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1 | INTRODUCTION

| Zhengshi Yang?

| Dietmar Cordes??

Abstract

Collecting comprehensive data sets of the same subject has become a standard in
neuroscience research and uncovering multivariate relationships among collected
data sets have gained significant attentions in recent years. Canonical correlation
analysis (CCA) is one of the powerful multivariate tools to jointly investigate relation-
ships among multiple data sets, which can uncover disease or environmental effects
in various modalities simultaneously and characterize changes during development,
aging, and disease progressions comprehensively. In the past 10 years, despite an
increasing number of studies have utilized CCA in multivariate analysis, simple con-
ventional CCA dominates these applications. Multiple CCA-variant techniques have
been proposed to improve the model performance; however, the complicated multi-
variate formulations and not well-known capabilities have delayed their wide applica-
tions. Therefore, in this study, a comprehensive review of CCA and its variant
techniques is provided. Detailed technical formulation with analytical and numerical
solutions, current applications in neuroscience research, and advantages and limita-
tions of each CCA-related technique are discussed. Finally, a general guideline in how
to select the most appropriate CCA-related technique based on the properties of

available data sets and particularly targeted neuroscience questions is provided.
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Each of these data types, termed modality here, contains multiple
measurements and provides a unique view of the subject. These mea-

Recently in neuroscience research, multiple types of data are usually
collected from the same individual, including demographics, clinical
symptoms, behavioral and neuropsychological measures, genetic
information, structural and functional magnetic resonance imaging
(FMRI) data, position emission tomography (PET) data, functional near-
infrared spectroscopy (fNIRS) data, and electrophysiological data.

Xiaowei Zhuang and Zhengshi Yang contributed equally to this manuscript.

surements can be the raw data (e.g., neuropsychological tests) or
derived information (e.g., brain regional volume and thickness mea-
sures derived from T1-weighted MRI).

Neuroscience research has been focused on uncovering associa-
tions between measurements from multiple modalities. Convention-
ally, a single measurement is selected from each modality, and their
one-to-one univariate association is analyzed. Multiple correction is

then performed to guarantee statistically meaningful results. These
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univariate associations have illuminated numerous findings in various
neurological diseases, such as association between gray-matter den-
sity and Mini Mental State Examination score in Alzheimer's disease
(Baxter et al., 2006), correlation between brain network temporal
dynamics and Unified Parkinson Disease Rating Scale part Il motor
scores in Parkinson's disease subjects (Zhuang et al., 2018), and rela-
tionship between imaging biomarkers and cognitive performances in
fighters with repetitive head trauma (Mishra et al., 2017).

However, the one-to-one univariate association overlooks the mul-
tivariate joint relationship among multiple measurements between
modalities. Furthermore, when dealing with brain imaging data, highly
correlated noise further decreases the effectiveness and sensitivity of
mass-univariate voxel-wise analysis (Cremers, Wager, & Yarkoni, 2017;
Zhuang et al., 2017), and different methods of multiple corrections
might lead to various statistically meaningful results. Multivariate analy-
sis, alternatively, uncovers the joint covariate patterns among different
modalities and avoids multiple correction steps, which would be more
appropriate to disentangle joint relationship between modalities and
guarantees full utilization of all common information.

Canonical correlation analysis (CCA) is one candidate to uncover
these joint multivariate relationships among different modalities. CCA
is a statistical method that finds linear combinations of two random
variables so that the correlation between the combined variables is
maximized (Hotelling, 1936). CCA can identify the source of common
statistical variations among multiple modalities, without assuming any
particular form of directionality, which suits neuroscience applications.
In practice, CCA has been mainly implemented as a substitute for
univariate general linear model (GLM) to link different modalities, and
therefore, is a major and powerful tool in multimodal data fusion. Mul-
tiple CCA variants, including kernel CCA, constrained CCA, deep CCA,
and multiset CCA, also have been applied in neuroscience research.
However, the complicated multivariate formulations and obscure
capabilities remain obstacles for CCA and its variants to being widely
applied.

In this study, we review CCA applications in neuroscience
research from a technical perspective to improve the understanding
of the CCA technique itself and to provide neuroscience researchers
with guidlines of proper CCA applications. We briefly discuss studies
through December 2019 that have utilized CCA and its variants to
uncover the association between multiple modalities. We explain the
existing CCA method and its variants for their formulations, properties,
relationships to other multivariate techniques, and advantages and lim-
itations in neuroscience applications. We finally provide a flowchart
and an experimental example to assist researchers to select the most

appropriate CCA technique based on their specific applications.

2 | INCLUSION/EXCLUSION OF STUDIES

Using the PubMed search engine in December 2019, we searched
neuroimaging or neuroscience articles using CCA with the following
string: (“canonical correlation” analysis) AND (neuroscience OR neuro-

imaging). This search yielded 192 articles; 11 additional articles were

included based on authors' preidentification. We excluded non-
English articles, conference abstracts and duplicated studies, yielding
188 articles assessed for eligibility. We further identified 160 studies
that met the following criteria: (a) primarily focused on a CCA or CCA-
variant technique and (b) with an application to neuroimaging or neu-
roscience modalities. Reasons for exclusion and numbers of articles
meeting exclusion criteria at each stage are shown in Figure 1.

