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Abstract
Chemical communication plays many key roles in mammalian reproduction, although attention has focused particularly on male
scent signalling. Here, we review evidence that female chemical signals also play important roles in sexual attraction, in mediating
reproductive competition and cooperation between females, and in maternal care, all central to female reproductive success.
Female odours function not only to advertise sexual receptivity and location, they can also have important physiological priming
effects on male development and sperm production. However, the extent to which female scents are used to assess the quality of
females as potential mates has received little attention. Female investment in scent signalling is strongly influenced by the social
structure and breeding system of the species. Although investment is typically male-biased, high competition between females can
lead to a reversed pattern of female- biased investment. As among males, scent marking and counter-marking are often used to
advertise territory defence and high social rank. Female odours have been implicated in the reproductive suppression of young or
subordinate females across a range of social systems, with females of lower competitive ability potentially benefiting by delaying
reproduction until conditions are more favourable. Further, the ability to recognise individuals, group members and kin through
scent underpins group cohesion and cooperation in many social species, as well as playing an important role in mother-offspring
recognition. However, despite the diversity of female scent signals, chemical communication in female mammals remains rela-
tively understudied and poorly understood. We highlight several key areas of future research that are worthy of further
investigation.
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Introduction

A defining feature of all mammalian taxa is high female in-
vestment in reproduction through the process of lactation
(Wade and Schneider 1992). Gestation, which occurs in all
species except monotremes, further increases female invest-
ment, as does parental care, which is provided solely by fe-
males in around 90%ofmammalian species (Royle et al. 2014;
Wade and Schneider 1992;West and Capellini 2016). The high
costs of gestation and lactation mean that female reproduction
is often constrained by food availability (Gittleman and
Thompson 1988; Wade and Schneider 1992; West and

Capellini 2016), resulting in female competition for access to
food sources as well as other limiting resources such as space
or shelter (Clutton-Brock 2009; Stockley and Bro-Jorgensen
2011). In addition to securing enough resources to successfully
raise their offspring, females also need to ensure they mate
with high quality males (Andersson 1994). This can benefit
females through access to male resources, such as parental
care or territory, and / or by gaining genetic benefits for
their offspring (Andersson 1994; Clutton-Brock 2016;
Kokko et al. 2003; Møller and Thornhill 1998). The im-
portance of male quality to female reproduction has led to a
focus on male signals used to attract females or to mediate
competition between rival males (Clutton-Brock and
McAuliffe 2009; Maynard Smith and Harper 2003; Wong
and Candolin 2005). However, there is growing under-
standing that females also use signals for sexual attraction,
to mediate female competition and cooperation, and to fa-
cilitate maternal behaviours (Clutton-Brock and Huchard
2013; Nowak et al. 2000; Stockley and Bro-Jorgensen
2011; Stockley et al. 2013).
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Female chemical signals provide information on species,
sex and individual identity, as well as current reproductive
state, social status and health (Blaustein 1981; Brown and
Macdonald 1985; Thiessen and Rice 1976). Such signals can
function to attract males, advertise territory ownership or social
rank, and to facilitate mate, group and offspring recognition
(Heymann 2006; Nowak et al. 2000; Stockley et al. 2013).
However, few female chemical signals have been identified
as yet (Table 1), perhaps because of the focus on male signal-
ling (see Liberles 2014 for a review of mammalian chemical
signalling). In some species, females may produce more
specialised signals known as pheromones. These are chemical
signals used to communicate between members of the same
species that trigger a specific behavioural response or physio-
logical process (Karlson and Luscher 1959; Wyatt 2010).
Female pheromones are recognised to induce sexual behav-
iours in males (Briand et al. 2004a) or to facilitating suckling
behaviour in offspring (Schaal et al. 2003). Female mammals
also use scents in a competitive context (Stockley et al. 2013),
displaying similar strategies in the deployment of scent to those
previously described in males (Gosling and Roberts 2001;
Hurst and Beynon 2004). A common form of female compet-
itive signalling is through scent marking (specialized motor
patterns used to deposit chemical secretions on environmental
objects or conspecifics (Ralls 1971)), which females use to
advertise territory ownership and dominance rank (Stockley
et al. 2013). Female scent marks can also advertise the current
or approaching receptivity of the owner, or a female’s quality
to potential mates (Blaustein 1981; Johnson 1973; Stockley et
al. 2013). Once deposited, scent marks can be used by other
animals to gain information about specific individuals, social
groups or the areas they occupy, influencing future interactions
and decisions (Brown and Macdonald 1985; Halpin 1986).

Most studies investigating chemical communication in
mammals have focused on male signalling (Apps 2013;
Gosling and Roberts 2001; Hurst 2009; Johnson 1973), prob-
ably due to male-biased sexual dimorphism in both scent
marking behaviour and glandular morphology found in many
species (Blaustein 1981). However, female chemical signals
are also important in mammalian reproduction, and in some
species female investment equals or even exceeds that of
males (Ferkin 1999; Heymann 1998; Sliwa and Richardson
1998). Male-biased dimorphism is often reduced in monoga-
mous species while female-biased dimorphism occurs in spe-
cies with high levels of female competition (Heymann 2006;
Kleiman 1977). The investment in chemical signalling and
deployment of scents by females is strongly influenced by
the social structure and breeding system of the species, as well
as the current physical and social environment of the signal-
ling individuals. Here, we review current literature on chem-
ical signals in female reproduction, with an emphasis on their
role in sexual attraction, intrasexual competition and cooper-
ation, and maternal behaviours.

Sexual Attraction

Olfaction plays several key roles in mediating sexual and mat-
ing behaviours in mammals. As well as helping animals to
locate and ensure appropriate recognition of opposite sex con-
specifics, scents are also used as indicators of mate quality and
for individual mate assessment (Johansson and Jones 2007).
Further, chemical signals can be used to coordinate mamma-
lian reproduction by altering the behaviour and physiology of
both sexes (reviewed in Petrulis 2013). While the majority of
studies have focused on males signalling to females (see
Apps 2013; Burger 2005; Gosling and Roberts 2001;
Roberts et al. 2014 for reviews), there is growing evi-
dence that chemical cues are also produced by females to
attract and stimulate males.

Reproductive Advertisement Awidely studied function of fe-
male chemical signalling is to advertise sexual receptivity and
fertility. Female scent marking often occurs at an increased
frequency or exclusively during periods of sexual receptivity
(rat: Birke 1978; meadow vole: Ferkin et al. 2004; coyote:
Gese and Ruff 1997; domestic rabbit: Gonzalez-Mariscal et
al. 1990; Hudson and Vodermayer 1992; general review:
Johnson 1973; ringtailed lemur: Kappeler 1998; Canidae:
Kleiman 1966; giant panda: Nie et al. 2012; klipspringer:
Roberts and Dunbar 2000). Increased marking during these
periods probably functions to attract mates, and females typ-
ically increase scent marking rates in the presence of male
odours (meadow vole: Ferkin et al. 2004; tree shew: Holst
and Eichmann 1998; domestic rabbit: Hudson and
Vodermayer 1992; golden hamster: Johnston 1977).
Advertisement of receptivity may be particularly important
in solitary animals that need to attract mates from a distance
and encounter conspecifics less frequently than more gregar-
ious species (Waser and Jones 1983). In several solitary spe-
cies, female marking rates peak just prior to oestrus, which
may advertise their approaching receptivity and ensure a male
is present during oestrus (golden hamster: Johnston 1977; ti-
ger: Smith et al. 1989). Sexual advertisement can also be im-
portant in social or pair living species, where females deposit
marks at territory edges to attract neighbouring males (aard-
wolf: Sliwa and Richardson 1998; yellow mongoose:
Wenhold and Rasa 1994). Females may signal receptivity to
increase competition between males, thereby increasing the
likelihood of mating with males of high quality (Fischer and
Brown 1993; Rasmussen et al. 1997). Males may gain a range
of different information about a female’s reproductive
state from various scent sources, e.g. saliva, urine, body
glands and genital secretions, which combined may pro-
vide precise information about a female’s reproductive state
(Lai et al. 1996).

