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DNA-PKcs: A Targetable Protumorigenic Protein Kinase
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ABSTRACT
◥

DNA-dependent protein kinase catalytic subunit (DNA-PKcs)
is a pleiotropic protein kinase that plays critical roles in cellular
processes fundamental to cancer. DNA-PKcs expression and
activity are frequently deregulated in multiple hematologic and
solid tumors and have been tightly linked to poor outcome. Given
the potentially influential role of DNA-PKcs in cancer develop-

ment and progression, therapeutic targeting of this kinase is
being tested in preclinical and clinical settings. This review
summarizes the latest advances in the field, providing a com-
prehensive discussion of DNA-PKcs functions in cancer and an
update on the clinical assessment of DNA-PK inhibitors in
cancer therapy.

Introduction
DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is a

multifunctional serine—threonine protein kinase that plays pleiotro-
pic roles in cancer. Since its first identification as a component of a
transcriptional complex, the role of DNA-PKcs has been extensively
studied inDNA double-strand damage repair via nonhomologous end
joining (NHEJ), transcriptional regulation, genomic instability, and
innate immunity, whereas other functions are yet to be fully elucidated.

DNA-PKcs dysregulation has been commonly reported in multiple
solid and hematologic tumors, including chronic lymphomas, colon,
prostate, breast, cervical, and brain cancers (1–3). Cumulative evi-
dence suggests that DNA-PKcs overexpression and increased phos-
phorylation (activation) in humanmalignancies are predictive of poor
prognosis (2, 4), and targeting DNA-PKcs sensitizes cells radiotherapy
and DNA-damaging agents (5–7). Thus, DNA-PKcs has been pro-
posed as a potential therapeutic target in cancers that overexpress
DNA-PKcs. Perturbation of DNA-PKcs function via genetic and
pharmacologic tools decreases malignant cell survival (8, 9), thus
supporting the use of DNA-PKcs–targeted small-molecule drugs as
potential therapeutic agents alone or in combinationwith standard-of-
care treatments. Although first-proposed inhibitors of DNA-PKcs
lacked specificity and exhibited a poor pharmacokinetic profile (10),
a newer generation of more specific and efficacious DNA-PKcs
inhibitors has provided encouraging preclinical data and are currently
being evaluated in clinical trials in advancedmalignancies. Developing
a comprehensive understanding of DNA-PKcs function and identi-
fication of tumor subtypes that may be most responsive to DNA-PKcs
inhibitors is critical for clinical translation. Although gaps remain
regarding the overall means through which DNA-PKcs promotes

protumorigenic phenotypes, this review will summarize relevant
advances in understanding of protein kinase regulation and function,
and detail the current state of clinical research.

DNA-PKcs Regulation
DNA-PKcs is encoded by the PRKDC gene, which localizes on

chromosome 8q11 (11). As a �469-KDa protein composed of 4,128
amino acids, DNA-PKcs is one of the largest and most abundant
kinases in higher eukaryotes. Based on structure homology, DNA-
PKcs is a member of the phosphatidylinositol 3-kinases (PI3K)
superfamily, but due to lack of lipid kinase activity is further classified
in the phosphatidylinositol 3-kinases-related kinase (PIKK) fami-
ly (12, 13). DNA-PKcs structure consists of the N- terminus
region arranged in HEAT (Huntingtin, Elongation Factor 3, PP2A
and TOR1) repeats followed by a leucine-rich domain that can be
involved in protein–protein interactions and innate DNA affini-
ty (14, 15), a noncanonical bromo domain important in DNA
repair (16), a uniquely conserved DNA-PKcs domain NUC194 (17),
phosphorylation clusters JK, ABCDE, and QPR that modulate
its activity, and the C-terminus region that contains PI3K-like
domains FAT [named due the region’s homology in FRAP, atax-
ia-telangiectasia mutated (ATM), and transcription domain-
associated protein TRRAP], FRB (FKBP12-rapamycin-binding),
PRD (PIKK-regulatory domain), FATC (FAT at the C-terminus),
and the kinase domain (Fig. 1A; refs. 18–20). DNA-PKcs kinase
activity is important for DNA-PKcs function in cancer and beyond,
as it has been linked to regulation of numerous cellular processes.