The remaining articles were full-text reviewed and divided into
five categories based on the applied CCA technique (Figure 2a): CCA
(N = 67); constrained CCA (N = 53); nonlinear CCA (N = 7); multiset
CCA (N =29); and CCA-other (N =7). Three articles applied con-
strained multiset CCA, thus are categorized into both constrained
CCA and multiset CCA. Numbers of articles of every year from 1990
to 2019 are plotted in Figure 2 (B).

In the following sections, we present technical details (Section 3)
and neuroscience applications for each category (Section 4). In Section 5,
we discuss technical differences and summarize advantages and limita-
tions of each CCA-related technique. We finally provide an experimental
example and guidance in Section 6 to researchers who are interested in

applying multivariate CCA-related techniques in their work.

3 | TECHNICAL DETAILS

Figure 3 shows the detailed CCA equations (red box) and linkages
between CCA and its variants. Constrained CCA (yellow boxes),
nonlinear CCA (gray boxes), and multiset CCA (orange boxes) are
focused, and linkages between CCA and other univariate (light green
boxes) and multivariate (dark green boxes) techniques are also included.
Here, we provide basic formulations and solutions of each CCA and its
variants. We also discuss how CCA is mathematically linked to its vari-
ants and to other multivariate or univariate techniques. Researchers

interested in further details can refer to the corresponding references.

3.1 | Conventional CCA

Formulations. CCA is designed to maximize the correlation between
two latent variables y;cRP**! and y,cRP>*!, which are also being
referred to as modalities. Here, we denote Y, eRN*P« k=1,2 as col-
lected samples of these two variables, where N represents the number
of observations (samples) and py, k = 1, 2 represent the number of fea-
tures in each variable. CCA determines the canonical coefficients
ureRP >t and upeRP2*? for Y; and Y,, respectively, by maximizing

the correlation between Y u; and Y,u,:

T
uy XUz
A /UTI—ZMLI“ / u12—222u2

In Equation (1), £44 and X5, are the within-set covariance matri-

D

CCA:maxp =corr(Y1us,Yaup) =
ug,uz

ces and X1, is the between-set covariance matrix. The denominator in
Equation (1) is used to normalize within-set covariance, which guaran-

tees that CCA is invariant to the scaling of coefficients.
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Number of articles summarized by category (a) and year (b)

Solutions. Canonical coefficients u4 and u, can be found by setting the

partial derivative of the objective function (Equation (1)) with respect

to uy and u, to zero, respectively, leading to:

X1oUp =/)211U1 and 3o1Uq =p222U2.

lem, if £ is invertible, as follows:

)

Equation (2) can be further reduced to a classical eigenvalue prob-
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L;-norm
penalty on u;

Ekkzl

Constrained CCA
max corr(V uq, You,)
U, Uz

\;vith penalty on u;,

Li-norm
penalty on u,;

¢: Y = oY)

Pearson’s correlation

corr(yy, ¥2)
where y; =Yy, y, =Y,

1P1=P2=1

Linear regression
y =XB+e
wherey=Y,, X=Y,

Number of

modalities K > 2 llpC i

SUMCOR: max f =
Uy, U

Nk iy corr (Yo, Yyuy)

Li-norm
penalty on u,;

Sparse CCA
max corr(Y,u,, Y,u,)

with I‘uk|1 < Cg

Nonlinear CCA
Uy max corr(p(¥,)uy, (¥2)u T
Uy,us

Sparse multiset CCA
max Z{fﬁ, ; corr(Y;u;, Yju;)

with Iuk |1 < ¢
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information about
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Structure sparse CCA
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Y = d(Yy)
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Kernel CCA
max vIH H,v,
v12,\[vT H?v, «\[vIH2v,
where Hy, = ¢(Yy) - $(¥y)
we = p(Y) vk =1,2.

Regularization
vLHEv,

Regularized kernel CCA
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viH,H,v,
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FIGURE 3 Technical details of CCA and relationship between CCA and its variants. Background color indicates different techniques: red:
conventional CCA; gray: nonlinear CCA; yellow: constrained CCA; orange: multiset CCA; green: other techniques related to CCA. CCA, canonical
correlation analysis; PCA, principle component analysis; PLS, partial least square

ElEE0 To1u = pPuy 3)
o0 BT Ea0us = pPuy

Each pair of canonical coefficients {us, u,} are the eigenvectors

of 1%, 25 %01 and £51E X715, respectively with the same
eigenvalue p? Following Equation (3), up to M = min(py,p,)

pairs of canonical coefficients can be achieved through singular

value decomposition (SVD), and every pair of canonical variables
{Y1u(1m),Y2u(2'")},m =1,2,..,M, are uncorrelated with another pair of
canonical variables. Corresponding M canonical correlation values are
in descending order as p¥ > p@> .. > p™),

As we stated above, one requirement for solving the CCA
problem (Equation (1)) through this eigenvalue problem (Equation (3))
is that within-set covariance matrices X411 and X5, must be invertible.
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To satisfy this requirement, the number of observations in Y;
and Y, should be greater than the number of features, that
is, N > p, k = 1, 2. Furthermore, since the square of canonical corre-
2
)

lation values (p°) are the eigenvalues of matrices 21‘1121222‘21221

and 22‘2122121‘11212, both matrices are required to be positive definite.