The ability to distinguish between odours produced at dif-
ferent points in the female reproductive cycle is shared by
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many species, including domestic dog (Beach and Gilmore
1949), golden hamster (Huck et al. 1989), domestic sheep
(Blissitt et al. 1990), cotton top tamarin (Ziegler et al. 1993),
meadow vole (Ferkin and Johnston 1995), giant panda
(Swaisgood et al. 2002) and ring-tailed lemur (Drea and
Scordato 2008), with males often more attracted to female
scents during periods of receptivity (e.g. domestic dog
(Beach and Gilmore 1949), rat (Lydell and Doty 1972), gold-
en hamster (Huck et al. 1989), giant panda (Swaisgood et al.
2002), meadow vole (Ferkin et al. 2004), cow (Sankar and
Archunan 2004)). In strepsirrhine primates the volatile com-
ponents of genital secretions vary between the breeding and
non-breeding seasons (delBarco-Trillo et al. 2012; Drea and
Scordato 2008; Greene and Drea 2014; Hayes et al. 2004;
Morelli et al. 2013). Similar distinctions have been found in
other species for urine (Barman et al. 2013; Vogt et al. 2016),
faeces (Kimura 2001) and genital secretions (Harris et al.
2014). However, much of this work has been largely qualita-
tive, with few studies identifying the compounds involved in
discrimination or quantifying the level of change. Studies in
several species have identified scent components that may be
used to advertise female receptivity (mouse: Achiraman and
Archunan 2006; Stopka et al. 2007; cow: Archunan and
Kumar 2012; blackbuck: Archunan and Rajagopal 2013; ele-
phant: Rasmussen et al. 1997). For example, in female Asian
elephants (Elephas maximus) the urinary compound (Z)-7-
dodencen-1-yl acetate elicits male flehmen responses, erections
and premating behaviour (Rasmussen et al. 1996; Rasmussen
et al. 1997). The concentration of (Z)-7-dodencen-1-yl acetate
peaks just prior to oestrus, suggesting it functions to advertise
the approach of female receptivity (Rasmussen 2001). Female
receptivity may also be signalled by a combination of com-
pounds. Studies in rats and bovine species found mixtures of
compounds that change with female receptivity, with com-
pound mixtures producing the strongest behavioural responses
from males (Nielsen et al. 2011; Rajanarayanan and Archunan
2011; Sankar and Archunan 2008). A limitation, though, is that
many of these studies focus on domesticated or laboratory an-
imals and similar experiments on wild species are needed.
While many of these compounds stimulate attraction and sex-
ual behaviours in males (Achiraman and Archunan 2006;
Achiraman et al. 2010; Archunan and Kumar 2012;
Nielsen et al. 2011; Rajanarayanan and Archunan 2011;
Rasmussen et al. 1997; Sankar and Archunan 2008), further
tests are required to confirm their role in signalling female
receptivity, including tests of response when female odours
are specifically manipulated.

A particularly well studied example of female sexual ad-
vertisement concerns aphrodisin, a protein sex pheromone
produced in the vaginal secretions of female golden hamsters
(Mesocricetus auratus) that stimulates copulatory behaviour
in males (Briand et al. 2004a; Singer andMacrides 1990). The
expression of aphrodisin varies across the female reproductive

cycle, reaching a maximum at oestrus (Briand et al. 2004a).
Aphrodisin is an odorant binding protein that binds small hy-
drophobic molecules in vaginal secretions within its central
cavity (Briand et al. 2000). The purified high molecular
weight fraction of vaginal fluid containing aphrodisin stimu-
lates mounting behaviour in male hamsters when detected
through the vomeronasal system, even when painted onto
anaesthetised males (Singer et al. 1986). This pheromonal
effect may be due to low molecular weight ligands carried
by aphrodisin, or to the complex of both protein and ligand,
as recombinant aphrodisin alone was not effective in stimulat-
ing a copulatory response (Briand et al. 2004b).

Changes in female scent and scent marking behaviours are
related to fluctuations in ovarian hormones across the female
reproductive cycle (Takahashi 1990). Ovariectomy reduces or
eliminates scent marking (golden hamster: Albers and
Rowland 1989; domestic rabbit: Hudson and Vodermayer
1992; mouse: Kimura and Hagiwara 1985; Mongolian gerbil:
Wallace et al. 1973), causes scent glands to regress (grasshop-
per mouse: Pinter 1985; Mongolian gerbil: Wallace et al.
1973) and reduces male attraction to female odours (meadow
vole: Ferkin et al. 1991; domestic dog: Lisberg and Snowdon
2009). However, scent marking and glandular morphology
can be restored through hormonal injections of estradiol (gold-
en hamster: Albers and Rowland 1989; gray short-tailed opos-
sum: Fadem 1990; mouse: Kimura and Hagiwara 1985) or
estradiol and progesterone (rat: Birke 1984; Mongolian gerbil:
Owen and Thiessen 1974). Hormone levels can also alter the
chemical composition of female odours or the relative abun-
dance of volatile chemicals in female scents (pine vole: Boyer
et al. 1989; ringtailed lemur: Crawford et al. 2011; grey wolf:
Raymer et al. 1986).

The best studied example of the hormonal control of female
scent marking is vaginal marking in golden hamsters
(reviewed in Been and Petrulis 2008). Vaginal marking peaks
just prior to receptivity, but disappears during oestrus
(Johnston 1977). This rise in vaginal marking is mediated by
high levels of estradiol prior to receptivity (Lisk and
Nachtigall 1988). The decline in marking during oestrus is
probably due to falling levels of estradiol coupled with rising
progesterone (Lisk and Nachtigall 1988). Implantations of
estradiol and progesterone within the brain provided further
evidence for the hormonal dependency of vaginal marking
behaviour (Takahashi et al. 1985; Takahashi and Lisk 1985).
However, vaginal marking rates also increase in the
presence of male odours (Johnston 1977) and normal
marking behaviour depends on an intact olfactory sys-
tem (Johnston 1992; Petrulis et al. 1999), showing that vaginal
marking is regulated by external chemosensory cues as well as
internal hormonal cycles.

Have females evolved specific signals to inform males of
their receptivity, or have males learned to detect changes in
female cues that occur as a by-product of hormonally driven
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physiological changes? Although experimentally differentiat-
ing between signals and cues can be difficult, their evolution-
ary implications can be very different (Otte 1974). Signalling
implies intentional information transfer which benefits the
signaller, for example if females signal receptivity to attract
a mate in solitary species or to gain benefits from mating with
multiple males (Reynolds 1996; Steiger et al. 2010). However,
when males detect changes in female cues that females are not
actually signalling, this can have neutral or even detrimental
effects on females (Otte 1974).

While advertisement of female receptivity has been widely
investigated, the extent to which females signal outside of
mating has received much less attention. Scent marking rates
in female golden hamsters, a solitary species, are lowest dur-
ing pregnancy and early lactation (Johnston 1979) and males
are less attracted to odours from pregnant females (Johnston
1980). Reduced sexual advertisement during these periods
could prevent males approaching pregnant or lactating fe-
males, reducing the risk of infanticide to their pups.
Alternatively, the high energetic costs of gestation and lacta-
tion may limit female scent marking during this period
(Clutton-Brock et al. 1989; Gubernick and Klopfer 1981;
Wade and Schneider 1992). Male meadow voles (Microtus
pennsylvanicus) are significantly less attracted to female
odours immediately prior to parturition, although pre-
parturition odours are still more attractive than male odours
(Ferkin and Johnston 1995). Pregnant and lactating females
are highly aggressive in many species (Svare 1981), so this
decrease in male attraction may be due to females emitting a
“stay away” signal. By advertising an increase in aggressive-
ness, females may prevent conspecifics from approaching
them and their pups. Unfamiliar males and females pose a risk
to newborn young in many species (Ebensperger 1998), so
female “stay away” odours should result in avoidance by both
sexes. However, the response of female voles to pre-
parturition odours was not tested. By contrast, the odours of
female voles in post-partum oestrus, a period of receptivity
that occurs soon after parturition, are highly attractive to males
(Ferkin and Johnston 1995). Females may advertise receptiv-
ity rather than aggression during postpartum oestrus, as the
necessity to attract a mate may outweigh the desire to prevent
conspecifics approaching vulnerable pups during this period.
Alternatively, the attractiveness of female receptivity cues
may cause males to ignore female signals of aggression.

