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Abstract

Diabetes mellitus in early pregnancy is the most severe maternal disease that is counted for 10% of 

newborn infants with structural defects. With the rapid increases in the number of diabetic women 

in childbearing age, the birth defect rate is projected to elevate dramatically. Thus, prevention of 

embryonic malformations becomes an urgent task. Animal studies have revealed an involvement 

of oxidative stress in diabetic embryopathy and treatment with antioxidants can reduce embryonic 

abnormalities. However, the failure of clinical trials using free radical-scavenging antioxidants to 

alleviate oxidative stress-related diseases prompts researchers to reevaluate the strategy in birth 

defect prevention. Hyperglycemia also disturbs other intracellular homeostasis, generating 

aberrant conditions. Perturbed folding of newly synthesized proteins causes accumulation of 

unfolded and misfolded proteins in the lumen of the endoplasmic reticulum (ER). The ER under 

the stress activates signaling cascades, known as unfolded protein response, to suppress cell 

mitosis and/or trigger apoptosis. ER stress can be ameliorated by chemical chaperones, which 

promote protein folding. Hyperglycemia also stimulates the expression of nitric oxide (NO) 

synthase 2 (NOS2) to produce high levels of NO and reactive nitrogen species and augment 

protein nitrosylation and nitration, resulting in nitrosative stress. Inhibition of NOS2 using 

inhibitors has been demonstrated to reduce embryonic malformations in diabetic animals. 

Therefore, targeting ER and nitrosative stress conditions using specific agents to prevent birth 

defects in diabetic pregnancies warrant further investigations. Simultaneously targeting multiple 

stress conditions using combined agents is a potentially effective and feasible approach.
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Introduction

Congenital fetal anomalies are a major factor in perinatal mortality and infant disability. 

According to the World Health Organization, approximately two hundred seventy thousand 
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newborn babies die each year from congenital abnormalities [1]. In the United States, where 

perinatal care is widely available, still nearly one hundred fifty babies are born yearly having 

at least one structural birth defect [2,3]. The cause of the developmental malformations is 

multifactorial. It includes genetic factors (e.g., chromosomal abnormalities, gene mutations), 

maternal diseases (e.g., infection, diabetes mellitus), medications (e.g., valproic acid, 

methotrexate), and environmental toxins (e.g., tobacco smoke, alcohol consumption, 

pollutants) [2,3].

Diabetes mellitus in early pregnancies is the most severe maternal disease to cause birth 

defects in newborn infants, in addition to other adverse pregnant outcomes including small 

for gestational age (growth restriction), large for gestational age (macrosomia), and perinatal 

demise (spontaneous abortion, stillbirth) [4–8]. Although aggressive glycemic control and 

perinatal care are available in the developed countries, the birth defect rates in diabetic 

pregnancies remain much higher than the background rate [5,6,9]. The diabetic complication 

in pregnancy, known as diabetic embryopathy, is becoming more serious because the number 

of women of childbearing age with diabetes has been rapidly increasing, along with the 

climbing numbers of diabetics in the population [10]. Thus, prevention of birth defects from 

diabetic pregnancies has become an urgent task for basic researchers and clinical care-takers.

Oxidative Stress and Antioxidative Approaches for Intervention

It has been shown that maternal hyperglycemia alters mitochondrial morphology and 

function, leading to generate high levels of reactive oxygen species (ROS) [11,12]. 

Concurrently, hyperglycemia also reduces the levels of endogenous antioxidants, e.g., 

glutathione (GSH) and thioredoxin [13,14] and suppresses the expression and activity of 

antioxidative enzymes, e.g., superoxide dismutases (SODs), GSH peroxidases, and catalase 

[15–17]. This imbalance between levels of oxygen free radicals and antioxidative buffering, 

known as oxidative stress, augments oxidation of proteins, lipids, and DNA, leading to 

perturbation of intracellular signaling, organelle function, and gene regulation, and 

ultimately decreased cell proliferation and increased programmed cell death (Figure 1) 

[18,19].

The identification of oxidative stress in diabetic embryopathy led to development of 

strategies to reduce fetal abnormalities using antioxidants in animal models (Figure 1). 