Statistical inferences. Parametric inferences exist for CCA if both vari-
ables strictly follow the Gaussian distribution. The null hypothesis is that
no (zero) canonical correlation exists between Y; and Y, that
is, pV = p? = ... = p™ = 0. The alternative hypothesis is that at least one
canonical correlation value is nonzero. A test statistic based on Wilk's A

is (Bartlett, 1939):

A== (WP g (1), @

i=1

which follows a chi-square distribution ;(,2,1 Py with degree of freedom
of p1 X p». It is also of interest to test if a specific canonical correlation
value (0™, 1 <m<M) is different from zero. In this case, the test sta-

tistic in Equation (4) becomes:

3 u »
A = _ <N_%>Iog H (1—p(')>, (5)

i=m+1

which follows ;((mem)(prm).

In practice, this parametric inference is not commonly used since
it requires variables to strictly follow the Gaussian distribution and
is sensitive to outliers (Bartlett, 1939). Instead, permutation-based
nonparametric statistics have been widely used in CCA applications.
In general, observations of one variable are randomly shuffled (Y,
becomes ?\1) while observations of the other variable are kept intact
(Y, remains). A new set of canonical correlation values are then com-
puted for \/(; and Y5 following Equation (3). This random shuffling is
repeated multiple times, and the null distribution of canonical correla-
tion values is generated. Statistical significance (p-values) for the
true canonical correlation values are finally obtained from this null

distribution.

3.2 | CCA variants

The conventional CCA (Equation (1)) can be modified for different
purposes. Constrained CCA penalizes canonical coefficients u; and u,
to satisfy certain requirements and more specifically, to avoid over-
fitting and unstable results caused by insufficient observations in Y,
or Y,. Kernel and deep CCA are designed to uncover nonlinear corre-
lations between modalities by projecting the original variables to new
nonlinear feature spaces. Multiset CCA is proposed to find multivari-
ate associations among more than two modalities. In this section, we
systematically review constrained CCA, nonlinear CCA, multiset CCA,

and other special CCA cases.

3.21 | Constrained CCA

Generalized constrained CCA

Formulation. Constrained CCA is implemented by adding penalties to
coefficients uy in Equation (1). Penalties can be either equality con-
straints or inequality constraints, and based on researcher's own con-
siderations, penalties can be added to either u; or u,, or to both uy
and u,. Therefore, in general, the constrained CCA problem can be

formulated in terms of the constrained optimization problem as:

maxp = corr(Y1ug,Yausz)
Uy, uz

- ulZpoup . { con;(uq,uz) =0,VieE;

’
1/ UIEMUM / u£222u2

where E represents the set of equality constraints and InE represents

con;(uy,uz) > 0,VjelnE;

the set of inequality constraints.

Solution. Analytical solutions usually do not exist for constrained
CCA problems, and solving Equation (6) requires numerical solutions
through iterative optimization techniques. Multiple optimization tech-
nigues can be applied, such as the Broyden-Fletcher-Goldfarb-Shanno
algorithm, augmented-Lagrangian algorithm, reduced gradient method
and sequential quadratic programming. Examples and details of solving
constrained CCA problems through above optimization techniques can
be found in Yang, Zhuang, et al. (2018) and Zhuang et al. (2017).

Special case: L;-norm penalty and sparse CCA

Formulation. The most commonly implemented penalty in constrained
CCA is the L1-norm penalty added to either u4 or u,, and is termed
sparse CCA:

sparse CCA: max p = corr(Yqiug,Youy)
1,U2

.
us XU
= 171272 ;o stlugly <cluzly <co,

,
1/ UIEMUM / u£222u2

7)

where |uj|; < ¢; are inequality constraints.

The L;-norm penalty induces sparsity on canonical coefficients,
and therefore sparse CCA can be implemented to high-dimensional
variables. When dealing with high-dimensional variables, the within-
set covariance matrices X,1 and X5, in Equation (7) are also high-
dimensional matrices, which are memory intensive. In addition, when
the number of observations is less than the number of features, the
covariance matrices cannot be estimated reliably from the sample. In
these cases, within-set covariance matrices are usually replaced by
identity matrices, and sparse CCA is then equivalent to sparse PLS.
Please note that researchers may still name this technique as sparse
CCA even after this replacement (Witten, Tibshirani, & Hastie, 2009).