Instead of advertising receptivity, some female mammals
may try to conceal their reproductive state. In several socially
monogamous species, where a single breeding male and sin-
gle breeding female share a common range or territory and
associate with each other for more than one breeding season
(Lukas and Clutton-Brock 2013), female scent marking rates
do not change across the reproductive cycle (pygmy marmo-
set: Converse et al. 1995; prairie vole: Wolff et al. 2002).
Attracting males during periods of receptivity may be less

important in monogamous species and concealed ovulation
has been linked to the evolution of monogamy in primates
(Alexander and Noonan 1979 but see Dixson 2012).
However, lack of advertisement is not the same as conceal-
ment and socially monogamous males can still discriminate
reproductive state from female odours (pygmy marmoset:
Converse et al. 1995; cotton-top tamarin: Ziegler et al.
1993). Socially monogamous females can engage in extra-
pair copulations so, may still benefit from advertising recep-
tivity to neighbouring males (Birkhead and Moller 1992;
Clutton-Brock and Isvaran 2006). Further, given the extent
to which hormone levels can influence chemical secretions
(see references above), and the sensitivity of vomeronasal
receptors to sulphated derivatives of all major classes of ste-
roid hormones excreted in urine (Nodari et al. 2008), it seems
unlikely that females could ever completely conceal their re-
productive state.

Effects of Female Chemosignals onMale PhysiologyWhile the
priming effects of male chemosignals on female reproductive
physiology have been well studied (Koyama 2004; Koyama
2016), potential effects of female chemosignals on males have
received less attention (Petrulis 2013). Male laboratory mice
housed with an unrelated adult female reach sexual maturity
faster than when housed alone or with an unrelated adult male
(Vandenbergh 1971), while exposure to female scents can
increase testis and seminal vesicle weights in juvenile male
rodents (Babb and Terman 1982; Purvis and Haynes 1972;
Terman 1984; Wayne and Rissman 1990). Puberty accelera-
tion in males following exposure to adult females may help
coordinate reproduction between the sexes. Further,
males may increase their reproductive success by
reaching puberty earlier when sexually mature females are
available, particularly in short-lived rodents where male mor-
tality is high (Berry and Bronson 1992; Promislow and
Harvey 1990; Triggs 1991).

Exposure to an unfamiliar female or her odours causes an
increase in plasma testosterone in male mice (Macrides et al.
1975), rats (Bonilla-Jaime et al. 2006), hamsters (Macrides et
al. 1974), marmosets (Ziegler et al. 2005), macaques (Cerda-
Molina et al. 2006) and humans (Miller and Maner 2010; but
see Roney and Simmons 2012). This increase in testosterone
occurs 30-60 minutes after initial exposure (Cerda-Molina et
al. 2006; Richardson et al. 2004; Ziegler et al. 2005) and is
often preceded by an increase in circulating luteinizing hor-
mone (Cerda-Molina et al. 2006; Richardson et al. 2004).
Although the adaptive functions of these hormonal changes
are currently unknown, high testosterone levels are linked to
many male-specific traits, as well as male mating success,
aggression and dominance rank (Beehner et al. 2006; Mills
et al. 2009; Muller 2017; Setchell et al. 2008; Wickings and
Dixson 1992). Many male chemosignals are androgen depen-
dent (mice: Achiraman and Archunan 2005; Harvey et al.
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1989; Novotny et al. 1985; goat: Iwata et al. 2000; domestic
pig: Loebel et al. 2001; rat: Ponmanickam et al. 2010), so
increased levels of male hormones may increase production
of male chemical signals that are attractive to females (Roberts
et al. 2010; Zhang et al. 2008). However, hormonal increases
in male laboratory mice were not dependent upon female re-
productive state (Maruniak and Bronson 1976). The compo-
nents of female scents that elicit surges in male hormones are
yet to be identified, but in mice low molecular weight mole-
cules bound by major urinary proteins (MUPs) may be re-
sponsible (Singer et al. 1988).

Testosterone is essential for spermatogenesis (Smith and
Walker 2014; Walker 2011), so the elevation in testosterone
in response to female chemical signals may function to in-
crease sperm production. In agreement with this, increased
sperm production in response to female chemical signals has
been reported in laboratory rodents (Koyama and Kamimura
2000; Taylor et al. 1987). Dominant male laboratory mice, but
not subordinates, show increased sperm density when housed
with female bedding (Koyama and Kamimura 2000) and
odour from group housed females produces a greater
increase than odours from isolated females (Koyama 2004).
However, a study in wild house mice (Mus musculus) found
that although males showed plasticity in sperm produc-
tion, this was caused by competitive cues from other males,
rather than by female cues relating to mating opportunities
(Ramm et al. 2015).

Male hormonal responses to females are context depen-
dent, as male rodents quickly habituate to presentation of the
same female, and the greatest elevation of luteinising hormone
and testosterone follows exposure to a novel female (Coquelin
and Bronson 1979; Shulman and Spritzer 2014). Further, hor-
mone surges can be linked to neutral olfactory cues through
learned association with receptive females (Graham and
Desjardins 1980). Social conditions impact endocrine re-
sponse in male common marmosets (Callithrix jacchus):
males housed alone or with a female show elevated testoster-
one following exposure to a novel female odour but males
housed in family groups do not (Ziegler et al. 2005). Male
marmosets contribute to parental care but elevated levels of
testosterone are linked to male aggression (Dixson 1980;
Honess and Marin 2006; Rose et al. 1971). Those in family
groups may inhibit the normal elevation of testosterone to
minimise aggressive behaviours towards vulnerable infants.
However, during control tests, males housed in families or
pairs tended to have slightly higher testosterone levels
than singly housed males, although the difference was
not statistically significant (Ziegler et al. 2005). Alternatively,
elevation of testosterone in response to female scents may
function to increase male mating rates, for example through
increasing spermatogenesis or production of attractive male
chemosignals, which may be less important in socially mo-
nogamous male marmosets housed in a stable family group.

The renewal of sexual behaviour following mating when
males are exposed to a novel female, called the Coolidge
effect, occurs in many male mammals, including rats
(Bermant et al. 1968; Brown 1974; Wilson et al. 1963), voles
(Dewsbury 1973; Gray and Dewsbury 1975), cats (Whalen
1963), sheep (Pepelko and Clegg 1965) and hamsters
(Bradford et al. 1977). Males often show more chemosensory
investigation of novel females, suggesting that chemical cues
may allow males to recognise familiar females (Johnston and
Rasmussen 1984). Consistent with this, disruption of the main
olfactory system abolishes the preference of sexually satiated
male golden hamsters for a novel female (Johnston and
Rasmussen 1984). Recent studies in laboratory rats have
shown that sexually satiated males fail to ejaculate semen, as
no spermatozoa or seminal plugs are found in the female gen-
ital tract following copulation. Further, sexually satiated male
rats impregnate significantly fewer females than do rested
males (Lucio et al. 2014). An alternative function of the
Coolidge effect may be to reduce the probability of fertiliza-
tion by rival males. In laboratory rats, sexually satiated males
dislodge seminal plugs deposited by previous males, reducing
sperm from rival males in the female’s genital tract (Lucio et
al. 2014). Notably, no female rats that had recently mated gave
birth after copulating with another male under the Coolidge
effect (Lucio et al. 2014). The absence of any renewal of
sexual behaviour in socially monogamous rodents on expo-
sure to a novel female (Dewsbury 1971; Pierce et al. 1992)
provides further evidence that the Coolidge effect may func-
tion to mediate post-copulatory competition between males in
promiscuous species.Mating with multiple males can increase
female reproductive fitness (Jennions and Petrie 2000), so
females may not necessarily benefit from mating under the
Coolidge effect.

