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Systemic lupus erythematosus (SLE), systemic sclerosis (SSc), and small vessel vasculitis

are three autoimmune diseases frequently manifested in the skin. They share common

pathogenic features, including production of autoantibodies, loss of tolerance to

self-antigens, tissue necrosis and fibrosis, vasculopathy and activation of the coagulation

system. Platelets occupy a central part within the coagulation cascade and are

well-recognized for their hemostatic role. However, recent cumulative evidence implicates

their additional and multifaceted immunoregulatory functions. Platelets express immune

receptors and they store growth factors, cytokines, and chemokines in their granules

enabling a significant contribution to inflammation. A plethora of activating triggers

such as damage associated molecular patterns (DAMPs) released from damaged

endothelial cells, immune complexes, or complement effector molecules can mediate

platelet activation. Activated platelets further foster an inflammatory environment and the

crosstalk with the endothelium and leukocytes by the release of immunoactive molecules

and microparticles. Further insight into the pathogenic implications of platelet activation

will pave the way for new therapeutic strategies targeting autoimmune diseases. In

this review, we discuss the inflammatory functions of platelets and their mechanistic

contribution to the pathophysiology of SSc, ANCA associated small vessel vasculitis and

other autoimmune diseases affecting the skin.
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INTRODUCTION

Platelets are small circulating cellular fragments that originate from megakaryocytes mainly
within the bone marrow (1, 2). Under physiological conditions, platelets have a short lifespan
in the circulation as they are eliminated in the spleen and liver after 7–10 days. Under resting
conditions, the vascular endothelium continuously prevents platelet adhesion and activation
through the release of prostacyclin I2 and nitric oxide (2). Blood vessel damage or detachment
of the endothelium upon injury results in the exposure of the pro-coagulant subendothelial
matrix and associated perivascular cells which promote platelet activation and blood clotting.
However, platelet adhesion and coagulation could also be initiated without the denudation of the
endothelial cell layer. Distinct stimulatory agents such as thrombin, histamine, tumor necrosis
factor (TNF-α), or CD40 ligand (CD40L, CD154) convert the endothelium into a proinflammatory
and procoagulatory surface through the release of von Willebrand factor (VWF) (3–6).Secreted
VWF gets immobilized on the luminal site of endothelial cells where it is activated through
blood shear flow mediated stretching. These VWF fibers can rapidly interact with GPIb-IX-V on
platelets, resulting in the formation of platelet decorated VWF strings (3, 7, 8). Attached platelets
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translocate GPIIb/IIIb to their surface to stabilize their
interaction with VWF. Moreover, these procoagulant platelets
expose phosphatidylserine (PS) on their membrane. Together
with tissue factor and Factor VII, PS initiates the activation of
the coagulation factors X (FX) and II (FII, prothrombin) (9–
13). The presence of tissue factor on platelets is controversial
discussed. However, more recent studies suggest its expression
and its surface exposure upon activation (14, 15). Apart from
tissue factor, platelets can enhance hemostasis through the
presentation of P-selectin (CD62P) and lysosomal-associated
membrane protein 1 and the release of FV, histamine and
ADP (2, 10).

Next to their contribution to hemostasis, there is growing
body of evidence indicating the action of platelets in
inflammation and immune responses (1, 16–18). Moreover,
recent findings point toward the significant involvement
of platelets in the pathogenesis of autoimmune diseases
(7, 19, 20). This review will describe platelet immune functions,
and highlight the implication of platelets in the pathogenic
mechanisms of autoimmune disorders with frequent but not
limited manifestations in the skin. We will in particular focus
on systemic lupus erythematosus (SLE), systemic sclerosis (SSc)
and antineutrophil cytoplasmic antibody-associated small vessel
vasculitis (AAVs).

INFLAMMATORY FUNCTIONS OF
PLATELET

Upon activation, platelets shed microparticles and they
release potent immune modulatory mediators stored in their
granules, including proinflammatory cytokines and chemokines
(e.g., IL-1ß, TGF-ß, PF4, and PDGF). Platelets are also able
to present a number of adhesion (e.g., GPIb-IX-V and P-
selectin) and immune receptors (e.g., toll-like or Fc receptors)
for prompt responses to the external environment. These
receptors enable platelets to interact with activated vascular
endothelial cells and immune cells, such as neutrophils,
monocytes and lymphocytes. Context dependent, these
interactions may tune hemostatic and immune responses,
including the activation of the complement system. Figure 1
summarizes various molecules mediating platelet functions in
autoimmune diseases.

Platelet Granules and Platelet Derived
Microparticles (PMPs)
There are three types of platelet granules: α-granule, dense
granule and lysomal granule. Upon platelet stimulation,
granules undergo rapid secretion of their contents into the
extracellular space.

The most plentiful (40–80 per platelet) and largest platelet
granules (200–400 nm) are α-granules (18). They store almost
300 different proteins, including chemokines, cytokines, growth
factors, and adhesion receptors (21–23). However, it is of
note that the release of these bioactive substances is not
random but dependent on the stimulus (20). Recent observations

suggest that platelets contain distinct subpopulations of α-
granules which facilitate the differential release of specific α-
granule components during platelet activation (24, 25). These
secretion products do not only contribute to hemostasis and
thrombosis but do also play a potential role as immune
mediator by amplifying inflammatory responses (16). Several α-
granule derived molecules are frequently reported in the context
of skin autoimmune diseases, such as complement factors,
CD40L, platelet factor 4 (PF4, also known as CXCL4), and
P-selectin (19, 20, 26).