With known prior information about features or observations,
sparse CCA can be further modified to structure sparse CCA or discrim-

inant sparse CCA, respectively. If the known prior information is
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about features, such as categorizing features into different groups
(Lin et al, 2014) or characterizing connections between features
(Kim et al., 2019), the prior information will be implemented as an
additional penalty on features, leading to structure sparse CCA. Alter-
natively, if the known prior information is about observations, such
as diagnostic group of each subject, the prior information will be
implemented as additional constraint on observations, leading to
discriminant sparse CCA (Wang et al., 2019).

Solutions. Sparse CCA, structure sparse CCA, and discriminant sparse
CCA can all be considered as special cases of a generalized con-
strained CCA (Equation (6)) problem with different equality and
inequality constraint sets. Iterative optimization techniques used to
solve the generalized constrained CCA problem are also applicable

here to solve these special cases.

3.2.2 | Nonlinear CCA

Both CCA and constrained CCA assume linear intervariable relation-
ships, however, this assumption does not hold in general for all
variables in real data. Nonlinear CCA uncovers the joint nonlinear rela-
tionship between different variables, which is a complementary tool
to conventional CCA methods. Kernel CCA, temporal kernel CCA, and
deep CCA are the foremost techniques in this category.

Kernel CCA and temporal kernel CCA

Formulation. Kernel CCA uncovers the joint nonlinear relationship
between two variables by mapping the original feature space in Y;
and Y5 on to a new feature space through a predefined kernel function.
However, this new feature space is not explicitly defined. Instead,
the original feature space for each observation in Y is implicitly pro-
jected to a higher dimensional feature space Y, — ¢(Y\) embedded in
a prespecified kernel function H, € RN*N| which is independent of the
number of features in the projected space. After transforming
ui to ¢(Yi) vy, the CCA form in Equation (1) in the higher dimensional
feature space, namely kernel CCA can be written as:

VTH1H2V2
Kernel CCA: max p = corr(¢(Y1)ug,¢(Yo)up) = max——————-=____;
ot Y2 NTH2vy \ VIH2v,
where Hy = dot (¢(Yy),(Yi))€RV*Nand uy = p(Yy) vy, k =1,2,
(8)

where v4 and v, are unknowns to estimate, instead of u; and us.

Temporal kernel CCA is a kernel CCA variant that is specifically
designed for two time series with temporal delays. In temporal kernel
CCA, one variable, for example, Y4, is shifted for multiple different
time points and a new variable Y is formed by concatenating the
original Y4 and the temporally shifted Y;. The new variable Y; and the
original Y are then input to kernel CCA as in Equation (8).

Solution. Closed-form analytical solution exists for kernel CCA

(Equation (8)). By setting the partial derivatives of the objective

function in Equation (8) with respect to v4 and v, to zero separately,

kernel CCA can be converted to the following problem:
H1H2V2 =pH%V1 and H2H1V1 =pH§V2. (9)

Note that the kernel CCA problem defined in Equation (9) always
holds true when p = 1. To avoid this trivial solution, a penalty term
needs to be introduced to the norm of original canonical coefficients
uy, such that v H2v, become v]Hzv +A|ug|)? = vy (Hf +/1Hk)vk, where
A is a regularization parameter. This regularized kernel CCA problem
can be further represented as an eigenvalue problem (Hardoon,
Szedmak, & Shawe-Taylor, 2004):

(H1 +M)_1H2(H2 +/“)_1H1V1 =/)2V1
(H2 +M)_1H1(H1 +M)_1H2V2 =/)2V2'

where a closed-form solution exists in the new feature space.

Deep CCA

Formulation. Kernel CCA requires a predefined kernel function for the
feature mapping to uncover the joint nonlinear relationship between
two variables. Alternatively, recent development of deep learning makes
it possible to learn the feature mapping from data itself. The deep learn-
ing variant of CCA, deep CCA (Andrew, Bilmes, & Livescu, 2013), pro-
vides a more flexible and robust way to learn and search the nonlinear
association between two variables. More specifically, deep CCA first
passes the original Y; and Y, through multiple stacked layers of
nonlinear transformations. Let 8, and 8, represent vectors of all parame-
ters through all layers for Y, and Y5, respectively, deep CCA can be rep-
resented as:

Deep CCA: 2‘1%xp=corr( f(Y1;01),f(Y2;02)). (11)
1,02

Solution. Deep CCA is solved through a deep learning schema by
dividing the original data into training and testing sets. 8, and 6, are
optimized by following the gradient of the correlation objective as
estimated on the training data (Andrew et al., 2013). The number of
unknown parameters in deep CCA is much higher than the number of
unknowns in other CCA variants; therefore, a large number of training
samples (in tens of thousands) are required for deep CCA to produce
meaningful results. In most studies, it is unlikely to have enough
observations (e.g. subjects) as training samples for deep CCA algo-
rithms. Instead, in neuroscience applications, treating each brain voxel
as a training sample, similar to Yang et al. (2020, 2019), would be

more promising in deep CCA applications.