Lipoic acid (LA or α-LA; an organosulfur compound) and vitamin C (VC; ascorbic acid) are 

hydrophilic free radical scavengers [20,21]. In diabetic pregnant animals, dietary 

supplementation of LA or VC has been shown to reduce embryonic malformation rate [22–

25]. Vitamin E (VE; α-tocopherol) is a lipid-soluble antioxidant [26]. Treatment of diabetic 

pregnant animals with VE also lowers embryonic malformation rate [27–30]. N-

acetylcysteine (NAC), a thiol-containing molecule, also can scavenge ROS [31]. In diabetic 

pregnant rats, treatment with NAC decreases neural tube and heart defects in the embryos 

[32,33]. Some naturally occurring phytochemicals possess antioxidant properties and have 

been tested to reduce embryonic defects in pregnant animals. For example, administration of 

resveratrol to diabetic pregnant rats reduces oxidative state and embryonic malformation rate 

[34,35].
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Increasing the expression of endogenous antioxdative enzymes may enhance the 

intracellular defense against hyperglycemic insult. It has been shown that, in strains of rat 

that express higher levels of SOD and catalase, embryos of diabetic dams are resistant to 

hyperglycemic insult [36]. In diabetic transgenic mouse models, over expression of SOD1 in 

embryos reduces malformation rate [37]. Therefore, strategies to upregulate the expression 

of antioxidative enzymes to reduce embryonic abnormalities warrant development (Figure 

1).

Although animal studies have shown that antioxidants can reduce developmental 

malformations in embryos, the enthusiasm about the application to humans has been 

dampened by the failure in multiple large scale trials using antioxidants (VC, VE) to treat 

similar diseases (preeclampsia, cardiovascular diseases) [38–41]. The reason(s) for the 

ineffectiveness of the antioxidants are not known. It is speculated that existence of other 

cellular stress conditions may be a factor [41].

Targeting Endoplasmic Reticulum Stress

Indeed, stress in the endoplasmic reticulum (ER), exhibited by changes in specific factors 

(markers), in the embryos of diabetic animals has been observed [42–45]. Hyperglycemia 

disturbs the folding and processing of newly synthesized proteins. The unfolded and 

misfolded proteins are accumulated in the ER lumen, while the ER-associated protein 

degradation mechanism is impaired [46,47]. ER stress activates a number of molecular 

cascades, collectively known as the unfolded protein response (UPR), to upregulate 

chaperone proteins to resolve protein folding crisis, inhibit protein translation, suppress 

mitosis, and even trigger apoptosis (Figure 2) [48,49].

ER stress can be alleviated by enhancing protein folding, using chemical chaperones, 

including phenylbutyrate (PBA), ursodeoxycholic acid (UDCA), and taurine-conjugated 

derivative, tauroursodeoxycholic acid (TUDCA) (Figure 2). The chemical chaperones have 

been investigated in animal models and human diseases, such as cystic fibrosis and diabetes, 

and exhibited effectiveness in amelioration of the diseases [50–54]. PBA has been tested in 

mouse embryos cultured in high glucose and shown to reduce neural tube defects, making it 

a candidate for intervention in humans [45].

Targeting Nitrosative Stress

In addition to dysfunction of the ER, maternal hyperglycemia also stimulates production of 

nitric oxide (NO) in the embryo, notably in the central nervous and cardiovascular systems 

[55,56]. NO is a reactive radical and also reacts with ROS to generate more cytotoxic 

derivatives, such as peroxynitrite, known as reactive nitrogen species (RNS) [57,58]. These 

free radicals augment protein S-nitrosylation and nitration, generating a condition known as 

nitrosative stress (Figure 3) [59,60]. Under such stress condition, protein activity is altered 

and organelle function is perturbed, leading decreased cell mitosis and increased apoptosis 

(Figure 3) [61–63].

NO is produced by members of the NO synthase (NOS) family, consisting of NOS1 

(neuronal NOS or nNOS), NOS2 (inducible NOS or iNOS), and NOS3 (endothelial NOS or 
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eNOS) [64–66]. nNOS and eNOS are constitutively expressed and do not vigorously 

respond to extracellular stimulation [67,68]. NOS2, on the other hand, actively responds to 

extracellular and intracellular stimulation with marked upregulation in expression and 

activity [69–71].

