3H13 and the RAS-ERK pathway in
the molecular mechanism of HCC has not been elucidated
yet. Future studies could focus on their relationship to
develop relevant therapeutics for the treatment of HCC.

However, there are also some potential limitations in the
current study. First, the mainly American patients were
downloaded from TCGA, which might lead to selection bias.
Second, the number of HCC cases was much more than that
of normal cases. It might have great influence on the reliabil-
ity and accuracy of the results. Third, some clinical parame-
ters, such as alcohol assumption and the level of hepatitis
virus DNA, were not taken into consideration. Finally, future
studies in different populations and databases are required to
validate our results.

5. Conclusions

In summary, we found that the expression of m6A RNA
methylation regulators was tightly linked to the prognosis
of HCC. Our study had the crucial probative value to prove
the role of m6A RNA methylation in HCC. Meanwhile,
YTHDF2, YTHDF1, METTL3, KIAA1429, and ZC3H13
might be a potential predictor and therapeutic target for
HCC. Further biochemical studies and functional experi-
ments are required to confirm these results in the future.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.
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