Female Signals of Quality While females often prefer males
that deposit the greatest number of scent marks, and high rates
of scent marking among males have been linked to their qual-
ity and competitive ability (Gosling and Roberts 2001; Rich
and Hurst 1999), the extent to which female chemosignals are
used by males to select a mate of high quality has received
little attention. Further, the influence of female scent marking
rate on male mate choice remains largely unknown. Females
of several species, including bush dogs (Porton 1983), cotton
top tamarins (French and Cleveland 1984) and moustached
tamarins (Heymann 1998), display more frequent and diverse
marking behaviour than males, and males typically spend
more time investigating female scents (Heymann 1998).
Female-biased marking in these species is probably due to
high levels of male parental care, leading to increased female
competition and male mate choice. Among callitrichid pri-
mates, scent marking rates are female-biased in species with
male-biased parental care, but male-biased when parental care
is equal or greater in females (Heymann 2006). The increased
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cost of marking to females may be offset by the assistance in
offspring care from males.

Female preference between male scents can depend upon
male status (Kruczek 1997; Mossman and Drickamer 1996;
Zhang et al. 2001), health (Kavaliers and Colwell 1995; Willis
and Poulin 2000) and genetic quality of the scent owner
(Ilmonen et al. 2009; Thom et al. 2008). Few studies have
investigated whether similar factors influence male prefer-
ences between female scents. Male ring-tailed lemurs
(Lemur catta) are more attracted to scents from dominant fe-
males, but only if scents are from familiar females (Scordato
and Drea 2007). The few studies that have investigated female
quality signalling and male preference have focused on spe-
cies in which females are dominant. Studies in species cover-
ing a range of other social systems are also needed.

Whether female chemical signals produce honest signals of
quality has rarely been investigated, probably because female
signalling is expected to be limited by the high costs of off-
spring production (Chenoweth et al. 2006; Fitzpatrick et al.
1995; Nordeide et al. 2013). Ferkin et al. (1997) found that
male meadow voles were more attracted to odours from fe-
males fed on a high, compared to a low, protein diet. Female
meadow voles occupy exclusive territories in areas where
food patches often differ in quality (Bowers et al. 1996;
Madison and McShea 1987). A protein-rich diet may provide
a good indicator of a female’s ability to hold a high quality
territory successfully, so may be a true indicator of female
quality or ability to invest in offspring. In ring-tailed lemurs,
individual heterozygosity correlates negatively with diversity
of fatty acids and positively with the diversity of heavy fatty
acid esters (Boulet et al. 2010). The authors argue that this
may be an example of honest olfactory signalling as genetic
heterozygosity correlates with health and survivorship in this
captive population (Charpentier et al. 2008). However, subse-
quent behavioural tests revealed that males tended to spend
more time near scent from less heterozygous females not less
time, although this difference was not statistically significant
(Charpentier et al. 2010). Chemical diversity correlates posi-
tively with genetic heterozygosity in female Antarctic fur seals
(Arctocephalus gazella) (Stoffel et al. 2015). As heterozygos-
ity increases early survivorship and breeding success in fe-
male fur seals (Stoffel et al. 2015), greater chemical diversity
could be an indicator of female quality. However, behavioural
tests are needed to test whether males prefer more heterozy-
gous females and their scents.

Intrasexual Competition and Cooperation

Scent signals can play an integral role in mediating both com-
petitive and cooperative interactions between females
(Stockley et al. 2013). The high cost of lactation and gestation
means that females frequently compete for access to resources

(Stockley and Bro-Jorgensen 2011), using scent marks to sig-
nal ownership of particular resources or areas containing re-
sources (Kruuk 1992; Miller et al. 2003; Ralls 1971). In group
living species odours can be used to signal social rank
(Heymann 2006; Ralls 1971), with high ranking females often
benefiting from priority access to resources and high quality
mates (Côté and Festa-Bianchet 2001; Pusey et al. 1997; van
Noordwijk and van Schaik 1999). Females often counter-
mark the scents of other females, by depositing scent marks
on top of or adjacent to the original mark (Ewer 1968), to
signal competitive ability (Gosling 1982; Rich and Hurst
1999). Odours also allow recognition of group members or
cooperative partners, which may be particularly important in
species that rear their young together, providing benefits
through group defence as well as cooperative hunting, nesting
and / or nursing (Gittleman 1989; Jennions and Macdonald
1994; Packer et al. 1990). Chemical signals have been linked
to reproductive suppression in cooperatively breeding species,
where reproduction ismonopolised by the dominant pair with-
in a group and subordinate females assist with offspring care
(Clutton-Brock et al. 2001; Creel et al. 1997; Faulkes and
Bennett 2001; French 1997). As discussed below, levels of
female cooperation or competition depend on the degree of
reproductive synchronisation, the social structure and mating
system of the species, the relative ages of the competing fe-
males and current environmental conditions.

Territorial Marking Female reproductive success is often
constrained by the availability of resources such as food, water
or shelter (Clutton-Brock 2009; Stockley and Bro-Jorgensen
2011). To maintain access to limiting resources, females often
establish territories that they defend either alone or as part of a
group (Ostfeld 1985; Stockley and Bro-Jorgensen 2011).
Scent marking is used to advertise territory ownership inmany
species (e.g. common vole: Dobly 2005; general review:
Gosling 1982; spotted hyena: Henschel and Skinner 1991;
bandedmongoose:Müller andManser 2008; European rabbit:
Mykytowycz 1965; aardwolf: Richardson 1991; klipspringer:
Roberts and Dunbar 2000; Eurasian beaver: Rosell et al. 1998;
Ethiopian wolf: Sillero-Zubiri and Macdonald 1998; tiger:
Smith et al. 1989). The presence of foreign scent marks in-
duces investigation from the territory owner (Palagi et al.
2005; Sliwa and Richardson 1998) followed by an increased
rate of scent marking, particularly when intruders are the same
sex (Dobly 2005; Hurst 1990; Johnston 1977; Sliwa and
Richardson 1998). Territorial marking may be an honest form
of signalling as only successful territory holders will have the
most abundant and / or overall freshest scent marks, providing
a continuous record of ownership (Gosling and Roberts 2001;
Rich and Hurst 1998).

Territorial marking can also influence the spacing behav-
iour of mammals. In honey badgers (Mellivora capensis) to-
ken urination is performed almost exclusively by females and
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patterns of marking do not vary across seasons, suggesting it
may function to maintain spatiotemporal separation between
females (Begg et al. 2003). Scents may also effect spacing
behaviour in golden hamsters as female hamsters avoid areas
marked by other females (Fischer and McQuiston 1991). As
resident animals are more likely to defend their home territory,
the avoidance of areas scent marked by conspecifics may re-
duce costly aggressive encounters between females (Roberts
2012). Further, female golden hamsters are more likely to
attack an intruder when their own odour is present in the local
environment and the presence of a previously subordinate
female’s scent can cause a reversal in dominance (Fischer
and McQuiston 1991). While territorial marking does not di-
rectly prevent other individuals from entering a territory, it
does allows intruders to make an informed decision about
the relative costs or benefits before entering (Gosling 1982).
Females may use the chemical composition of scent marks to
assess the competitive ability of territory holders. Female
house mice increase investment in MUPs when faced with
competition from neighbouring females (Garratt et al. 2011).
The frequency of aggressive behaviours towards unfamiliar
females is also strongly related to the urinary protein output
of the aggressor, with more aggressive females exhibiting
higher protein investment (Stockley et al. 2013). Under high
densities, female reproductive success is strongly influenced
by the ability to successfully defend a territory (Hurst 1987),
so investment in urinary protein in scent marks may deter
intruding females by serving as an indicator of investment in
territory defence by the resident female.