In the embryos of diabetic animals, NOS2 expression is increased, whereas the expression of 

NOS1 and NOS3 is decreased [72,73]. The significance of NOS2 in diabetic embryopathy 

has been demonstrated using a nos2 gene knockout animal model, showing significant 

decreases in malformation rates in the brain and heart in the embryos lacking the gene [56]. 

Efforts to target NOS2 to alleviate nitrosative stress have been made and shown promising 

results, which oral treatment of diabetic pregnant animals with NOS2 inhibitors reduces 

embryonic malformation rates (Figure 3) [43,56].

New Strategies for Intervention in Diabetic Embryopathy

The failure of antioxidant trials apparently casts clouds over the effort to apply the similar 

approach to birth defect prevention; but it also opens opportunities for developing new 

strategies. Instead of scavenging free radicals, reinforcing the endogenous antioxidative 

capacity is an approach potentially to achieve effectiveness. This approach includes 

upregulation of antioxidative enzymes and replenishing of endogenous antioxidants.

NAC, a cysteine precursor, and folic acid (FA), a methionine precursor, can increase 

biosynthesis of GSH to enhance intracellular protection against ROS [74,75]. Treatment 

with FA has been shown to decrease abnormalities in the embryos of diabetic animals [76–

78]. Retrospective clinical studies have shown the correlation of pre-conceptional FA intake 

with decreases in certain forms of fetal anomalies (neural tube defects) in diabetic 

pregnancies [79]. It is worth mentioning that the effect of FA on reduction of cardiac 

anomalies appears to be minimal [79,80]. The reason(s) for this are unknown, but it has been 

noticed that folate metabolism in diabetic pregnant women is not different from that in non-

diabetic pregnant women [81].

In addition to the strategy of replenishing endogenous antioxidants, upregulation of 

antioxidative enzymes is also a powerful approach. This notion is supported by the 

experiments, in which overexpression of a superoxide dismutase in mouse embryos can 

decrease malformation rate in diabetic pregnancies [37,82]. Animal studies have shed lights 

onto these strategies. More work is needed to identify the effective and feasible agents to 

achieve the goals.

The embryos of diabetic pregnancies are under multiple cellular stress conditions (oxidative, 

ER, and nitrosative stresses). Each of the conditions can be intervened with pharmacological 

approaches in vivo (Figure 1). Targeting all the conditions simultaneously is potentially to be 

more effective to protect embryonic cells from maternal hyperglycemic insult. Treatments 

with cocktail of agents intervening different cellular signaling processes to reduce 

embryonic malformations in diabetic animals have shed lights on the feasibility of this 

approach [78,83–85]. With development of effective and safe agents for alleviating human 
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intracellular stress conditions, prevention of birth defects in diabetic pregnancies will 

become reality using a combinational targeting approach.
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Figure 1. 
Oxidative stress in diabetic embryopathy. Hyperglycemia increases ROS (reactive oxygen 

species) and decreases AOs (antioxidants) and AOEs (antioxidative enzymes), leading to 

oxidative stress. To alleviate oxidative stress, AOs scavenge ROS, AO precursors increase 

the levels of endogenous AOs, and upregulation of AOE gene expression enhances 

antioxidative capacity.
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Figure 2. 
ER (endoplasmic reticulum) stress in diabetic embryopathy. Hyperglycemia disrupts protein 

folding and causes accumulation of unfolded or misfolded proteins in the lumen of ER. ER 

stress triggers UPR (unfolded protein response) signaling cascades to suppress cell mitosis 

and/or trigger apoptosis. ER stress can be ameliorated by chemical chaperones via 

promoting protein folding.
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Figure 3. 
Nitrosative stress in diabetic embryopathy. Hyperglycemia stimulates the expression of 

NOS2 (nitric oxide synthase 2) to produce high levels of NO and RNS (reactive nitrogen 

species) and augment protein nitrosylation and nitration, resulting in nitrosative stress. 

Inhibition of NOS2 using inhibitors can ameliorate nitrosative stress.
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