The activity of the protein kinase is regulated at multiple levels
including (i) protein–protein interaction, (ii) phosphorylation, and
(iii) various other posttranslational modifications (PTM). Regulation
through protein–protein association is important for modulation of
DNA-PKcs activity and downstream functions. For example, the best
studied protein–protein interaction of DNA-PKcs with other proteins
is the binding toKu70/80, which promotesDNA-PKcs conformational
changes leading to activation/deactivation of DNA-PKcs, thus affect-
ing DNA repair. Other factors including epidermal growth factor
receptor (EGFR) directly bind with DNA-PKcs (21) and affect DNA-
PKcs’ role in DNA repair. The EGFR–DNA-PKcs protein–protein
interaction increases upon damage and promotes DNA-PKcs activity
in response to double-strand break (DSB) induction (22). Inhibition of
EGFR, by gefitinib and cetuximab, impairs the EGFR–DNA-PKcs
protein–protein interaction and inhibits DNA repair of IR-induced
DSBs (23, 24). Similarly, casein kinase II (CK2) binds withDNA-PKcs,
and this interaction is enhanced after DNA damage (25, 26). Down-
regulation of CK2 leads to decreased DNA-PKcs phosphorylation,
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persistent DNA damage, and sensitization to radiotherapy through
destabilization of the DNA-PKcs–Ku80 complex (25, 26). On balance,
direct protein–protein interactions are important for modulation of
DNA-PKcs activity and downstream biological processes.

In parallel, DNA-PKcs is modulated by phosphorylation as induced
by DNA-PKcs itself, as well as other cancer relevant kinases. Studies
have identified approximately 60 DNA-PKcs serine/threonine autop-
hosphorylated sites, with mutagenesis showing that at least 16 sites
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Figure 1.

DNA-PKcs regulation and substrates are important for a
variety of cellular functions. A, DNA-PKcs structure
highlighting DNA-PKcs domains and DNA-PKcs regula-
tion through posttranslational modifications. B, DNA-
PKcs substrates identified in vitro and in vivo categoriz-
ed by function. Known validated phosphorylation sites
are shown next to each substrate. C, Summary of
DNA-PKcs nuclear and cytoplasmic functions. Figures
were generated using BioRender.
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alter DNA-PKcs (Fig 1A; refs. 27–29). Alterations at only three sites
(S56, S72, T3950 shown in Fig 1A, red) lead to an enzymatically
inactive kinase that does not disrupt the DNA-PK complex but
affects the role of DNA-PKcs in DNA repair and sensitization
to therapy (30, 31). Moreover, DNA-PKcs has been shown to
autophosphorylate the PQR/2056 and ABCDE/2609 phosphoryla-
tion clusters in response to DSB induction (32–34). Additional
studies have shown that the PQR cluster autophosphorylation
limits DNA end processing during NHEJ, whereas the ABCDE
cluster promotes DNA end processing during NHEJ (33, 35).
Although primarily autophosphorylated, the ABCDE cluster can
also be phosphorylated by ATM and ATR (ATM and RAD-3 related
protein) kinases (36, 37), thus suggesting that other proteins
contribute to DNA-PK phosphorylation and activity. Interestingly,
recent studies have reported up to 88 serine, 34 threonine, and 21
tyrosine residues can be modified by phosphorylation on DNA-
PKcs (29, 38). Although much remains to be understood function-
ally about these sites and their effectors, several proteins have been
shown to regulate DNA-PKcs activity and function via binding and/
or phosphorylation. For example, AKT (also known as protein
kinase B) has been shown to bind to DNA-PKcs post-irradiation,
promote DNA-PKcs autophosphorylation and protein kinase activ-
ity to support DNA-damage repair (39, 40). Similarly, ATR binds
and phosphorylates DNA-PKcs in response to UV irradiation (41),
whereas ATM phosphorylates DNA-PKcs in response to ionizing
radiation (36), both promoting DNA-PK activity and subsequent
repair. On the contrary, the proto-oncogene c-Abl (42, 43) and Lyn
tyrosine kinase (44) binding and (in vitro) phosphorylation of
DNA-PKcs inhibit DNA-PKcs and lead to its dissociation from
the DNA-PK complex. Furthermore, DNA-PK activity is attenuated
by inhibition of ERK and MEK kinases in response to etoposide-
induced damage, thus inhibiting DNA repair via NHEJ (45). Taken
together, the current state of knowledge indicates that although
DNA-PKcs autophosphorylation plays a key role in DNA-PKcs
regulation and downstream functions in DNA repair, additional
kinases alter DNA-PKcs activity.

In addition to phosphorylation, DNA-PKcs is directly modified by
several other PTMs including PAR-ylation, acetylation, ubiquityla-
tion, neddylation, nitrosylation, and glycosylation. DNA-PKcs was
reported to be subject of PAR-ylation by poly(ADP-ribose) polymer-
ase 1 (PARP-1; refs. 46, 47) and by orphan nuclear receptorNR4A (48),
upon damage, impacting DNA-PKcs activity in a context specific
manner. As PARP family proteins exert differential effects on DNA-
PKcs activity, it will be important to delineate the interplay between
PAR-ylation and DNA-PKcs activity in cancer, especially with the
onset of approvals for PARP inhibitors in the clinical setting. Although
preclinical data show that inhibition of PAR-ylation and DNA-PKcs
activity synergistically inhibits cancer cell survival (47), further studies
are needed to better inform the use of PARP andDNA-PKcs inhibitors
in combination therapies.