The complement is a complex innate immune system
for pathogen defense. The dysregulation of the complement
mediates excessive inflammation and tissue injury (27–30).
Interestingly, platelet α-granules contain a broad spectrum of
complement molecules (31–33). For example, platelets store
C3, C4, and factor D which are important components of the
complement cascades (31, 34). Also complement attenuating
factors C1 inhibitor, CD55, and CD59 are secreted upon platelet
activation (35).

CD40L is a transmembrane protein of the TNF superfamily.
Under quiescent conditions, CD40L is stored in α-granule
whereas it gets exposed on the surface during platelet activations.
Upon shedding, CD40L could be released as soluble protein
(sCD40L) with cytokine-like activities. CD40L interacts with
CD40 on dendritic cells (DCs), B cells and T cells, inducing
DC maturation (36), T cell activation (37, 38), B cell isotype
switching and antibody production (39). This suggests a
significant role of the CD40-CD40L axis in regulating the
innate and adaptive immune responses (40). Platelet derived
CD40L has also been shown to induce tissue factor expression
in monocytes (40), which contributes to the activation of
the extrinsic coagulation cascade. Moreover, platelet CD40L
can bind to CD40 on endothelial cells, inducing the up-
regulation of adhesion molecules (E-selectin, VCAM-1, and
ICAM-1), chemokines (IL-8 and CCL2) secretion (22, 41),
and VWF release (6). Thus, CD40-CD40L signaling further
promotes the adhesion and extravasation of leukocytes at the
site of platelet activation. Interestingly, constitutive expression
of CD40 at the surface of platelets can further mediate platelet
CD62P expression and granule release after perception of
CD40L (42).

PF4 is one of the most abundant cytokines in α-granules
and it is a potent antiangiogenic chemokine (43). In addition,
PF4 induces the release of proinflammatory cytokines from
leukocytes and promotes neutrophil chemotaxis (44, 45).

α granules contain also P-selectin a glycosylated
transmembrane protein (46) recognizing carbohydrate moieties
comparabler to C-type lectins. Similar to CD40L, P-selectin is
translocated during platelet activation to the surface membrane
or secreted into the plasma as soluble P-selectin (sP-selectin).
P-selectin is a key adhesion molecule supporting the close
interaction with other immune cells (20, 22, 47). P-selectin
ligand-1 (PSGL-1) is the major receptor for P-selectin and it is
expressed mainly on neutrophils and monocytes (48, 49). The
cross-linking between P-selectin and its corresponding ligand
PSGL-1 plays a pivotal role in the formation of platelet-leukocyte
aggregates (50, 51) and in the upregulation of tissue factor
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FIGURE 1 | Schematic overview of distinct molecules that tune the function of platelets in autoimmune diseases. Relevant molecules has been categorized into

platelet activators, soluble factors released from platelets upon activation, surface receptors that mediate the interaction with other cells and receptors that trigger

platelet adhesion and activation.

expression on monocyte (52). P-selectin-PSGL-1 stimulated
platelets could further activate neutrophils to form neutrophil
extracellular traps (NETs) (53). However, the impact of P-
selectin to induce NET formation remains controversial. Results
reported by Clark et.al and Maugeri et.al indicate that P-selectin
is dispensable for NET generation (54, 55). NETs reversely
enhance blood coagulation by direct interaction with VWF (56)
and through platelet activation (57, 58). In addition, platelets
which are tethered on endothelial cells act as a bridge to promote
the adhesion of neutrophils on the blood vessel wall through
P-selectin (59).

Dense granules, smaller and less abundant than α-
granules, store small non-protein molecules, such as ADP,
ATP, serotonin (5-HT), and calcium (2, 16). Platelet dense-
granule secretion plays a critical role in the amplification
of platelets responses and thrombosis (60). As a platelet
agonist, serotonin can modulate autocrine and paracrine
platelet aggregation through the interaction of serotonin
receptor on platelets (61). In line with this, a variety of
immunomodulatory functions of serotonin have been reported,
including recruitment of neutrophils to the site of inflammation,

stimulation of chemokine secretion by monocyte and T cell
proliferation (62, 63).

In parallel, activated platelets release microparticles by
shedding of the plasma membrane (64). PMPs have diameters
ranging from 0.1 to 1µm, which are marked by the expression of
surface CD41 (64, 65). Although various cellular lineages are able
to release membrane microparticles, PMPs make up the main
source in human circulation (65). Diverse platelet components
are presented in PMPs, including transcription factors, cytokines,
growth factors, lipid mediators, nucleic acid, lipid mediators,
and mitochondria (25, 65, 66). Due to the size of PMPs, PMPs
have been shown to selectively infiltrate tissues and deliver
these bioactive factors to recipient cells, triggering inflammation
and thrombosis (26, 64, 67, 68). For example, PMPs deliver
CD40L to B cells, inducing efficient B cell response and antibody
production (26, 69). Similarly to activated platelets, PMPs bear
negatively charged PS and potentially TF on their surface, which
supports coagulation via the activation of FX and prothrombin
(70, 71). In addition, PMPs have the ability to directly attach
to fibrin and enhance the local production of thrombin which
further amplifies the thrombus formation (70, 72).
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Platelet Receptors
Platelet has a variety of surface receptors, and the majority
of these receptors trigger either platelet activation or platelet
adhesion. For example, Platelet glycoprotein complex GPIb-
IX-V enables platelet binding to subendothelial and luminal
exposed VWF even under high shear stress (73, 74). This
interaction is further enforced by collagen or fibrinogen through
the platelet receptors GPVI, and integrin α2β1 or integrin αIIbβ3,
respectively (2, 73).