3.23 | Multiset CCA

Multiset CCA extends the conventional CCA from uncovering associa-
tions between two variables to finding common patterns among more
than two variables. Constraints can also be incorporated in multiset

CCA for various purposes.
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Multiset CCA
Formulation. The most intuitive formulation of multiset CCA is to opti-
mize canonical coefficients of all variables by maximizing pairwise

canonical correlations, nameed as SUMCOR multiset CCA:

SUMCOR multisetCCA: max 3™ corr(Yiu, Yju;),  (12)
uq,...,Ug iji#

where K > 2 is the number of variables. A new matrix T€RK*K is

defined where each element £;; is a canonical correlation between

two variables Y; and Yj:

T T T
U1211U1 uiElzuz u121KUK
T T T
~ | upZ2iur uyEous u, Tk
$= , (13)
T T T
uKEKlul UKEKQUQ . uKZKKuK

and u[Zkkuk,k =1,...,Kis set to 1 for normalization.

Besides maximizing SUMCOR, Kettenring (1971) summarizes
four other possible objective functions in multiset CCA optimization:
(a) SSQCOR, maximizing sum of squared pairwise correlations Z,’jﬁj
(b) MAXVAR, maximizing largest eigenvalue of correlation matrix
Amax (f), (c) MINVAR, minimizing smallest eigenvalue of correlation
matrix Amin (i) and (d) GENVAR, minimizing the determinant of cor-
relation matrix det(f:). In practice, SUMCOR multiset CCA is most

commonly used followed by MAXVAR and SSQCOR multiset CCA.

Solution. Analytical solutions of multiset CCA are obtained by calculat-
ing the partial derivatives of the objective function with respect to
each u;. Since SUMCOR and SSQCOR are linear and quadratic func-
tions of each u;, respectively, closed-form analytical solutions can be
obtained for these two cost functions by setting the partial derivatives
equal to 0, which leads to generalized eigenvalue problems. Multiset
CCA with all these five objective functions can also be solved by
means of the general algebraic modeling system (Brooke, Kendrick,
Meeraus, & Rama, 1998) and NLP solver CONOPT (Drud, 1985).

Multiset CCA with constraints

In constrained multiset CCA, penalty terms can be added to each u;
individually. Here we give examples of two commonly incorporated
constraints in multiset CCA: sparse multiset CCA and multiset CCA

with reference.

Formulation: Sparse multiset CCA. Similar to sparse CCA, sparse multi-
set CCA applies the Li-norm penalty to one or more u; in Equa-
tion (12), and therefore induces sparsity on canonical coefficient(s)
and can be applied to high-dimensional variables. Here, we give the
equation of SUMCOR sparse multiset CCA as an example:

SUMCOR sparse multiset CCA :
K
max » corr(Yu;,Y;u;),

ug,..., U =
ij,i#

s.t.|ui, <¢j. (14)

Formulation: Multiset CCA with reference. Multiset CCA with reference
enables the discovery of multimodal associations with a specific refer-
ence variable across subjects, such as a neuropsychological measure-
ment (Qi, Calhoun, et al., 2018). In multiset CCA with reference,
additional constraints of correlations between each canonical variable
and the reference variable (v,¢) are added:

SUMCOR multiset CCAwithref:

K

2

Jmax ) .#(corr(Y;u,-,Yjuj) + ||corr(Y;ui,vref)\\2>, (15)
L

where 1>0 is the tuning parameter and ||- ||§ is the L,-norm. There-
fore, multiset CCA with reference is a supervised multivariate tech-
nigue that can extract common components across multiple variables

that are associated with a specific prior reference.

Solution. Both Equations (14) and (15) can be viewed as constrained
optimization problems with an objective function and multiple
equality and inequality constraints. In this case, iterative optimiza-
tion techniques are required to solve constrained multiset CCA

problems.

3.24 | Other CCA-related techniques

There are many other CCA-related techniques developed, and here
we only included three that have been applied in the neuroscience
field: supervised local CCA, Bayesian CCA, and tensor CCA.

Supervised local CCA

CCA by formulation is an unsupervised technique that uncovers joint
relationships between two variables. Meanwhile, CCA can become a
supervised technique by (a) adding additional constraints such as CCA
(multiset CCA) with reference discussed in the section “Multiset CCA
with constraints,” or (b) directly incorporating group information into
the objective function as in the supervised local CCA technique (Zhao
et al., 2017).

Supervised local CCA is based on locally discriminant CCA (Peng,
Zhang, & Zhang, 2010), which uses local group information to con-
struct a between-set covariance matrix £1,, as a replacement of X,
in Equation (1). More specifically, £1, is defined as the covariance
matrix from d nearest neighboring within-class samples (X,,) penalized
by the covariance from d nearest neighboring between-class samples

(X,) with a tuning parameter 2,
DIPED ) (16)

However, this technique only considers the local group informa-
tion with the global discriminating information ignored. To address
this issue, Fisher discrimination information together with local group
information is considered in supervised local CCA, which can be

written as:
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Ty T T
UIEQUQ + u1$1u1 + UZSQUZ

1/ UIZMU“ /U72—222U2

S =YJUY,k=1,2,UcRN*N,

Supervised local CCA: maxp = (17)
1,U2

where S, denote the between-group scatter matrices of the dataset
k. If samples i and j belong to cth class, U; is set to % where n.
denotes the number of samples in cth class; otherwise, Uj is set to
0. Supervised local CCA is usually applied sequentially with gradually
decreased d (named as hierarchical supervised local CCA) to reduce
the influence of the neighborhood size and improve classification
performance.