Although gaps in knowledge remain, DNA-PKcs is also posttran-
slationally modified by lysine-targeted PTMs. Recent studies found 16
lysine residues marked for acetylation, with two of these residues
(K3241 and K3260) confirmed to have direct role in DNA-PKcs–
dependent DSBs repair, genomic integrity, and radiation resistance in
in vivo studies (49, 50). Furthermore, DNA-PKcs was reported to be
ubiquitylated indirectly through valosin-containing protein in a
proteasome-dependent manner (51), as well as directly by the ring
finger protein 144A (RNF144A; ref. 52), which mark DNA-PKcs for
degradation, leading to sensitization of glioblastoma cells to radi-
ation, and promotes apoptosis, respectively. DNA-PKcs is also

marked by neddylation via neddylation E-2-conjugating enzyme
UBE2M and E-3 ligase HUWE1 in its kinase domain, which
promote DNA-PKcs S2056 autophosphorylation and NHEJ (53),
whereas NEDP1 is responsible for DNA-PKcs deneddylation (53).
The consequence of these PTMs remains to be fully elucidated;
however, these data highlight the complexity of DNA-PKcs regu-
lation and the need to understand the cross-talk between the PTMs
and the resulting impact on cancer processes.

DNA-PKcs Substrates
Although understanding ofDNA-PKcs regulation is emergent, gaps

in the identification of DNA-PKcs substrates remain with studies
largely focused on the components of DNA repair. The most well-
known DNA-PKcs substrate is DNA-PKcs itself, followed by other
mainly in vitro substrates that are phosphorylated on the consensus
sequence of serine and threonine sites followed by glutamine (SQ/TQ;
ref. 54). Some of these substrates include DNA-PKcs (55),
Hsp90 (56, 57), p53 (54, 58), and Artemis (59). Nevertheless, many
substrates have been identified in vitro where DNA-PKcs does not
utilize the canonical phosphorylation sequence but rather phosphor-
ylates non-SQ/TQ sites such as serine and threonine residues followed
leucine or tyrosine. For example, proteins such as XRCC4 (60),
WRN (61), Artemis (59), XLF (62), Ku70/80 (63), and DNA-
PKcs (55) have been identified as non-SQ/TQ DNA-PKcs substrates.
Furthermore, DNA-PKcs has been shown to have substrates that do
not contain any consensus sequence such as in the case of the C-
terminal domain (CTD) of RNA polymerase II (64, 65). As such,
challenges exist in the prediction of DNA-PKcs substrates and there-
fore in discerning the mechanisms by which the protein kinase elicits
protumorigenic functions.

Known DNA-PKcs substrates are linked to numerous cellular
and cancer processes, summarized in Fig. 1B. Not surprisingly,
given the functional focus on DNA repair–related activities, the
majority of known targets are associated with this category. It is
important to mention that although most of these DNA repair
substrates have been identified in vitro, relatively few are found
in vivo. Importantly, phosphorylation events identified in vivo have
been shown to have biological impact, for example, on DNA repair
such as in the case of WRN (Ser440/Ser466, Werner syndrome
ATP-dependent helicase; refs. 66, 67) and H2AX (Ser139, histone
H2AX; refs. 68–70), regulation of transcription by POLR2A (Ser2/
Ser5/CTD heptad repeats, DNA directed RNA polymerase II sub-
unit RPB; refs. 64, 71), mitosis by RPA2 (Ser 4/Ser 8/ Thre21,
replication protein A, 32 kDa subunit; refs. 72, 73), cell survival in
response to damage by GOLPH3 (Thr143, Golgi phosphoprotein 3;
ref. 74), and cell migration by VIM (Ser459, vimentin; ref. 75).
Nevertheless, many of the phosphorylation events identified in vitro
remain to be validated in vivo and their biological impact is yet to be
discovered. These data present an important avenue of research that
highlights the need to discern the biological outcome of DNA-PKcs
phosphorylation on its substrates. The second most prevalent
grouping are proteins with functions in DNA replication and
transcriptional regulation, consistent with newly appreciated func-
tions of DNA-PKcs in processes including the immune response,
protein translation and stability, vesicle transport, metabolism, and
cytoskeleton organization. The impact of DNA-PK on these sub-
strates and associated function as related to cancer is discussed
herein. As will be described, although DNA-PKcs was primarily
studied as related to nuclear functions, it also serves critical
nonnuclear roles associated with malignancy (Fig. 1C).
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DNA-PKcs Nuclear Functions
DNA-PKcs studies have focused mainly on its roles in the

nucleus and especially DNA repair through NHEJ. Nevertheless,
DNA-PKcs is involved in DNA repair beyond NHEJ including in V
(D)J recombination, homologous recombination (HR), and single-
strand break repair (SSB). More recently appreciated is the role of
DNA-PKcs in driving the transcriptional regulation of numerous
cancer relevant pathways.