Classic hemostatic agonists (thrombin and ADP) not
only mediate hemostasis, but are also directly linked to
inflammatory receptor mediated signaling pathways. The Gaq-
coupled protease-activated receptors PAR1 and PAR4 are the two
main thrombin receptors on platelets (75). Signaling through
these receptors stimulates the Rho-associated protein kinase and
phospholipase Cβ, leading to further downstream protein kinase
C (PKC) activation and Ca2+ release (2, 76). ADP is another
potent platelet activator and can be secreted from dense granules
upon platelet activation. On the membrane of platelets, the two
purinergic receptors P2Y1 and P2Y12 are expressed, coupling
to Gqα and Giα, respectively (77). Signaling via P2Y1 mediates
PKC activation, Ca2+ release into the cytoplasm and induces
platelet shape change (78). P2Y12 stimulates phosphoinositide3-
kinases activation which triggers platelets granule secretion and
aggregation (2, 78). Interestingly, PAR signaling promotes also
the release of ADP (79, 80), linking these two pathways and
enabling autocrine platelet activation. Clopidogrel, a common
used drug to prevent heart disease and stroke, blocks the P2Y12

on platelets explaining its high efficacy.
Platelets could also directly recognize immunoglobulins and

immune complexes (IC) through the Fc receptor FcγRIIA (81,
82). IC binding to FcγRIIA induces platelet hypersensitivity to
thrombin stimuli (83). In addition, FcγRIIA activation can also
support platelets serotonin release (84).

Toll-like receptors (TLRs) are another group of
immunoreceptors expressed on platelets, which enable platelets
to recognize endogenous damage associated molecular patterns
(DAMPs) and pathogen associated molecular patterns (85, 86).
TLR4 is the most abundantly expressed TLR on platelets and
it can detect ligands such as lipopolysaccharide (LPS) and high
mobility group protein B1(HMGB1) (87). In this context, Clark
et al. reported that LPS induces platelet binding to adherent
neutrophils, resulting in neutrophil activation and the formation
of NETs (54).

Finally, platelets express several complement receptors (CR)
(31). Among them, receptors C3aR and C5aR recognize the
strong proinflammatory complement effectors C3a and C5a
(88). These two receptors have low expression levels on resting
platelets but their expression is increased upon inflammatory
stimulation (88, 89). Notably, P-selectin contains nine consensus
domains which are common to the structural motif of CRs
(90). Therefore, apart from its function as adhesion molecule,
P-selectin may also mediate complement effector binding to
the surface of platelets to support complement activation (90).
Moreover, the surface expression of C1q receptors on platelets
has been linked to the initiation of the classical complement
pathway activation (91–93).

PLATELETS ROLE IN SKIN AUTOIMMUNE
DISEASES

Systemic Lupus Erythematosus (SLE)
Systemic lupus erythematosus is a chronic autoimmune disease
characterized by systemic inflammation in many different
organs. SLE is also associated with thrombotic complications
and increased cardiovascular morbidity (94, 95). A wide
range of research on the pathogenesis of SLE focus on the
formation of autoantibodies and autoantibody induced IC,
as well as the dysregulation of lymphocyte function and
activation of the complement system (95). However, platelets
also play an important role in inflammatory activity and
immune response. Growing evidence indicates that platelets are
activated in SLE patients and contribute to the pathogenesis
of SLE (25, 26). Moreover, thrombocytopenia is a common
hematologic manifestation in SLE and associated with severe
SLE abnormalities such as neurological abnormality and kidney
injury (96, 97). As a promoter of complement activation, the
presence of antiphospholipid antibodies (aPLs) is often detected
in the patients with thrombocytopenia. Themean platelet volume
(MPV) is widely used for assessing platelet activation in various
inflammatory conditions. However, the current literature on
MPV in SLE is contradictory and the usefulness of MPV as
a biomarker in SLE still need to be explored (20, 98–101).
On the molecular level, the production of thromboxane, P-
selection expression and the release of sCD40L, PMPs and β-
thromboglobulin have been reported as markers for platelet
activation. Their levels are increased in SLE patients and
associated with an increased risk of thrombotic events (102–
108). The role of platelets in the SLE pathophysiology is depicted
in Figure 2.

Several pro-inflammatory mediators are responsible for
platelet activation in SLE patients. Among them, DAMPs such
as HMGB1, or S100A8/9, both enriched in the blood of
SLE patients (109–111), might have the potential to trigger
platelet activation through TLR4 signaling. Platelet activation
is also mediated by the recognition of SLE-associated ICs
through FcγRIIA receptors (25). In addition, TLRs (TLR7,
TLR9) exposed at the platelet surface bind to RNA-containing
ICs or nucleic acid (ssRNA, dsDNA), contributing to platelets
activation (112). ICs are frequently formed by aPLs on the
surface of platelets (in almost 40% of the SLE patients)
(113, 114). Those platelet-bound ICs could be detected by
the complement system mediating the deposition of C4d and
the formation of the membrane attack complex (MAC) on
the platelets’ surface (113, 115). As mentioned above, platelets
actively contribute to the complement cascade through the
production of several complement factors including C1q, C3,
and C4. These complement effectors in turn potentiate the
impact of platelets on inflammation (32). For example, MAC
promotes platelets to release proinflammatory mediators such
as serotonin, thromboxane and β-thromboglobulin stored in
their granules (116, 117). Fixation of C4d on the platelet
surface supports platelet aggregation and platelet interactions
with monocytes and endothelial cells in the context of venous
thrombosis (31, 32, 113, 115). Platelets marked with C4d are
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FIGURE 2 | Platelet activation and subsequent effects in SLE. ICs and DAMPs (e.g., HMGB1 or S100A8/9), both enriched in the blood of SLE patients, activate