Bayesian CCA

Bayesian CCA is another technique that overcomes the overfitting prob-
lem when applying CCA to variables with small sample sizes. Bayesian
CCA is also proposed to complement CCA by providing a principal com-
ponent analysis (PCA)-like description of variations that are not captured
by the correlated components (Klami, Virtanen, & Kaski, 2013). Input to
CCA in Equation (1), Y1 and Y5, can be considered as N observations of
one-dimensional random variables y; eRP1*! and y,cRP2*1, Using the
same notations, Bayesian CCA can be formulated as a latent variable
model (with latent variable z) between y; and y, (Klami & Kaski, 2007;
Wang, 2007):

z~N(0,1),
(18)
Y ~ N (Acz +Byzy,Dy),k=1,2,

where N(0,]) denotes the multivariate Gaussian distribution with
mean vector 0 and identity covariance matrix I. Dy are diagonal covari-
ance matrices and indicate features in y, with independent noise. The
latent variable ze R9%1, where q represents the number of shared
components, captures the shared variation between y; and y,, and
can be linearly transformed back to the original space of y, through
Az k =

the number of variable-specific components, captures the variable

1, 2. Similarly, the latent variable, where gy represents

k-specific variation not shared between y; and y,, and can be linearly
transformed back to the original space in y, by Byzy.

Browne (1979) demonstrated that Equation (18) was equivalent
to CCA in Equation (1) by showing that maximum likelihood solutions
to both Equations (1) and (18) share the same canonical coefficients
with an unknown rotational transform, that is, Equation (18) is equiva-
lent to conventional CCA (Equation (1)) in the aspect that their solu-
tions share the same subspace. However, unlike conventional CCA
(Equation (1)) that uses two variables u, and u, to project y; and y, to
this subspace, Bayesian CCA maintains the shared variation between
y1 and y, in a single variable z.

The formulation of y, in Equation (18) can be rewritten
as yx NN(Akz, BkBl +Dk),k= 1,2 after algebra operations. With
Y, = BkB,I + Dy, the model in Equation (18) can be transformed to

z~N(0,1),

Yk NN(AkZ,\I’k),k = 1,2.

In Equation (19), prior knowledge of the parameters (e.g., A, and
¥,) are required to construct the latent variable model for Bayesian
CCA. For instance, the inverse Wishart distribution as a prior for the
covariance ¥, and the automatic relevance determination (ARD;
Neal, 2012) prior for the linear mappings A, are used when Bayesian
CCA is proposed (Klami & Kaski, 2007; Wang, 2007). Since then,
multiple Bayesian inference techniques have been developed, how-
ever, the early work of Bayesian CCA is limited to low-dimensional
data (not more than eight dimensions in Klami & Kaski, 2007 and
Wang, 2007) due to the computational complexity to estimate the
posterior distribution over the p, X p, covariance matrices ¥, (Klami
et al., 2013). A group-wise ARD prior (Klami et al., 2013) was recently
introduced for Bayesian CCA, which automatically identifies variable-
specific and shared components. More importantly, this change made
Bayesian CCA applicable for high-dimensional data. More technical
details about Bayesian CCA can be found in Klami et al. (2013).

Tensor CCA

Two-dimensional CCA and tensor CCA for high-dimensional variables.
Variables input to CCA (Y, eRN*P« k=1,2,...,) are usually required to
be 2D matrices with a dimension of number of observations (N) times
number of features (py) in each variable. Y, can be considered as N
observations of the 1D variable y,ﬁRWl, In practice, tensor data,
such as 3D images or 4D time series, are commonly involved in neuro-
science applications, and these variables are required to be vectorized
before inputting to CCA algorithms. This vectorization could poten-
tially break the feature structures. In this case, to analyze 3D data,
such as N samples of 2D variables (N x p1 X p,), without breaking the
2D feature structure, two-dimensional CCA (2DCCA) has been pro-
posed by Lee and Choi (2007).

Mathematically, 2DCCA maximizes the canonical correlation
between two variables with N observations of 2D features: Y;:
{YieRPu*Pz n=1 N} and Y,: {Y3€RP2*P2,n=1,.,N}. For each
variable, 2DCCA searches left transforms l;eRP11*! and I,eRP2*?
and right transforms reRP22*1 and r,cRP2*! in order to maximize

the correlation between I Y1ry and I}Yr:

2DCCA: r’nax p= cov(lIerl,ngzrz),s.t.var(lIYirl) = 1,var(l£Y2r2) =1.