DNA damage repair
DNA-PKcs is a key player in multiple DNA damage repair

(DDR) pathways, with NHEJ being the most well studied. In brief,
DNA-PKcs acts as a sensor of DNA damage and phosphorylates
gH2AX (76). The DNA repair factors Ku70/80 bind, encircle, and
align the DNA ends and recruit DNA-PKcs at the site of damage
where interaction of DNA-PKcs/Ku70/80 with the damaged DNA
leads to conformational changes that activate the complex (28, 77).
DNA-PKcs activation is thought to require synapses of two DNA-
PK complexes, where these trans protein–protein interactions lead
to DNA-PKcs autophosphorylation on the ABCDE cluster (78).
Moreover, conformational changes facilitate DNA end processing,
with DNA-PKcs acting as a scaffold to recruit repair machinery
components and phosphorylate NHEJ components to complete
repair. Upon completion of DNA repair, DNA-PKcs undergoes
further autophosphorylation events (in both ABCDE and PQR),
which induces a conformational change prompting dissociation of
DNA-PKcs from the DNA-PK complex (79, 80). In cancer models
with elevated DNA-PKcs expression and activity, NHEJ activity is
elevated, thus allowing for more DNA repair and cancer cell
proliferation upon intrinsic and extrinsic damage. DNA-PKcs
ablation through genetic or biochemical perturbations decreases
NHEJ activity, sensitizes cells to DNA damaging agents, and
reduces cellular proliferation in multiple human cancer models (4).
Targeting DNA-PKcs’ role in DNA repair through inhibition of
NHEJ activity presents an opportunity to potentiate sensitization of
tumors to DNA damaging agents and reduce proliferation. Com-
bined, it is clear that DNA-PKcs is a critical component of the NHEJ
DDR pathway and a candidate therapeutic target.

Given the ability to affect DNA repair, DNA-PKcs exerts NHEJ
functions to facilitate V(D)J and class switch recombination in lym-
phocytes (81). Defects in any of the DNA-PK components lead to the
well-described severe combined immunodeficiency phenotype
(SCID), marked by absence of T and B cells, increased radiosensitivity,
developmental defects, and susceptibility to tumor developm-
ent (82–84). The implication of these DNA-PKcs functions in the
context of cancer has yet to be assessed. Although well studied in
NHEJ, DNA-PKcs has been implicated in regulation of HR and SSB
repair. For example, phosphorylation of DNA-PKcs in the JK cluster
(T946 and S1004) and T3950 redirects repair from NHEJ to HR (30).
Similarly, interaction of the transcriptional comodulator TIP60 with
DNA-PKcs diminishes DNA-PKcs activity and promotes HR; con-
versely, mutations in TIP60 enhance DNA-PKcs phosphorylation and
NHEJ, inhibit HR, and render cancer cells more sensitive to IR and
PARP inhibitors (85). DNA-PKcs has also been suggested to promote
HR in response to replication stress and IR-induced DSBs by phos-
phorylation of RPA32 (72, 73, 86, 87), and in response to replication
inhibitor hydroxyurea by cooperating with PARP-1 (88). Additionally,
DNA-PKcs (along with other PIKKs) is involved in cell-cycle check-
point regulation, where it plays a role in S and G2–M phase and DNA
repair pathway decision-making. Given that mutations in checkpoint

proteins promote genomic instability, these observations point to a
role of DNA-PKcs in governing this process. Moreover, checkpoint
proteins have been described as therapeutic targets (89), highlight-
ing the importance of delineating the mechanisms of checkpoint
protein regulation by DNA-PKcs. Thus, it is clear that DNA-PKcs
plays key roles in DDR beyond NHEJ, yet more studies are needed
to assess the implications of these functions in cancer development
and/or progression.

In addition to DSB repair, DNA-PKcs binds to and is activated by
single-strand DNA (90), supporting a potential role of SSB repair.
Congruently, DNA-PKcs interacts with multiple base excision repair
proteins (XRCC1, PARP-1, APE1, and Polb; ref. 91) and is important
for repair of oxidatively induced clustered lesions in tumors (92).
Furthermore, these lesions can also be repaired by nucleotide
excision repair and mismatch repair (MMR), suggesting DNA-
PKcs may play a role in other SSB repair pathways. Understanding
roles of DNA-PKcs in different DDR pathways is essential for
development of combination cancer therapies to elicit synthetic
lethality and improve outcomes via targeting of multiple compen-
satory mechanisms. Targeting DNA-PKcs in combination with
inhibitors of other DDR mediators such as PARP-1 has resulted
in significant anticancer effects and is a promising therapeutic
avenue for cancer treatment (6, 93). Collectively, these studies
highlight the critical roles of DNA-PKcs in multiple DDR pathways,
making it a promising target to enhance efficacy of cancer therapy.