platelets through binding to platelet surface receptors FcγRIIA and TLRs. ICs further induce the complement system activation leading to the deposition of complement

fragments (e.g., C1q,C4d, MAC) on the platelet surface which in turn further potentiates platelet activation. Activated platelets release their contents such as IL-1β,

sCD40L, and serotonin. These factors mediate the up-regulation of adhesion molecules (e.g., E-selectin, VCAM-1, and ICAM-1) on endothelial cells, promoting the

adhesion of immune cells. In addition, sCD40L and serotonin can stimulate the release of VWF from endothelial cells, but also support B cell and T cell activation. VWF

mediated trapping and activation of platelets initiate coagulation which may further foster the activity of the complement system building a positive feedback loop.

detected in almost 20% of patients with SLE suggesting C4d
positive platelets as a prognostic biomarker (113, 115, 118).
The deeply interwoven connection between the complement
system and the coagulation (119, 120) has been emphasized
by the work of Kölm et al. (121). In their recent study
it was demonstrated that VWF bind to C1q and that the
C1q-VWF complexes induce platelet adhesion in correlation
with the frequently observed thrombotic events in SLE
patients (121).

Next to the involvement of the complement system, ICs
were shown to mediate the release of serotonin (84, 122, 123),
PMPs (108, 124), and IL-1β (106) from platelets. Released
serotonin disturbs the endothelial barrier in SLE promoting an
increase in vascular permeability (25, 125). Serotonin also has a
major effect on T cell activation and proliferation through the
interaction with the lymphocyte 5-HT7 receptor (63). Beside
serotonin, SLE patients display higher concentrations of PMPs.
A study involving 60 SLE patients shows that platelets are
the main source of circulating microparticles in SLE (124).
Interestingly, those PMPs are C1q+ and can form IC with
IgG and IgM (124). Levels of PMPs IgM conjunctions are
negatively correlated with SLE severity (124). In contrast, levels
of IgG+ PMPs are positively associated with SLE activity (124).
IgM autoantibodies bind to apoptotic cells in patients with
inactive SLE and may facilitate non-inflammatory removal of
PMPs by monocytes or macrophages (124, 126). However, the
PMPs-IgG+ stimulate monocytes promoting the expression
and release of pro-inflammatory cytokines such as IL-1β,

TNF-α, and IFN-α (124). Additionally, IL-1β can also be
released from activated platelets. IL-1β induces the expression
of NFκB driven inflammatory genes, such as, IL-6 IL-8 and
ICAM-1 in endothelial cells which in turn mediates immune
cells recruitment and immune-thrombotic complications (106,
127). Endothelial activation could also be directly triggered
through platelet derived CD40L (6, 41). This acute activation is
characterized by Weibel-Palade body exocytosis, release of VWF
multimers and thus the rapid recruitment of further platelets
which promotes the sequestration of circulating monocytes by
the P-selectin-PSGL-1 interaction (128).

Activated platelets also contribute to the regulation of adaptive
immune responses. Platelets are the major source of sCD40L in
the circulation (25, 105) and the CD40L signaling through its
receptor CD40 on B cells and T cells lead to immunoglobulin IgG
and IgM synthesis and the germinal center reaction (38, 39). As
reported by several groups, the CD40/CD40L axis promotes DC
maturation and IFNα secretion (36). IFNα is a key cytokine in
the pathogenesis of SLE indicated by increased levels of the IFNα

regulated proteins PRKRA, IFITM1 and CD69 in platelets from
SLE patients. The up-regulation of the IFNα system is strongly
associated with vascular disease in SLE (20, 129).

Systemic Sclerosis (SSc)
SSc is an autoimmune disease characterized by excessive
connective tissue deposition and fibrosis, vasculopathy and
a dysregulated immune system (130, 131). Enhanced platelet
activation and aggregation can be observed in patients suffering
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from SSc (131–133). Ischemia reperfusion alternation associated
with Raynaud’s phenomenon in fingers is frequently the
first manifestation of SSc (132). Ischemia-reperfusion injury
promotes endothelial cell damage, which results in the release
of reactive oxygen species (ROS), DAMPs, the activation of the
complement and the exposure of collagen to the blood flow
(134–137). This inflammatory environment stimulates platelet
recruitment and activation. Similar to SLE, the presence of aPLs
related ICs could further promote hypersensitivity of platelets
(138). In this context, a specific increase in the number of platelet
non-integrin type I collagen receptor was detected in SSc patient’s
platelets (139). This may explain the accelerated aggregation
status of SSc patients’ platelets when exposed to collagen. The
pathophysiological role of platelet in SSc is shown in Figure 3.