Iy, lp,r1,r2

(20)

In Equation (20), for fixed I; and I, r; and r, can be obtained with
the SVD algorithm similar to the one used in conventional CCA, and I;
and I, can be obtained for fixed r, and r,, alternatingly. Therefore, an
iterative alternating SVD algorithm (Lee & Choi, 2007) has been devel-
oped to solve Equation (20).

Above described 2DCCA can be treated as a constrained optimiza-

tion problem with low-rank restrictions on canonical coefficients, similar
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restrictions are used in (Chen, Kolar, & Tsay, 2019), where 2DCCA has
been extended to higher dimensional tensor data, termed tensor CCA.
The tensor CCA (Chen et al., 2019) searches two rank-one tensors
Uq = Uqqo ol €ERP1XXPim and uy = Upqo- - -oligy €RP2 X *Pom to maxi-
mize the correlation between Yi:{YjeRP1>*"*Pm n=1, N} and
Yo {YjeRPa X" *Pm n=1,. N}, where “=" denotes outer product and
Uk, ..., Ukm are vectors. Chen et al. (2019) also introduced an efficient
optimization algorithm to solve tensor CCA for high dimensional

data sets.

Tensor CCA for multiset data. Another way to handle input variables
with high-dimensional feature spaces is to generalize conventional CCA
by analyzing constructed covariance tensors (Luo, Tao, Ramamohanarao,
Xu, & Wen, 2015). This method requires random variables to be vec-
torized and is similar to multiset CCA since both of them deal with more
than two input modalities. The differences between tensor CCA and
multiset CCA in this case lie in that tensor CCA constructs a high-order
covariance tensor for all input variables (Luo et al., 2015), whereas multi-
set CCA finds pair-wise covariance matrices. In addition, tensor CCA
(Luo et al., 2015) does not maximize the pairwise correlation as in multi-
set CCA,; instead, it directly maximizes the correlation over all canonical

variables,

max p=Corr(Yius, - Yxt) = (Y1u10---0Yuk)"

x Lst.(Yeu) Yiu=1,k=1,...K, (21)

where O denotes element-wise product and 1€ RN*! is an all ones
vector. The problem formulated in Equation (21) can be solved by
using the alternating least square algorithm (Kroonenberg & de
Leeuw, 1980).

3.25 | Statistical inferences of CCA variants
Nonparametric permutation tests have been widely performed in CCA
variant techniques to determine the statistical significance of each
canonical correlation value and the corresponding canonical coeffi-
cients. In these permutation tests, as we described in Section 3.1,
observations of one variable are randomly shuffled (Y, becomes \/(I),
while observations of the other variable are kept intact (Y, remains).
This random shuffling is repeated multiple times (~5,000), and the
exact same CCA variant technique is applied to each shuffled data.
The obtained canonical correlation values from these randomly shuf-
fled data form the null distribution. Statistical significances (p-values)
of true canonical correlation values are determined by comparing true
values to this null distribution.

Besides permutation tests, a null distribution can also be built by
creating null data input to CCA variant techniques. The null data are
usually generated based on the physical properties of input variables.
For instance, when applying CCA-variant technique to link task fMRI
data and the task stimuli, the null data of task fMRI can be obtained by
applying wavelet-resampling to resting-state fMRI data (Breakspear,

Brammer, Bullmore, Das, & Williams, 2004; Zhuang et al., 2017). The
null hypothesis here is that task fMRI data are not multivariately corre-
lated with task stimuli, and the wavelet resampled resting-state fMRI

data fits the requirements of the null data in this case.

3.3 | Technical differences
3.3.1 | Technical differences among CCA-related
techniques

There are three prominent CCA techniques: conventional CCA shares
the simplest formulation and can be easily applied to uncover multi-
variate linear relationships between two variables; nonlinear CCA by
definition can extract multivariate nonlinear relationship between two
variables through feature mapping with known predefined functions;
and multiset CCA are able to find common covariated patterns among
more than two variables. These three methods can be efficiently
solved with closed-form analytical solutions, which are obtained by
taking the partial derivatives of the objective function with respective
to each unknown, separately.

Constrained (multiset) CCA incorporates prior information about
input variables into each of the three CCA methods, in terms of equality
and inequality constraints on the unknowns. Prior knowledge about the
data or specific hypothesis are required for its applications. Closed-form
solutions are no longer available for constrained (multiset) CCA and iter-
ative optimization techniques are required to solve these problems.

Recently developed deep CCA is different from all other CCA-
related techniques as it learns the optimum feature mapping from the
data itself through deep learning with training and testing data being
specified. Machine learning and deep leaning expertise are required to

solve this problem.