Transcriptional regulation
Although DNA-PKcs is well studied in the field of DNA repair,

DNA-PKcs was first discovered in complex with transcription factor
SP1 (94). Studies subsequently implicated DNA-PKcs in transcrip-
tional regulation through binding to and/or phosphorylating tran-
scriptional mediators and impacting cancer processes. For example,
DNA-PKcs promotes transcription through phosphorylating the
TATA binding protein and transcription factor IIB (TFIIB; ref. 95)
to alter phosphorylation of TRIM28/KAP-1 (Ser824) and activate
RNA polymerase II (96). Consistent with the proposed role as a
comodulator, DNA-PKcs can conversely act as a transcriptional
repressor via phosphorylation of the transcription initiation com-
plex (97), and at DSBs through DNA-PKcs–dependent WWP2 K48
polyubiquitylation of RNA Pol II (98). These data reveal a complex
interplay between DNA-PKcs, the basal transcriptional, and the DNA
repair machinery, which is likely impactful in cancers dependent on
oncogenic transcription factors.

Finally, DNA-PKcs has been shown to interact and phosphorylate a
host of cancer relevant sequence specific transcription factors. Known
DNA-PKcs substrates include the stemness factors Oct-1 (99), proto-
oncogenes c-Fos and Jun (100), c-Myc (101), circadian clock factor
CRY1 (102), and the p53 tumor suppressor (54), all involved in driving
oncogenesis. DNA-PKcs has also been implicated in transcriptional
regulation of lipid metabolism genes via phosphorylation of upstream
stimulatory factor (USF)1/2 heterodimer (Ser 262; ref. 103), and
localization to promoters of lipogenic genes. These suggest a role for
DNA-PKcs in transcriptional regulation of metabolic genes that are
associated with deregulated pathways in cancer. Furthermore, com-
ponents of the DNA repair machinery, including DNA-PKcs, Ku70/
80, PARP-1, and Topoisomerase-IIb, have been linked to a regulation
of the estrogen receptor–responsive pS2 promoter, thus suggesting a
role in transcription of nuclear receptor–regulated genes (104). DNA-
PKcs has also been shown to interact and/or phosphorylate
and activate transcription of various nuclear receptors such as the
glucocorticoid receptor (GR; refs. 105, 106), and the estrogen receptor-
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a (ERa; refs. 107, 108), progesterone receptor (PR; refs. 109, 110), and
the androgen receptor (AR; refs. 111, 112). In prostate cancer, DNA-
PKcs binds to and activates AR, leading to transcriptional regulation of
AR target genes. Furthermore, in AR-dependent prostate cancer,
DNA-PKcs affects transcription through regulation of Wnt signaling
via LEF-1–mediated transcription (113), transcription of EMT,metab-
olism, and inflammatory genes (9), and drives transcription of Rho/
Rac protumorigenic networks that lead to metastasis (8). Studies
also have established the presence of positive feedback loops
between DNA-PKcs-AR (111) and DNA-PK-ERa (107, 114), which
are significant for prostate cancer and breast cancer , respectively.
Pharmacologic suppression of DNA-PKcs decreases its transcrip-
tional regulatory function in multiple cancer-related pathways
and transcription factor/nuclear receptor driven proliferation
(4, 8, 9, 113), thus supporting the use of DNA-PK inhibitors as
a therapeutic target in cancers driven by DNA-PKcs–sensitive
oncogenic transcriptional function.

DNA-PKcs Nonnuclear Functions
Distinct from nuclear functions, DNA-PKcs localizes in the cyto-

plasm (115), plasma membrane (116), cytoskeleton (75), and lipid
rafts (117). DNA-PKcs cellular localization is regulated by cancer-
relevant pathways such as cyclic AMP (cAMP) signaling, protein
kinase A (PKA; ref. 118), and the EGFR signaling (21, 22). As such,
insight into DNA-PKcs extranuclear functions is essential to under-
stand DNA-PKcs’ role in malignancy.

A knownnonnuclear function occurs duringmitosis, whereinDNA-
PKcs facilitates maintenance of genomic integrity. In the M phase,
phosphorylated DNA-PKcs colocalizes with PLK1 in response to DNA
damage, a process that promotes effective chromosome segrega-
tion (119). Furthermore, DNA-PKcs mediates mitotic entry via phos-
phorylation of RPA32 (73) and Chk2–BRCA1 (120) axis by regulating
mitotic spindle organization and chromosomal integrity. DNA-PKcs is
also found at telomere regions where its activity is essential for telomere
protection and capping (121). Depletion of DNA-PKcs leads to delayed
mitotic entry, blocked mitotic exit, and increased defects in chromo-
some segregation and cytokinesis (122–124). These collective observa-
tions highlight an underexplored role for DNA-PKcs in maintaining
DNA fidelity.