Extensive experimental evidence supports the notion that
platelets participate in the fibrotic process mainly by releasing
profibrotic mediators (131, 140). Transforming growth factor
β (TGF-β) and platelet-derived growth factors (PDGFs) are
thought to be the central pathogenic profibrotic mediators.
Activation of the TGF-β pro-fibrotic signaling pathway has long
been implicated in fibrotic diseases, including SSc (141, 142).
Circulating platelets contain high concentrations (about 40–100
times higher compared to other cells) of TGF-β in their α-
granules and release it rapidly upon activation (143–145). Several
studies showed that TGFβ plays a pivotal role in extracellular
matrix remodeling through the control of the collagen synthesis,
as well as secretion of fibronectin and thrombospondin-1 (141,
146). Notably, TGF-β stimulates the production of a plethora of
secondary mediators from fibroblasts, such as connective tissue
growth factor and endothelin-1, modulating the downstream
fibrotic signaling activation (141, 147, 148). Similar to TGF-
β, activated platelets can also release PDGF, which is able to
stimulate connective tissue fibroblasts proliferation and increase
collagen production (131, 149). A study revealed that PDGF-A
is increased in the dermal interstitial blister fluid of SSc patients
(150) and blockade of PDGF receptors by Crenolanib is effective
in reducing skin fibrosis in preclinical models of SSc (151).
Additionally, Nintedanib, a tyrosine kinase inhibitor, inhibits
the PDGF and TGF-β induced activation of SSc fibroblasts and
prevents the onset of the disease in different mouse models
(152, 153). As mentioned above, platelets are the main source of
serotonin in the circulation and the profibrotic role of serotonin
has received significant attention recently (154). Serotonin could
enhance collagen production in fibroblasts through the 5HT-
2B receptor, which is over expressed in SSc patients’ skin
(154). Platelets in SSc further contribute to skin fibrosis because
they interact with dermal microvascular endothelial cell which
induces the subsequent secretion of profibrotic mediators such
as thymic stromal lymphopoietin (155).

The involvement of the endothelium in patients suffering
from SSc is mirrored by an increased risk of vascular
disease such as Raynaud’s phenomenon, pulmonary arterial
hypertension, ischemic ulcer due to vascular damage, renal
and cardiac disease (131, 156). Several mechanisms have been
suggested to explain the role of platelets in SSc associated
vasculopathy. Experimental data have shown that platelets
derived PF4 could enhance the expression of thrombospondin-1

and promote endothelin-1 secretion from human endothelial
cells, resulting in an inflammatory phenotype of endothelial cells
and SSc associated vascular damage (157). Similarly to SLE, the
existence of PMP is abundant in the blood of SSC patients,
especially HMGB1-associated PMPs (158–160). HMGB1 released
from activated platelets in SSc patients, sustains autophagy
associated activation of neutrophils in SSc and commits them
to generate NETs, leading to vascular endothelium dysfunction
(158). Recent studies suggest that antiangiogenic factors such
as VEGF165b, together with proinflammatory (CD40L) and
profibrotic (TGF-β) factors secreted by platelets, can contribute
to the progression of peripheral microvascular damage and
defective vascular repair in SSc (161).

It is becoming increasingly clear that platelets act as
key regulators of the immune response participating in the
pathogenesis of SSc. A large array of proinflammatory mediators
are either synthesized within platelets or stored in the
granules and released upon activation. Platelets derived CCL5,
PF4, CXCL5, and leukotriene-B4 hold important leukocyte
chemoattractant properties, recruiting neutrophils, monocytes,
and fibroblasts to the site of inflammation, which in turn amplify
local inflammatory reactions (132, 162).What is more, it has been
shown that PF4-activated monocytes trigger ROS production
and the release of the procoagulant VWF in endothelial cells
(163). Also P-selectin translocates to the platelet membrane
and forms an adhesive bridge between endothelial cells and
neutrophils, monocytes and T cells, thereby facilitating the
formation of heterotypic platelet-leukocyte aggregates on the
surface of blood vessel (162). Activated platelets express and
release sCD40L which accounts for almost 90% of circulating
sCD40L (164). The interaction between sCD40L and CD40
on B cells leads to increased immumoglobulins production
and B cell proliferation, highlighting the remarkable role of
platelets in the regulation of adaptive immune response (39).
Another important SSc related immune mediator is serotonin
(63). Apart from the role in the regulation of collagen production,
serotonin also enhances T cell activation and proliferation
through 5-HT7 receptor signaling (165). Some studies also
suggest the immunomodulatory properties of serotonin through
the maturation of myeloid DCs (166) and the regulation of
the production of proinflammatory mediators such as IL-6 and
TNF-α from monocyte (167).

Antineutrophil Cytoplasmic Antibody
(ANCA)—Associated Small Vessel
Vasculitis
Vasculitis represents a group of complex diseases with the
pathology of blood vessel wall inflammation (168, 169). Based
on the size of vessels involved, vasculitis is categorized
by large, medium, and small vessel vasculitis (170). The
pathogenesis of vasculitis remains incompletely understood
and few studies reported about the role of platelet in large
vessel vasculitis. Our review will focus on ANCA-associated
small vessel vasculitis (AAVs), which are characterized by
the inflammatory cell infiltration of small sized vessel walls
in multiple organ systems (171). AAVs also display a broad
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FIGURE 3 | The role of platelets in SSc pathophysiology. Ischemia-reperfusion injury associated endothelial cell damage induces platelet activation. Similar to SLE, the

presence of ICs could promote hypersensitivity of platelets and complement activation. Activated platelets release their profibrotic mediators such as TGF-β, serotonin

and PDGF, and these factors stimulate connective tissue fibroblasts proliferation and increase collagen production. In addition, both HMGB1 released from platelets

and complement activation can support NET formation and ROS release, which further mediates vascular endothelial dysfunction. Apart from NETs, platelets derived