Territorial animals often differ in their behaviour towards
familiar neighbours compared to unfamiliar animals. Many
mammals can discriminate between odour from neighbouring
individuals and strangers (giant kangaroo rat: Murdock and
Randall 2001; European badger: Palphramand and White
2007; Eurasian beaver: Rosell and Bjørkøyli 2002; aardwolf:
Sliwa and Richardson 1998) and typically spend longer inves-
tigating scents from unknown conspecifics (African lion:
Gilfillan et al. 2017; European rabbit: Monclús et al. 2014;
Colombian ground squirrel: Raynaud and Dobson 2011;
Eurasian beaver: Rosell and Bjørkøyli 2002). When presented
with translocated scent marks from neighbouring conspe-
cifics, aardwolves (Proteles cristata) immediately visit and
scent mark their shared border, suggesting that they are capa-
ble of recognising neighbouring individuals (Sliwa and
Richardson 1998). Territory holders may reduce the energetic
costs of territorial defence by decreasing aggression towards
neighbouring conspecifics, the so called the “dear enemy phe-
nomenon” (Fischer 1954; Temeles 1994; Ydenberg et al.
1988). Female meadow voles display less antagonistic behav-
iour towards females with a familiar scent they have previous-
ly encountered (Ferkin 1988). Additionally, female bank voles
(Myodes glareolus) display higher rates of infanticide towards
the offspring of unfamiliar females under semi-natural

conditions (Ylonen et al. 1997). However, European rabbits
(Oryctolagus cuniculus) exposed to repeated simulation of
intrusions by neighbours increase their rates of counter
marking, suggesting that animals adapt their behaviour
to neighbours depending upon the perceived level of threat
(Monclús et al. 2014).

The “nasty neighbour” hypothesis predicts that, rather than
reducing agonistic behaviour, residents will display increased
levels of aggression towards neighbouring conspecifics
(Müller and Manser 2007). Banded mongoose groups
(Mungos mungo) emit more worry calls and perform more
inspection bouts in response to translocated scent marks from
neighbouring groups compared to the scent marks of strangers
(Müller and Manser 2007). Social animals often disperse
alone or in small groups, so strangers may pose less threat to
a group’s resources than neighbouring groups of similar size
(Cant et al. 2001; Cant et al. 2002). Intolerance of neighbours
may also increase with population density. Female mound
building mice (Mus spicilegus) tend to be more aggressive
towards their immediate neighbours, particularly when preg-
nant (Simeonovska-Nikolova 2012). Although the sex ratio is
equal at the beginning of the breeding season, it becomes
female biased during the late summer (Simeonovska-
Nikolova 2012). The declining nutritional value of food re-
sources coupled with the rising density of females during
summer months increases competition between neighbours
(Simeonovska-Nikolova 2012).

Dominance Signals Scent signals are used to advertise and
maintain social or reproductive dominance across a wide
range of species (Barrette 1977; Ralls 1971). Dominant fe-
males often display higher rates of scent marking
(Callitrichidae: Epple 1972; coyote: Gese and Ruff 1997;
golden hamster: Johnston 1977; meerkat: Jordan 2007;
African wild dog: Jordan et al. 2013) and counter-marking
(banded mongoose: Müller and Manser 2008; ringtailed le-
mur: Palagi et al. 2004), and may have larger and more com-
plex scent glands (golden hamster: Drickamer and
Vandenbergh 1973). In ring-tailed lemurs, high-ranking fe-
males counter-mark the genital marks of other females more
frequently than low-ranking females do (Palagi et al. 2004).
Similarly, dominant female banded mongooses counter-mark
the scents of other females at higher rates than subordinates
(Müller andManser 2008; but see Jordan et al. 2011). Rates of
counter-marking by female mongooses increase during
oestrus, suggesting that counter-marking may be involved in
female competition for males during the breeding season.
Further, in Eulemur, the group of Lemuridae known as brown
lemurs, the chemical complexity of genital secretions is male-
biased in subspecies that lack rank relations between the sexes
(co-dominated social structure) but female-biased in female
dominated species (delBarco-Trillo et al. 2012). However, as
the chemical complexity of female secretions does not differ
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between co-dominated and female dominated species
(delBarco-Trillo et al. 2012), this female-biased chemical
complexity is probably due to a reduction in male signal com-
plexity in female dominated species, rather than a greater
complexity in females.

Different patterns of scent marking rates in relation to fe-
male social rank have also been reported. In common marmo-
sets, subordinate females scent mark more frequently than
dominant females during intergroup encounters (Lazaro-
Perea et al. 1999). Similarly, subordinate female yellow mon-
gooses (Cynictis penicillata) deposit more scent marks than
both dominant and juvenile females and concentrate most
scent marking at territory borders (Wenhold and Rasa 1994).
Subordinate females often visit neighbouring territories dur-
ing oestrus and are mated by neighbouring males (Wenhold
and Rasa 1994), suggesting that their marking functions to
advertise their presence to potential mates. Interestingly, a
subsequent study carried out in a different population of yel-
low mongoose found no increased scent marking rates by
subordinate females at territory borders (Le Roux et al.
2008). The difference between these two studies may be due
to a difference in population density. Le Roux et al. (2008)
studied a low-density population where females dispersed into
new territories upon reaching sexual maturity. At the higher
densities studied by Wenhold and Rasa (1994), females may
have been unable to disperse so instead searched for mating
opportunities within neighbouring groups.

Patterns of female scent marking also depend on whether
females compete for reproductive opportunities within their
group or between neighbouring groups. Alpha female golden
lion tamarins (Leontopithecus rosalia) only display higher
rates of scent marking than subordinates during intergroup
encounters (Miller et al. 2003). Subordinate females are often
daughters of the alpha pair, so pose little threat to the dominant
female’s reproduction (Miller et al. 2003). Dispersing females
can only enter a group as the alpha female (Baker and Dietz
1996), therefore alpha females may increase scent marking
rates in the presence of female intruders to advertise their
presence and deter other females from attempting to immi-
grate (Miller et al. 2003).

Reproduct ive Suppress ion and Synchron isa t ion
Synchronisation of oestrus has been reported in a number of
mammalian taxa, particularly among primates and rodents
(French and Stribley 1987; Handelmann et al. 1980;
McClintock 1971; McClintock 1978; Wallis 1985; Weller
and Weller 1993; Weller and Weller 1997). Ovarian synchro-
nisation may reduce monopolization of females by dominant
males, allowing females to pursue copulations with other
mates (Emlen and Oring 1977). Early studies in laboratory
rats suggested this synchronisation was mediated by female
chemical signals (McClintock 1978; McClintock and Adler
1978; McClintock 1984). Similarly, the timing of ovulation

was suggested to be under female pheromonal control in
humans (Preti et al. 1986; Russell et al. 1980; Stern and
McClintock 1998). However, many of these original studies
have been criticized for methodological and statistical errors
(Arden and Dye 1998; Schank 2000; Schank 2001a;
Strassmann 1999;Wilson 1987;Wilson 1992) and subsequent
studies found no evidence for synchronisation (Erb et al.
1993; Fürtbauer et al. 2011; Monfort et al. 1996; Schank
2001b; Setchell et al. 2011; Strassmann 1997; Tobler et al.
2010; Trevathan et al. 1993; Yang and Schank 2006). Given
the variability within and between female ovarian cycles, it is
argued that true synchronisation of oestrus is highly unlikely
because matching will not be achieved across multiple cycles
(Schank 2000). Additionally, many of these studies investigat-
ed oestrus synchrony in captive animals, where breeding is
artificially regulated, or in western human populations, where
women often use contraceptives to control reproduction. Such
studies may not be representative of natural populations where
females spend significantly more time pregnant or lactating
(Strassmann 1997).