In interphase, increasing evidence supports a nonnuclear role for
DNA-PKcs in metabolic regulation. For example, DNA-PKcs phos-
phorylation of HSP90a reduces interaction with HSP90a clients
AMPK and LKB1, promoting a reduction in mitochondrial biogenesis
and physical fitness decline in aging mice (125). These effects may be
context specific, as studies in glioblastoma and breast cancer models
identified DNA-PKcs as a positive regulator of AMPK activity via
phosphorylation (126, 127). Given the function of AMPK as a critical
metabolic sensor, it will be important to delineate both direct and
indirect impacts of DNA-PKcs on metabolism rewiring in cancerous
tissues as metabolic reprogramming is a hallmark of cancer. Com-
plementing these observations, DNA-PKcs was found to interact with
glycolytic enzyme Aldolase A (ALDOA) in response to dietary restric-
tion (DR) in liver and cervical cancermodels (128). Although the effect
of this interaction on cancer metabolism was not evaluated, it was
found that ALDOA promoted DNA-PKcs–mediated p53 activation,
resulting in apoptotic cell death (128). DNA-PKcs also associates with
the metabolic enzyme, fumarase, in response to IR (129). A positive
feedback loop was discovered in between DNA-PKcs and fumarase,
where DNA-PKcs phosphorylation of fumarase promotes recruitment
to damaged sites and DNA repair; and in turn, DNA-PKcs accumu-

lates to DSBs in response to fumarate-mediated chromatin remodel-
ing (129, 130). These observations are a call to action toward under-
standing of DNA-PKcs on cancer metabolism.

Distinct from roles in cell division and metabolism, DNA-PKcs is
linked to regulation of senescence and cell death. In vitro studies
have shown that DNA-PKcs can promote apoptosis via p53 phos-
phorylation, resulting in the destabilization of p53–Mdm2 interac-
tion (58, 131). However, recent studies have shown that in vivo
phosphorylation of p53 (Ser15) is mainly due to ATM in response
to DNA damage (132, 133). Nevertheless, DNA-PKcs inhibition or
knockdown has been shown to promote apoptosis and sensitize cells
in response to heat shock (134), ultrasound (135), and anticancer
agents such as etoposide and doxorubicin (6, 136). DNA-PKcs has
also been shown promote autophagy in cancer through regulation
of AMPK in response to etoposide (137) and IR (138). Additionally,
DNA-PKcs modulates senescence in response to IR in cancer (139).
Although it has been thought that sensitization to radiotherapy
upon DNA-PKcs inhibition is due to DNA repair blockade, recent
studies suggest that other mechanisms, such as mitotic slippage,
accelerated senescence, and deregulation of ATM, also contribute to
sensitization (139, 140). Given that senescence is now thought to be
reversible (140–143), these findings are significant for understand-
ing mechanisms of response and resistance to DNA-PKcs inhibitors
in the clinical setting.

Although the relevance to cancer remains largely understudied,
DNA-PKcs was described as a DNA sensor in the cytoplasm and an
activator of innate immune response. DNA-PKcs induces tran-
scription of type I interferon (IFN), chemokines, and cytokines via
stimulation of interferon genes (STING) pathway (115). Strikingly,
this response is dependent on DNA-PKcs expression but not on
kinase activity (115). Conversely, active DNA-PKcs drives antiviral
response through a secondary pathway in humans, called STING-
independent DNA-sensing pathway (SIDSP; ref. 144), where DNA-
PKcs also acts as a sensor. In addition, DNA-PKcs has been shown
to activate IKK and NFkB signaling directly (145) and indirect-
ly (146) in the presence of bacterial CpG-DNA and DNA damage to
activate innate immunity. In cancer, DNA-PKcs activates immunity
signaling through the NFkB signaling in response to DNA-
damaging agents such as N-benzyladriamycin (147) and IR (148).
Complementary to the role in innate immunity, DNA-PKcs pro-
motes adaptive immunity via activation of a proinflammatory
response in natural killer (NK) cells (149) and activation of an
anti-inflammatory response in macrophages (150, 151). The role of
DNA-PKcs in adaptive immunity as related to the tumor micro-
environment remains poorly understood but may have therapeutic
implications that should be explored.

Finally, DNA-PKcs utilizes a combination of nonnuclear and
nuclear roles to influence the tumor microenvironment to promote
proliferation and metastasis of cancer cells. DNA-PKcs contributes to
maintenance of redox-homeostasis by suppressing reactive oxygen
species buildup, an important factor to therapeutic response (152).
Additionally, DNA-PKcs affects therapeutic response by promoting
adaptive mechanisms in response to hypoxic environments in solid
tumors. These mechanisms include upregulation of both hypoxia
factor HIF-1a and DNA-PKcs expression (153, 154), as well as
activation of DNA-PKcs in a HIF-1–dependent and –independent
manner (153, 154). Activation ofDNA-PKcs, in response to hypoxia in
cancer, also promotes proliferation and resistance to apoptosis
through various mechanisms including p53-RPA70 (replication pro-
tein A, 70 kDa subunit) complex regulation (155), Src and AMPK
pathway activation (156), and association with macrophage-
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stimulating protein receptor RON (157). Furthermore, DNA-PKcs has
been associated with increased angiogenesis in glioblastoma in
response to IR, thus utilizing the tumor microenvironment to
promote tumor cell migration and invasion (158). In melanoma,
DNA-PKcs has been shown to modulate the tumor microenviron-
ment via secretion of proteins promoting a migratory pheno-
type (159). In summary, DNA-PKcs plays an important role in
creating a tumor microenvironment conducive for tumor growth
and spread, and these adverse outcomes could be mitigated through
utilization of DNA-PKcs inhibitors.