PF4 activates endothelial cells and induces SSc associated vascular damage. Activated platelets also release sCD40L to active B cells through CD40 signaling, which

leads to B cell auto-antibody production. Moreover, sCD40L and serotonin can promote the maturation of myeloid DCs, followed by IFN production and further B

cell activation.

variety of cutaneous manifestations, including tissue necrosis,
and vascular destruction (172). The neutrophil derived proteins
myeloperoxidase and proteinase 3 are the main target antigens
of ANCA (173). Platelets are first responders during vascular
injury and they are inflammatory effector cells closely correlated
with the activity of vasculitis (7, 174). In line with that PMPs
containing proinflammatory cytokines are increased in AAVs
patients and supposed to trigger an acute inflammatory state
in AAVs (175). Figure 4 summarizes the platelet activation and
subsequent effects in AAVs.

CD40 and CD40L are expressed on endothelial cells, platelets
and epithelial cells and their signaling mediates several processes
of vascular inflammation. sCD40L-CD40 mediated platelet-
endothelial cell interaction, induces cytokine and growth factors
production (such as IL-1β, TNF-α, IL-2, VEGF) in endothelial
cells and enhance the expression of endothelial cell adhesion
proteins (such as ICAM-1, VCAM-1, P-selectin) (40, 41). This
further leads to the recruitment of neutrophils and lymphocytes
to the site of injury. sCD40L also enhances endothelial expression
of tissue factor (176) and contributes to the endothelial
dysfunction through ROS generation (177, 178). Neutrophils
are strong mediators of the pathogenesis of AAVs. sCD40L can
also directly activate neutrophils, mediating ROS release (179)
and macrophage 1 antigen (CD11b/CD18) expression (180).

Notably, activated platelets can stimulate NET formation by
the release of sP-selectin (53). In turn, NET fibers could bind
platelets supporting their aggregation (181). Additionally, NET
components, such as histones, can further stimulate platelet
and endothelial cell activation (181–183). Blocking of neutrophil
PSGL-1 completely inhibits the activated platelet mediated NET
formation (53). Similar to SLE and SSc, the development of
vasculitis is at least partially related to the activity of the
complement system (184). The activation of the complement
alternative pathway both in the fluid phase and on the surface of
platelets leads to MAC deposition on platelets and generation of
the inflammatory factors C3a and C5a (185). Both complement
effector molecules elicit the expression of cellular adhesion
molecules such E-selectin, ICAM-1, and VCAM-1 on endothelial
cells and the production of cytokines/chemokines and related
receptors (such as VEGFC-R, IL-6R, IL-18R) (186). Because of
the presence of C3aR and C5aR on platelets surface, C3a and
C5a can also promote the activation of platelets, supporting
coagulation and inflammation in AAVs (32, 185). C5a may also
trigger the release of tissue factor expressing microparticles and
ROS from ANCA sensitized neutrophils (187). Tissue factor, as a
pivotal part of the coagulation cascade, catalyzes the generation
of thrombin, indicating again the close connection between the
complement and the coagulation system. Thrombin activates
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FIGURE 4 | Platelets involvement in the pathogenesis of AAVs. Neutrophils play a crucial role in the development of AAVs. Platelet receptors CD40L and P-selectin

enable the interaction with neutrophils promoting ROS generation and NET formation. ROS and NETs are toxic to the endothelium and can lead to VWF release and

vascular injury. VWF is well-known to mediate platelets adhesion and aggregation. Similar to neutrophils, sCD40L-CD40 can also mediate platelet -endothelial cell

interaction, which can enhance the expression of endothelial cell adhesion proteins (e.g., E-selectin, VCAM-1, and ICAM-1). C5a, a chemoattractant anaphylatoxin,

can directly attract and activate neutrophils promoting the exposure of tissue factor. Tissue factor initiates the plasmatic coagulation which culminates in the

generation of thrombin. Thrombin is able to further activate platelets and endothelial cells through PAR signaling pathway, followed by platelet degranulation and VWF

release. In addition, C5a can also directly active endothelial cells accelerating vascular injury.

platelets promoting platelet degranulation and the release of P-
selectin. In addition, thrombin can also induce the release of
VWF from the endothelium mediating platelet adhesion and
aggregation amplifying the cross-talk between coagulation and
the innate immune system.

Other Skin Autoimmune Diseases
A limited number of studies have reported on the potential
involvement of platelets in other skin autoimmune diseases such
as chronic urticarial (CU), vitiligo, bullous pemphigoid (BP),
and psoriasis.

In CU patients the assessment of MPV as a supposed marker
for platelet activation provided conflicting results (188–190).
Contradiction might have been due to the variations in patients’
selection, the stage of the disease and patients’ disorders (such as
obesity and diabetes) during the laboratory analysis (20, 191).

Some studies investigated the intradermal injection of platelet
rich plasma (PRP) into vitiligo patients (192). PRP is an
autologous blood-derived product with enriched platelets and
high concentration of growth factors secreted from platelet α

–granules (193, 194). These factors can stimulate melanocyte
migration and promote keratinocytes proliferation. Several
research groups reported the combination of PRP treatment
with narrowband–ultraviolet B phototherapy or exposure to
fractional CO2 laser light results in a significant improvement

in repigmentation, improving patient compliance (194–196).
However, the limitations of those studies are the small sample size
and short follow-up periods.