As synchronisation of oestrus may lead to high levels of
competition between females and to male mate choice, fe-
males may actually benefit by avoiding ovarian synchronisa-
tion (Emlen and Oring 1977; Schank 2004). Asynchronisation
of oestrus has been reported in several species (golden ham-
ster: Gattermann et al. 2002; chimpanzee: Matsumoto-Oda et
al. 2007; ring-tailed lemur: Pereira 1991) and may function to
reduce female competition for mates (Schank 2004).
Alternatively, females may delay reproduction during periods
of high competition. Oestrus cycles in group housed female
laboratory mice are significantly longer than in mice housed
alone or in small groups of 2-3, known as the Lee Boot effect
(Champlin 1971; Whitten 1959). Replication of the Lee-Boot
effect through exposure to urine from group housed anoestrus
females indicates that this is mediated by olfactory cues
(Drickamer 1974; McIntosh and Drickamer 1977).
Subsequent tests revealed 2,5-dimethylpyrazine, produced
by group-housed non-breeding females, to be the key compo-
nent in lengthening the oestrus cycle (Ma et al. 1998; Novotny
et al. 1986). The magnitude of the Lee-Boot effect correlates
positively with both the density of non-breeding females and
the length of time they are in groups (Coppola and
Vandenbergh 1985). This suggests that it may function to
prevent female reproduction at high population densities when
pup survival is poor among crowded females (Christian and
Lemunyan 1958; Southwick 1955a; Southwick 1955b).
Delaying reproduction during periods of high competition
may increase long term reproductive success in females of
lower competitive ability (Wasser and Barash 1983).

Exposure to 2,5-dimethylpyrazine also causes puberty de-
lay in bothmale and female mice (Jemiolo and Novotny 1993;
Jemiolo and Novotny 1994). Urine from wild mice living at
high density delays puberty in laboratory mice, providing a
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mechanism that can delay reproduction in natural populations
under conditions of increased resource competition (Massey
and Vandenbergh 1980). In support of the suppressive effects
of 2,5-dimethylpyrazine, urine and soiled bedding from group
housed females reduced population growth in mice living in
two large outdoor enclosures due to a combination of fewer
females attaining puberty and at a later age (Drickamer and
Mikesic 1990). As reproductive success is often linked to
body size and condition, young females particularly may ben-
efit from delaying reproduction (McNamara and Houston
1996). Delayed sexual maturation has been reported in other
female rodents (vole species: Batzli et al. 1977; Mongolian
gerbil: Clark and Galef 2002; prairie vole: Getz et al. 1983;
california mouse: Gubernick and Nordby 1992; deermouse:
Haigh 1983; pine vole: Schadler 1990). However, the mech-
anisms of suppression in these species are yet to be deter-
mined, with some evidence for both behavioural (Brant et al.
1998; Gubernick and Nordby 1992) and chemical mecha-
nisms (Batzli et al. 1977; Getz et al. 1983; Schadler 1990).
Further, a study by Wolff et al. (2001) found no evidence that
female meadow voles (M. pennsylvanicus) or prairie voles
(Microtus ochrogaster) suppress reproduction in the presence
of their mother. In some species, puberty delay may not be
inhibited by female signals, but females may require the pres-
ence of an unfamiliar male to stimulate reproduction
(Mongolian gerbil: Clark and Galef 2002; prarie vole:
Hofmann and Getz 1988; McGuire and Getz 1991).
Exposing young female Mongolian gerbils (Meriones
unguiculatus) to an unfamiliar male accelerates development
even in the presence of their reproductively active mother
(Clark and Galef 2002). Stimulation by an unfamiliar male
may reduce the risk of inbreeding among young females.

In many cooperatively breeding species, dominant females
suppress subordinate reproduction (common marmoset:
Abbott et al. 1988; Damaraland mole-rat: Bennett 1994;
African wild dog: Creel et al. 1997; meerkat: O’Riain et al.
2000; general-review: Solomon and French 1997; Ethiopian
wolf: van Kesteren et al. 2013). This benefits dominant fe-
males by reducing competition for resources, as well gaining
assistance from suppressed subordinates in offspring care
(Hodge 2009). Olfactory cues from dominant individuals have
been implicated in the reproductive suppression of subordi-
nate females in callitrichid primates (Barrett et al. 1990; Epple
and Katz 1984; Heistermann et al. 1989; Savage et al. 1988).
However, only odours from familiar, dominant females inhibit
ovulation, suggesting that odours inhibit reproduction by sig-
nalling the presence of the familiar dominant rather than
through a pheromonal cue produced by all dominant females
(Abbott et al. 1997). Further, female common marmosets that
remained in visual, but not in olfactory, contact with their
dominant female were still reproductively suppressed, again
indicating that suppression is not directly caused by a chemi-
cal cue (Barrett et al. 1993). Instead subordinate females may

learn to associate cues from a familiar dominant female with
the behavioural subordination that the female imposes.

If odour signals from dominant females function as a threat,
reproductive suppression in subordinates may be self-imposed
(Johnstone and Cant 1999; Saltzman et al. 2009). This may
allow subordinates to avoid costly aggressive encounters in-
cluding eviction from the group and infanticide (Clutton-
Brock et al. 1998; Kutsukake and Clutton-Brock 2006;
Saltzman et al. 2009; Young et al. 2006). Additionally, subor-
dinate females may increase survival and long-term reproduc-
tive success by remaining on their natal territory until they can
either replace the dominant female or disperse (Clutton-Brock
et al. 1998; Clutton-Brock et al. 1999; Rood 1990). As subor-
dinate females are often the offspring of the dominant pair,
they may also gain indirect fitness benefits from assisting with
raising siblings (Emlen 1995; Griffin andWest 2003). In some
species, self-imposed reproductive suppression may function
to reduce inbreeding (Snowdon 1996). In Damaraland mole
rats (Cryptomys damarensis) females continue to exhibit re-
productive suppression 30 days after being removed from the
dominant female or her cues (Clarke et al. 2001). Exposure to
an unrelated male results in rapid onset of reproductive acti-
vation, even in the presence of the dominant female (Clarke et
al. 2001; Cooney and Bennett 2000). Breeding by subordinate
females following the introduction of an unrelated male has
been reported in other cooperatively breeding species (com-
mon marmosets: Digby 1995; Saltzman et al. 2004; meerkats:
O’Riain et al. 2000). However, subordinates still have signif-
icantly lower reproductive rates than dominant females
(Digby 1995; O’Riain et al. 2000), suggesting that reproduc-
tive suppression may be caused by an interplay between rank-
related breeding and inbreeding avoidance.

Choice of Social Partners Olfactory cues can promote group
cohesion and cooperation in gregarious species. Group living
individuals benefit from reduced predation and increased suc-
cess at locating or maintaining access to resources (Silk 2007).
Group members often scent mark at communal marking sites,
which may facilitate information transfer within the group and
encourage group cohesion (Gittleman and Thompson 1988;
Johnson 1973; Porton 1983; Sillero-Zubiri and Macdonald
1998). In spotted hyenas (Crocuta crocuta) anal gland secre-
tions from high ranking females are preferentially overmarked
by subordinates (Burgener et al. 2009). During overmarking,
individuals “anoint” themselves with scent from the previous
donor, a behaviour that may be involved in advertising con-
tinued clan membership (Burgener et al. 2008). Female mark-
ing rates decline with age, with young adult females
displaying the highest marking rates, indicating a greater need
for younger females to advertise group membership (East et
al. 2013). Advertisement of group membership may be partic-
ularly important in spotted hyenas, which live in fission-
fusion groups, where females may be absent from the clan
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territory for several days on long distant foraging trips (Hofer
and East 1993; Kruuk 1972).