Targeting DNA-PKcs in Malignancy
High DNA-PKcs expression and activity are linked to poor

outcome in a number of tumor types (2, 3, 9). Elevated DNA-

PKcs expression and/or activity have been shown in multiple
studies to correlate with increased metastasis (e.g., prostate cancer,
melanoma, and colorectal cancer), clinical stage (e.g., glioma and
NSCLC), resistance to radio- and chemotherapy (e.g., NSCLC,
glioma, prostate cervix, thyroid, nasopharynx cancers, and lym-
phoid malignancies), and poor overall prognosis (e.g., prostate,
ovarian, nasopharyngeal, and hepatocellular carcinomas; ref. 1).
Given the putative role of DNA-PKcs in tumor growth, disease
progression, and clinical outcome, DNA-PKcs has been nominated
as a therapeutic target across a multitude of advanced cancers.
Although a number of DNA-PKcs inhibitors have been developed, a
limited number have moved into clinical development due to poor
solubility, rapid metabolic clearance, and/or high toxicity (160).
DNA-PKcs inhibitors currently being investigated in clinical trials
are summarized below and in Table 1.

Table 1. Nonspecific (gray) and specific (white) DNA-PKcs inhibitors undergoing clinical trials as monotherapy or in combination with
therapeutic agents.

Targets DNA-PKi Combined Agent
Study
Phase Tumor type Trial

DNA-PK þ pleiotropic
modulator

CC-122 Nivolumab Phase I Advanced solid tumors, hematologic
malignancies

NCT03834623
Obinutuzumab Phase II NCT02417285
Rituximab NCT03283202
Cyclophosphamide NCT02031419
Vincristine NTC01421524
Prednosone NCT02509039
CC-223 NCT01421524
CC-292
Durvalumab
Ibrutinib
CC-220

PI3K/mTOR/DNA-PK LY3023414 Prexasertib Phase I Advanced solid tumors, lymphomas NCT04032080
Samotolisib Phase II NCT03213678
Midazolam NCT01655225
Fulvestrant NCT02057133
Pemetrexed NCT03155620
Cisplatin
Abemaciclib
Letrozole

DNA-PK and mTOR
(mTORC1/2)

CC-115 Monotherapy Phase I Prostate cancer (CRPC) NCT02833883
Enzalutamide Phase II NCT01353625

NTC02977780
DNA-PK VX-984 Doxorubicin Phase I Advanced solid cancers NCT02644278
DNA-PK M3814 Mitoxantron Phase I Solid tumors and acutemyeloid leukemia NCT03983824

Etoposide NCT04172532
Cytarabine NCT04071236
Radiation NCT04092270
Doxorubicin NCT04750954
Temozolomide NCT04555577
Capecitabine NCT03770689

NCT04533750
NCT02516813
NCT04702698

DNA-PK M3814 Avalumab � radiation �
radium-223

Phase I` Advanced solid tumors,
hematologic malignancies

NCT03724890
NCT04071236
NCT04068194

DNA-PK AZD7648 Monotherapy Phase I Advanced solid cancers NCT03907969
Doxorubicin
laparib

DNA-PK and PARP
binding

Dbait/
AsiDNA

Monotherapy Phase I Advanced solid tumors, melanoma NCT03579628
Radiation
Carboplatin
Paxitaxel
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Broad specificity inhibitors targeting DNA-PKcs
Multiple nonspecific DNA-PKcs inhibitors have reached clinical

trials including pleotropic modulator CC-122, PI3K/mTOR/DNA-PK
inhibitor LY3023414, and mTOR/DNA-PK inhibitor CC-115.
Although these inhibitors do not exclusively target DNA-PKcs, each
suppresses kinases of cancer relevance. Importantly, phase I studies
showed that oral CC-122 and CC-115 are well tolerated with no
unexpected toxicities and adverse effects (161, 162). Use of CC-122
in advancedmalignancies including brain cancer showed encouraging
results wherein five of six patients with brain tumors did not show
progression while on treatment with the drug (>6 months; ref. 161).
Similarly, preliminary data from the combination of CC-115 with
enzalutamide (NCT02833883; ref. 9) are under investigation in men
with castration-resistant prostate cancer (CRPC), and reported data
that all patients had at least a 50% PSA decline, with 60% of patients
achieving a ≥90% PSA decline (163). CC-115 is also being interrogated
in a phase II trial for innovative glioblastoma therapy (NTC02977780).
These promising studies provide early indication that targeting
DNA-PKcs may be effective in eliciting antitumor effect.