BP is a common autoimmune bullous disease, characterized
by autoantibodies directed against hemidesmosomal proteins
(BP180 and BP320) of the skin followed by subepidermal
blistering (197). The pathogenesis of BP is not fully understood,
and the majority of research that has previously address the
pathogenesis of BP focused on the immune response caused by
autoantibodies. Research about the role of platelet in BP is scarce.
A study found significantly higher number of eosinophil and
MPV values in BP patients, pointing to a disease related platelet
activation (198). Another study discovered increased levels of
sP-selectin in BP patients suggesting also a potential platelet
activation (199). However, further studies are required to better
understand the contribution of platelets on BP.

Psoriasis is a chronic autoimmune-mediated skin disease
characterized by red scaly plaques. Some previous studies showed
a close association between platelets activation and psoriasis
activity. In vitro, platelets from psoriasis patients are more
sensitive to thrombin and ADP (200, 201). In line with this
increased sensitivity, plasma levels of platelet activation markers
such as ß-thromboglobulin, PF4, PMPs and sP-selectin were
also elevated in psoriasis patients (202, 203). Another recent
study evaluated 320 patients with psoriasis vulgaris and found
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that the mass of platelets is increased in the affected patients
(204). Interestingly, platelet activation was also attributed to
the increased endogenous antimicrobial cathelicidin LL37 in
psoriasis patients (205). In platelet, LL37 can induce enhanced
fibrinogen binding, p-selectin exposure and Ca2+ mobilization
(206). In a murine psoriasis model, the P-selectin/PSGL-1
interaction was shown to promote the formation of platelet-
leukocyte aggregates and to favor leukocyte rolling in murine
skin microvasculature (207). Similarly, Teague et al. showed a
disease severity dependent interaction between low density of
neutrophils and platelets in psoriasis patients (208).

Platelets as Potential Biomarker for
Monitoring and Diagnosis of Skin
Autoimmune Diseases
Platelet derived components and platelet indices can potentially
be used to monitor and diagnose autoimmune diseases. In SLE,
the serum or plasma levels of platelet associated molecules,
such as HMGB1, S100A8/A9, sCD40L, and CCL5 as well as
platelet derived PMPs harboring IgGs have been shown to
correlate with the SLE disease activity index (SLEDAI) score
(105, 110, 124, 209, 210). Lood et al. have recently correlated
platelet derived S100A8/A9 with cardiovascular complications
in SLE patients (109). Apart from platelet released molecules
also the presentation of P-selectin at the surface of platelets
has been associated with the severity of SLE (106). Next to an
active P-selectin exposure, also the deposition of C4d on the
platelet surface has been correlated to the occurrence of aPL-
related venous thrombosis and to the SLEDAI score (115, 211).
Notably, in a cross-sectional study of 105 patients with SLE,
the authors reported that compared with healthy individuals,
platelet C4d was 100% specific for SLE patients (115). As further
demonstrated in a retrospective cohort study, platelet C4d is
significantly associated with all-cause mortality and ischemic
stroke in SLE patients (211). Therefore, C4d bound platelet can
be used as a reliably biomarker for SLE and a predictor for
thrombotic events in SLE patients.

In SSc, the levels of platelet released mediator such as
serotonin, sCD40L, sP-selectin, HMGB1, and PDGF have
been connected to the severity of the SSc related fibrosis or
vasculopathy (151, 154, 212–214). Moreover, increased numbers
of PMPs have also been observed in SSc patients (158). These
few reports suggest the potential usage of platelets and platelet
associated compounds as prognostic biomarker, however further
validating research is required.

Tomasson et al. reported that sP-selectin and sCD40L released
by platelets are positively associated with vasculitic activities
(215). Platelet counts are increased in the active stage of AAVs,
which can be used to distinguish active disease from acute
systemic infections (176). In line with SLE, SSC, and AAV,
elevated sP-selectin levels were also previously detected by several
groups in patients with CU, especially in autologous plasma skin
test positive patients and those which are aspirin-intolerant (216).
In addition, the sP-selectin levels correlated positively with the
urticarial severity score (217), indicating platelet activation as a
possible indicator of the CU disease activity. In psoriasis, several

studies reported that the plasma PMPs and P-selectin levels were
significantly correlated with the psoriasis area and the severity
index (PASI) score (203, 218). Recently, Raghavan et al. proposed
a strong correlation between the PASI score and MPV values
and platelet counts (219). However, further research is required
to confirm the usability of platelet related parameters for the
diagnosis and the monitoring of AAV, CU, and psoriasis.

Platelets as Therapeutic Targets in Skin
Autoimmune Diseases and Future
Perspectives
A number of small molecule inhibitors and monoclonal
antibodies have been developed to target platelet activation in
skin autoimmune diseases. For example, hydroxychloroquine
(HCQ) is an antimalarial compound that provides an effective
treatment (220) in all types of Lupus erythematodes. One
beneficial mechanism of HCQ therapy is the inhibition of platelet
aggregation and degranulation (221, 222). HCQ mediated
platelet inhibition is also effective for the treatment of SSc (223).
Another therapeutic option to block platelet activation is the use
of the P2Y12 receptor inhibitor clopidogrel (224). Several studies
reported that in lupus-prone mice clopidogrel treatment inhibits
the release of platelet derived sCD40L and P-selectin (36, 225).
In SSc mice models, clopidogrel has been shown to decrease
fibrosis (154). However, one study reported that a standard
dose of clopidogrel (75mg) inhibits platelet activation in SSc
patients but had no effect on plasma serotonin levels. Clopidogrel

FIGURE 5 | Platelets as therapeutic targets in skin autoimmune disease.