Members of the same group may have a distinctive shared
odour (big brown bat: Bloss et al. 2002; spotted heyenas:
Burgener et al. 2008; European badger: Gorman et al. 1984;
meerkat: Leclaire et al. 2017; Bechstein’s bat: Safi and Kerth
2003). In some species of bats, females can identify roost-
mates by scent (Bloss et al. 2002; Bouchard 2001; De Fanis
and Jones 1995) and will attack foreign females that enter the
colony (Kerth et al. 2002). Additionally, the volatile compo-
nents of odours from different colonies are chemically distinct
in Bechstein bats (Myotis bechsteinii, (Safi and Kerth 2003)
and big brown bats (Eptesicus fuscus, (Bloss et al. 2002). In
both species, females raise their offspring in maternal colonies
which, despite disintegrating over winter, are stable over time
as females return to the same colony each year (Bloss et al.
2002; Kerth et al. 2002; Kerth et al. 2011). Further, within
some colonies females display fission-fusion societies, where
females split into subgroups to occupy different day roosts
(Kerth and Barbara 1999; Kerth et al. 2011), suggesting that
colony specific odours may facilitate long term group stability.
Group specific odours have also been reported in hyenas
(Burgener et al. 2008), meerkats (Leclaire et al. 2017) and
badgers (Gorman et al. 1984) and may be caused by differ-
ences in bacterial communities between groups (Leclaire et al.
2014; Leclaire et al. 2017; Theis et al. 2012; Theis et al. 2013).
The fermentation hypothesis predicts that bacteria within
scent glands metabolize glandular secretions, producing com-
pounds that are used by the host to communicate with conspe-
cifics (Albone and Gronnerberg 1977; Archie and Theis 2011;
Gorman 1976). Members of the same social group harbour
more similar odour-producing bacteria in their scent glands
than members of different social groups (Archie and Theis
2011). Using GC-MS and deep sequencing techniques,
Leclaire et al. (2017) found that the chemical composition of
anal gland secretion and the composition of bacterial commu-
nities within the anal gland varied with group membership in
wild meerkats, Suricata suricatta. These group-specific bac-
terial communities could arise through cross-infection from
allomarking or rapid overmarking within groups (Buesching
et al. 2003; Burgener et al. 2008; Theis et al. 2008).

Choice of social partners may be particularly important in
species that care for offspring communally. Female house
mice often raise their young in a communal nest (Manning
et al. 1995; Wilkinson and Baker 1988), in which dams com-
bine all their offspring and share maternal duties including
nursing (König 1989a). Although prior familiarity between
partners is a major factor influencing the success of communal
nests (König 1993; König 1994), nesting with closely related
females may also be beneficial (König 1994). Odour similar-
ity correlates with genetic similarity (referred to as odour-gene
covariance) across a range of species, providing a mechanism
for assessing genetic relatedness among conspecifics through

scent (Boulet et al. 2009; Todrank and Heth 2003; Tzur et al.
2009). However, the influence of many non-genetic factors on
scents reduces the reliability of assessing degree of relatedness
simply from overall chemical similarity (Hurst and Beynon
2010). While female house mice prefer unfamiliar nestmates
that are related over equivalently unrelated females, their
strongest preference is for nestmates that share the same poly-
morphic pattern of MUPs in their urine, which they can detect
through urine scent (Green et al. 2015). As only females that
are very closely related are likely to express the same inherited
pattern of MUPs, this will be a highly reliable marker of close
relatedness between females. Reliable assessment of close re-
latedness may be particularly important in the context of com-
munal nursing when potential partners for cooperation are not
highly familiar littermate sisters, allowing females to gain in-
direct fitness benefits from lactation investment in offspring
that are not their own.

Maternal Behaviours

In mammals, the cost of reproduction continues after birth as
neonates are entirely dependent upon their mother (Gubernick
and Klopfer 1981). Postnatal investment represents a signifi-
cant cost to females and reduces their opportunity to produce
additional offspring, so there should be strong selection to
ensure that own offspring are the beneficiaries (Clutton-
Brock 1991). Chemical cues can be used for both offspring
recognition and maternal recognition (Nowak et al. 2000) and
odours facilitate suckling behaviour in a number of mammals
(Arteaga et al. 2013; Schaal and Al Aïn 2014). As discussed
below, patterns of parent-offspring interactions depend on
both the developmental status of the neonate and the litter size,
as well as the breeding system of the mother (Clutton-Brock
1991; Nowak et al. 2000).

Mother-Offspring Recognition Discriminative care of off-
spring is common in mammals due to the high cost of lactation
and other maternal behaviours (Clutton-Brock 1991;
Gubernick and Klopfer 1981). Chemical cues are important
in offspring recognition in many mammalian species includ-
ing domestic ungulates (reviewed in Nowak et al. 2000;
Poindron et al. 2007), rodents (Beach and Jaynes 1956;
Ostermeyer and Elwood 1983; Porter et al. 1973), bats
(Fanis and Jones 1996; Gustin and McCracken 1987) and
pinnipeds (Pitcher et al. 2010a). One of the best studied ex-
amples is the domestic sheep, Ovis aries. Ewes can identify
their own young shortly after parturition and prevent alien
young from suckling (Keller et al. 2003; Poindron et al.
1993). Maternal behaviours and offspring recognition are
disrupted following damage to the ewe’s olfactory system
(Baldwin and Shillito 1974; Lévy et al. 1995; Morgan et al.
1975) or by restricting the ewe’s access to their lamb’s
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olfactory cues (Poindron and Neindre 1980; Poindron et al.
2007), indicating that chemical cues are important in identifi-
cation. Offspring identification is based on a lamb’s individual
olfactory signature, which is encoded by the genome (Porter et
al. 1991; Romeyer et al. 1993). Although olfaction is clearly
important in early offspring recognition, ewes can also recog-
nise their lambs through auditory or visual cues (Alexander
1977; Ferreira et al. 2000; Terrazas et al. 1999). The use of
multisensory signals to identify young also occurs in other
species, including Mexican bats (Balcombe 1990; Gustin
and McCracken 1987), laboratory mice (Cohen et al. 2011),
Norway rats (Farrell and Alberts 2002) and Australian sea
lions (Pitcher et al. 2010a; Pitcher et al. 2010b). Visual and
auditory cues may allow recognition at a distance while olfac-
tory cues provide confirmation at close quarters prior to nurs-
ing. However, exactly how such multisensory cues are inte-
grated is unclear and is an important area of future study.

Identification of offspring may be particularly important in
precocial species that breed in large herds or colonies, such
that offspring frommultiple females are present (see examples
above). Here, females need to discriminate own from alien
young to ensure that the benefits of parental care and lactation
are received by own offspring. By contrast, in many altricial
species, offspring are confined to a single den or nest until
weaning (Gubernick and Klopfer 1981). As mothers are un-
likely to encounter unrelated young within their nest, recog-
nition of own young may be less important (Holmes and
Sherman 1982). A recent study in domestic cats (Felis
silvestris catus) found that despite being able to discriminate
between the odours of own and alien young, females retrieved
both equally (Banszegi et al. 2017). Solitary species, such as
cats, may encounter unrelated young so infrequently that there
is little need to discriminate them from own offspring. Further,
the price of mistakenly rejecting own offspring, for example
because they have picked up alien odours from the environ-
ment, may outweigh the cost of accepting unrelated young.