Specific DNA-PKcs inhibitors
Although specific inhibitors such as NU7441 have not been proven

clinically actionable, newly developed DNA-PKcs inhibitors with
increased specificity (e.g., VX-984, M3814, AZD7648, and AsiDNA)
have emerged and have entered clinical testing. VX-984 sensitizes
glioblastoma cells to IR in vivo, and data suggest it may cross the
blood–brain barrier, which may prove useful in treatment of brain
cancers (164). VX-984 is currently being studied in a phase I trial in
combination with pegylated liposomal doxorubicin (PLD;
NCT02644278). Similarly, M3814 has been shown to sensitize cells
to IR and other DNA-damaging agents (165) and is currently being
tested in combination with multiple therapeutic agents including
etoposide, radiation, and doxorubicin. Furthermore, recent studies
have shown that targeting DNA-PKcs using NU7441 and M3814
enhanced antitumorigenic effects of immunotherapy interventions in
preclinical studies (166) and the combination ofM3814 with anti–PD-
L1 antibody is being tested in clinical trials (NCT03724890). Another
specific inhibitor, AZD7648 was shown to sensitize cells to IR,
doxorubicin, and PARP-1 inhibitor olaparib (6) and is currently being
evaluated as a monotherapy and in combination with PLDs and
olaparib in patients with advanced cancers (NCT03907969). More-
over, combination of IR and pharmacologic derivative of Dbait
(AsiDNA), a molecule that mimics DNA DSBs and is designed to
bind DNA-PK and PARP-1 (167, 168), is being studied in clinical
trials. AsiDNA is currently being investigated as amonotherapy and in
combination with carboplatin and paxitaxel in advanced solid tumors
(NCT03579628) and will soon enter the ROVOCAN trial to evaluate
AsiDNA in ovarian cancer patients with acquired resistance to the
PARP inhibitor niraparib. Together, these data showpromise for use of
DNA-PKcs–targeted therapy to treat advanced malignancies.

Summary and Future Considerations
As high DNA-PKcs expression/activity is associated with tumor

phenotypes and poor prognosis, it is imperative to deepen the

understanding of DNA-PKcs modes of activation and regulation
driving its protumorigenic functions, to explore the role of DNA-
PKcs beyond DNA repair, uncover novel DNA-PKcs substrates, and
refine DNA-PKcs targeting to achieve maximum anticancer effects
while minimizing toxicity. The findings reviewed herein highlight
the importance of DNA-PKcs function in tumor biology and raise
important questions that will shed light into mechanisms of DNA-
PKcs–mediated tumor behavior and assist in development of
improved clinically actionable DNA-PKcs–targeting therapeutics
for human malignancies.

First, what is the relative contribution of established DNA-PK
functions to cancer development and progression, including but not
limited to DNA repair activity? For example, given the link between
DNA-PKcs and metabolic regulation, it will be critical to investigate
the role of this process in DNA-PKcs–associated poor outcomes.
Relatedly, what is the mechanism(s) by which DNA-PKcs inhibitors
exert antitumor phenotypes? Although targeting DNA-PKcs sensi-
tizes cancer cells to radiation and chemotherapy, new mechanisms
have been suggested to regulate these processes distinct from
NHEJ (140, 169–172). Thus, much remains to be uncovered, and
unveiling new functions of DNA-PKcs may help identify novel
mechanisms of action that lead to protumorigenic effects, and
conversely, antitumor effects of DNA-PKcs inhibitors.

Third, how does DNA-PKcs function evolve with disease
progression? Determining how DNA-PKcs function and substrate
specificity may change with disease progression will be a critical
avenue of investigation to determine the disease stage where DNA-
PKcs inhibitors may be most effective. In addition, discerning which
DNA-PK substrates support its protumorigenic functions of the
protein kinase will be equally impactful. Fourth, as DNA-PKcs
inhibitors are being evaluated in clinical trials, is there a subset of
patients who may benefit the most from DNA-PKcs inhibition?
Considering the plethora of roles DNA-PKcs plays in cancer, data
suggest that treatment of patients with high DNA-PKcs–expressing
tumors with DNA-PKcs inhibitors would produce favorable anti-
cancer effects. In addition, tumors with high genome instability or
defects in DNA repair pathways may also benefit from use of
DNA-PKcs inhibitors by leveraging the concept of synthetic
lethality (6, 173).

In conclusion, continuing to discern the molecular mechanisms
underlying DNA-PKcs–dependent tumor-associated phenotypes is
warranted and has high potential to further enhance the impact of
targeting DNA-PKcs in advance cancers.
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