Several treatments that interfere with the pathophysiological activity of platelets

in skin autoimmune diseases have been proposed. HCQ inhibits platelet

aggregation and degranulation. Clopidogrel is a P2Y12 receptor inhibitor

preventing the release of platelet derived sCD40L and P-selectin.

Dapirolizumab is a monoclonal antibody specifically blocking sCD40L

functions. Statins are supposed to affect the thrombotic activities of platelets

and to decrease the plasma levels of sCD40L.
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treatment even led to a significant increase in soluble VCAM-
1, indicating endothelial dysfunction as adverse effect (226).
Additionally, fibrosis has been successfully managed in an SSc
murine model using the serotonin receptor inhibitors terguride,
cyproheptadine, and SB 204741 (154, 227). Dapirolizumab is an
anti-CD40L Fab antibody fragment and currently evaluated in
a phase 2 clinical trial (228). The treatment exhibit an excellent
tolerance profile and convincing clinical efficacy in SLE patients.
Notably, no thromboembolic adverse events occurred in the
phase 1 clinical trial (228). CD40L signaling is also inhibited
by Statins, because this class of small molecular compounds is
able to reduce the CD40L content in platelets and thus sCD40L
levels (229, 230). Therefore, treatment of SLE patients with
statins can decrease platelets thrombotic activities (231). Platelet
inhibition as therapy of AAV has to our knowledge never been
investigated. Figure 5 summarizes current treatment options
targeting platelets in skin autoimmune diseases.

As future perspectives, several potential treatment options
targeting platelet components or preventing platelet activation
might be worth to be investigated. For instance, because
P-selectin plays an important role in the pathogenesis of
autoimmune diseases, Inclacumab, a novel monoclonal antibody
against P-selectin (232), might be considered for the treatment
of skin autoimmune diseases in future. As discussed in the
previous section, C4d deposition on platelets was found to
be highly specific for the diagnosis of SLE, and C4d positive
platelets are regarded as a risk factor for thrombotic event in SLE
patients (115). In line with this, inhibition of the complement
system by eculizumab, a C5 neutralizing monoclonal antibody,
prevented thrombotic microangiopathy in SLE (233). Therefore,
it would be highly interesting to further investigate the treatment
effects of C4 neutralizing antibodies or to develop specific
compounds preventing the deposition of C4d on the surface
of platelets.

Platelets activation is controlled by a plethora of distinct
pathways and a better understanding of these signaling routes
may open new therapeutic perspectives. Such as, collagen triggers
the phosphorylation of Bruton’s Tyrosine Kinase (BTK), and
signal transducer and activator of transcription 3 (STAT3)
can modulate platelets aggregation and activation (234, 235).
BTK inhibitor RN486 has been reported to abrogate the
generation of PMPs (234) and the STAT3 inhibitor SC99
was effective to inhibit thrombin-induced P-selectin expression
and platelet activation (235). In addition, activated platelets
are the main source of sCD40L and blockade of the CD40–
CD40L interaction by monoclonal antibodies appears to be
a promising treatment of autoimmune diseases. Apart from
anti-CD40L antibodies, a CD40-targeting peptide was designed
recently (236). This peptide mimics the CD40L domain
critical for the interaction with CD40 and it has been
shown to effectively block CD40-CD40L signaling (236). In
a comparable approach, Chen et al. identified small molecule
compounds that can interfere with the CD40–CD40L protein-
protein interaction (237). To which extend those drugs are
applicable to treat autoimmune diseases remains elusive.

However, the development of platelet inhibiting compounds is
an emerging field of research and it envisions the discovery
of novel compounds efficient for the treatment of skin
autoimmune diseases.

CONCLUSIONS

Platelets are the main participants of hemostasis and have
multiple immunoregulating functions linking coagulation and
inflammation. It is becoming apparent that platelet activation
might be a biomarker of skin autoimmune diseases activity.
Multiple compounds in circulation, such as ICs, DAMPs,
VWF and collagen, can stimulate continuous platelet activation.
Platelet activation appeared to be further potentiated by the
deposition of complement factors at their surface. However, more
details about the crosstalk between platelets and complement
still needs to be investigated. Upon activation, platelets release
a variety of pro-inflammatory mediators such as sCD40L, P-
selectin, serotonin, PDGFs, and TGF-β. These released factors
contribute to the immune response, ultimately resulting in
chronic inflammation and local tissue damage. Activated platelets
modulate the function of the innate and adaptive immune
system by secreting immune mediators or through direct cellular
interactions with immune cells, such as DC, neutrophils, B
and T cells. However, the interplay between platelets with
other immune cells such as mast cells and monocytes requires
further clarification. It would be also worth to investigate novel
platelet derived biomarkers to predict and assess the status
of the respective disease. There are still some controversies
on the assessment of the commonly measured MPV in
autoimmune diseases. Contradictive results suggest that only
MPV measurements are not sufficient to evaluate platelet
function. Platelet activation is a variable and dynamic process and
research addressing the role of platelets in autoimmune disease
should be not limited to distinct platelet activation processes or
distinct factors released by platelets. Right now, targeting platelets
using anti-CD40L monoclonal antibodies and ADP receptor
inhibitors has been reported to reduce autoimmune reactions in
several clinical trials addressing autoimmune diseases. A better
understanding of the role of platelets in autoimmune diseases will
reveal new therapeutic options in the future.
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