Recognition of young is expected to be particularly impor-
tant for animals that raise their young in a communal nest.
However, in many communally nesting species females nurse
all young in the nest indiscriminately (degus: Ebensperger et
al. 2006; mice: König 1989a; König 1989b; general review:
Packer et al. 1992; evening bat: Watkins and Shump 1981),
although some species may preferentially suckle own young
during early lactation (Watkins and Shump 1981). To investi-
gate the relative investment of communally nesting females, a
study of degus (Octon degus) used a radionuclide to trackmilk
transfer from mother to young in communal nests (Jesseau et
al. 2009). Unrelated pairs of females preferentially nursed
own offspring when sampled at 2 weeks old (though still gave
some milk to their co-nesting partner’s offspring), whereas
sister pairs nursed all young equally; there was no evidence
of discrimination close to weaning at 4 weeks (Jesseau et al.
2009). Female degus can discriminate between body odours

from own pups, sister’s pups and unrelated pups (Jesseau et al.
2008) and may use this discriminatory ability to preferentially
nurse related offspring.

The ability to recognise ownmothers by offspringmay also
be important in mammals as unfamiliar conspecifics often
behave aggressively towards alien young. Although recogni-
tion of mothers has been demonstrated in some species, few
studies have directly investigated the role of olfaction in rec-
ognition (Lickliter and Heron 1984; Poindron et al.
1993; Val-Laillet and Nowak 2008). A study in new-
born lambs concluded that auditory and visual cues are
more important than olfactory signals in maternal recog-
nition (Nowak 1991). However, lambs were prevented from
directly interacting with ewes during the experiment so it is
not known whether odours might still facilitate maternal rec-
ognition in sheep at close contact.

Olfactory cues are also important in mother-offspring recog-
nition in humans.Mothers can identify their own infant through
odour alone (Kaitz et al. 1987; Porter et al. 1983; Schaal et al.
1980). These individually recognisable odours are produced by
the infant rather than being deposited on the infant by the moth-
er (Kaitz et al. 1987; Russell et al. 1983) and extensive postnatal
interactions are not necessary for recognition to occur (Porter et
al. 1983). Similarly, human babies can discriminate between
odours emanating from their mother or an unrelated female
(Cernoch and Porter 1985; Macfarlane 1975; Schaal et al.
1980). This discrimination occurred in breast and not bottle
fed infants, suggesting odour recognition may be a learnt re-
sponse (Cernoch and Porter 1985). Further support for olfactory
learning in infants comes from a study by Schleidt and Genzel
(1990), who showed that infants preferred their mother's per-
fume when lactating mothers perfumed their breasts.

Olfactory-Mediated Suckling Behaviour Evidence from several
mammalian species shows that females release highly specific
chemical cues to guide their young to the nipples and elicit
suckling behaviour (Arteaga et al. 2013; Schaal and Al Aïn
2014). The best studied example is the European rabbit which
releases a mammary pheromone that causes suckling behaviour
in their pups (Schaal et al. 2003). This may be a particularly
important adaptation in rabbits, which only nurse their pups
once a day for approximately 5 minutes (Zarrow et al. 1965).
During this time the pups, which are born blind, have to orien-
tate to the female’s abdomen, locate and attach to the nipples
and suckle efficiently, in the context of severe sibling competi-
tion (Bautista et al. 2005; Drummond et al. 2000). A series of
elegant experiments demonstrated that the volatile component
of rabbit milk, 2-methylbut-2-enal (2MB2), was responsible for
the stereotyped searching-grasping behaviour typically seen in
new-born pups (Schaal et al. 2003). 2MB2 acts as a pheromone
as it elicits a species specific response (Schaal et al. 2003) and
the behavioural activity is independent of learning (Schaal et al.
2003). Further, the releasing effect of 2MB2 is concentration
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dependent (Coureaud et al. 2004). In rabbits, as with many
mammals, the growth and survival of pups is highly dependent
on their ability to effectively suckle during the first few days
(Coureaud et al. 2000). By increasing neonatal suckling suc-
cess, 2MB2 increases offspring survival and female reproduc-
tive fitness. As well as producing a stereotyped behavioural
response, 2MB2 also induces neonatal odour learning
(Coureaud et al. 2010). When new-born rabbits are exposed
to a mixture of 2MB2 and a neutral odorant (or mixture of
odorants, see (Coureaud et al. 2008)), they exhibit a strong
search-grasping response towards the neutral odorant alone 24
hours later (Coureaud et al. 2006). This learned response is
evident after a single conditioning session and persists for five
days after the initial exposure. Pheromone induced learning of
odorants may facilitate improved orientation to the dam and
localization of the nipple (Coureaud et al. 2010). Further, learn-
ing of odours in the nest may allow social recognition of famil-
iar conspecifics, such as the mother or sibling nestmates, upon
weaning. Male rabbits tend to avoid conspecifics scent-
ed with an odorant they learnt through association with
2MB2 as a neonate, suggesting that one function of neonatal
olfactory learning may be to avoid inbreeding later in life
(Coureaud et al. 2010).

Similar nipple searching behaviour is seen in other altricial
species, although the mechanisms have not been investigated
as thoroughly as in rabbits (Schaal and Al Aïn 2014). Murine
rodents are attracted to the scent of a lactating female but
washing of the nipple removes the searching behaviour seen
in pups (Logan et al. 2012; Teicher and Blass 1976).
Application of maternal amniotic fluid, saliva or milk restored
suckling behaviour in laboratory mice (Logan et al. 2012).
However, the same study showed that only amniotic fluid
initiated suckling behaviour in pups delivered by caesarean
section, suggesting that pups require prior exposure to learn
maternal cues (Logan et al. 2012). The authors suggest that
suckling behaviour in mice may be initiated by a learned sig-
nature odour, similar to those underlying maternal recognition
in sheep (Logan et al. 2012). However, under different exper-
imental conditions, Al Aïn et al. (2014) found that attraction to
milk and colostrum odours by newborn mice did not require
prior exposure. These studies highlight the difficulty in iden-
tifying mammalian pheromones and the extent to which dif-
ferent experimental conditions can impact results.

Odours are also important in initiating suckling behaviour
in humans. Odour emitted from the breast of lactating females
are attractive to newborns (Makin and Porter 1989). Breast
odours regulate arousal states (Doucet et al. 2007) and elicit
head turning (Makin and Porter 1989; Marlier and Schaal
2005), eye opening (Doucet et al. 2007), oral repsonses
(Marlier and Schaal 2005) and crawling (Varendi and Porter
2001) in human newborn babies. The compounds underpin-
ning these behavioural responses in newborns have yet to be
identified but are likely to be present in the colostrum, milk or

in secretions from specialised Montgomery glands situated in
the areola surrounding the nipple (Doucet et al. 2009; Marlier
and Schaal 2005; Mizuno and Ueda 2004).

Conclusions

This review highlights the diversity of scent signals produced
by female mammals, and the wide range of functions that
these fulfil, including competitive signalling, sexual advertise-
ment and facilitation of maternal behaviours. However, fe-
male chemical communication still remains poorly under-
stood in the majority of mammals. We suggest several key
areas for future study. First, although female scents can com-
municate a wealth of information about an individual, such as
species, sex, reproductive state, health, dominance status and
genotype (Brown and Macdonald 1985), the specific com-
pounds or mixtures that signal such information have been
identified in very few cases. Developments in molecular tech-
niques have improved both the detection and identification of
specific compounds in female scents. However, determination
of the functional significance of such compounds, through a
combination of behavioural testing and scent manipulation, is
an essential requirement. Secondly, most research on chemical
signalling in mammals has focused on domesticated and lab-
oratory animals. While providing invaluable insight into both
the functions and mechanisms of female chemical signalling,
these animals may not necessarily be representative of most
wild species. Thirdly, the majority of studies that have inves-
tigated scent communication in wild mammals have focused
on rodent or primate species. Similarly, many of the functions
discussed in this review have been investigated mainly in
species with similar social structures; for example, studies
investigating female signals of quality and male preference
have focused mostly on species where males contribute to
parental care. Broader investigation of female chemical sig-
nalling across a range of species with different social struc-
tures, breeding systems and ecological conditions are needed
to explore the factors that influence the evolution of female
chemical signals. Finally, understanding how chemical signals
integrate with other sensory systems, such as auditory and
visual signals, is a major challenge for future research.
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