3.3.2 | Relationship between CCA and other
multivariate and univariate techniques

Relationship with other multivariate techniques
In general, CCA can be directly rewritten in terms of the multivariate

multiple regression (MVMR) model:

Yius =Yous te, (22)

where u; and u, are obtained by minimizing the residual term
e RN*1 . Since CCA is scale-invariant, a solution to Equation (22) is
also a solution of Equation (1). Furthermore, with normalization terms
of ulZqqus =1 and ulTyou, =1, the MVMR model is exactly equiva-
lent to CCA, that is, maximizing the canonical correlation between Y,
and Y, is equivalent to minimizing the residual term e:

max(corr(Yqiug,Yauyp)) < maquEuuz S min— uIElqu
uq,uy uq,up ug,up

: 2
@mlur;HYiul—qusz. (23)
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In addition, by replacing the covariance matrices X1, and X,5 in
the denominator in Equation (1) with the identity matrix I, conven-
tional CCA is converted to partial least square (PLS), which maximizes
the covariance between latent variables. If Y, is the same as Y,, the
PLS will maximize the variance within a single variable, which is equiv-
alent to PCA.

Relationship with univariate techniques
If one variable in CCA, for example, Y4, only has a single feature, that
is, y e RN*? "y, can then be defined as 1 and CCA becomes a linear

regression problem:

y=Xp+e, (24)

where Y, is renamed as y and Y, is renamed as X to follow conven-
tional notations. e € RN*! denotes the residual term. If both variables
Y1 and Y5 contain only one feature, the canonical correlation between
Y;: and Y, becomes the Pearson's correlation between Y, and Y, as in
the univariate analysis.

4 | NEUROSCIENCE APPLICATIONS
4.1 | CCA: Finding linear relationships
411 | Directapplication of CCA

Combine phenotypes and brain activities

To date, the most common CCA application in neuroscience is to find
joint multivariate linear associations between phenotypic features and
neurobiological activities. Phenotypic features usually include one or
more measurements from demographics, genetic information, behav-
ioral measurements, clinical symptoms, and performances of neuropsy-
chological tests. Neurobiological activities are generally summarized
with brain structural measurements, functional activations during spe-
cific tasks, both static and dynamic resting-state functional connectivity
measurements, network topological measurements, and electrophysio-
logical recordings (Table 1).

In normal healthy subjects, using CCA, multiple studies have delin-
eated the joint multivariate relationships between the above imaging-
derived features and nonimaging measurements, which have boosted
our understandings of healthy development and healthy aging (Irimia &
van Horn, 2013; Kuo et al, 2019; Shen et al, 2016; Tsvetanov
et al,, 2016). Furthermore, using multivariate CCA to combine imaging
and nonimaging features have provided new insights to understand the
joint relationship between brain activities and subjects' clinical symp-
toms, behavioral measurements, and performances of neuropsychologi-
cal tests in various diseased populations, such as psychosis disease
spectrum (Adhikari et al., 2019; Bai et al., 2019; Kottaram et al., 2019;
Laskaris et al., 2019; Palaniyappan et al., 2019; Rodrigue et al., 2018;
Tian et al., 2019; Viviano et al., 2018), Alzheimer's disease spectrum
(Brier et al., 2016; Liao et al, 2010; McCrory & Ford, 1991; Zhu
et al., 2016), neurodevelopmental diseases (Chenausky et al., 2017; Lin,

Cocchi, et al., 2018; Zille et al., 2018), depression (Dinga et al., 2019),
Parkinson's disease (Lin, Baumeister, Garg, and McKeown, 2018; Liu
et al., 2018), multiple sclerosis (Leibach et al., 2016; Lin et al., 2017), epi-
lepsy (Kucukboyaci et al, 2012) and drug addictions (Dell'Osso
et al., 2014).

Brain activation in response to task stimuli

CCA has also been applied to detect brain activations in responses
to stimuli during task-based fMRI experiments. Compared to the most
commonly general linear regression model, local neighboring voxels are
considered simultaneously in CCA to determine activation status of the
central voxel (Friman, Cedefamn, Lundberg, Borga, & Knutsson, 2001;
Nandy & Cordes, 2003; Nandy & Cordes, 2004; Rydell et al., 2006;
Shams et al., 2006). In addition, in task-based electrophysiological exper-
iments, Dmochowski et al. (2018) and de Cheveigne et al. (2018)
have maximized the canonical correlation between an optimally trans-
formed stimulus and properly filtered neural responses to delineate the
stimulus-response relationship in electroencephalogram (EEG) data.

Denoising neuroscience data

Another application of CCA in neuroscience research is to remove
noises from signals in the raw data. Through a blind source separation
(BSS) framework, von Luhmann et al. (2019) extract comodulated
canonical components between fNIRS signals and accelerometer sig-
nals, and consider those components above a canonical correlation
threshold to be motion artifact. Through BSS-CCA algorithms, multi-
ple studies demonstrate that muscle artifact can be efficiently
removed from EEG signals (Hallez et al., 2009; Janani et al., 2020;
Somers & Bertrand, 2016; Vergult et al., 2007). Furthermore, Churchill
et al. (2012) remove physiological noise from fMRI signals through
a CCA-based split-half resampling framework, and Li et al. (2017)
remove gradient artifacts in concurrent EEG/fMRI recordings through

maximizing the temporal autocorrelations of the time series.

Canonical granger causality

CCA has also been used to determine the causal relationship among
regions of interest (ROIls) in fMRI functional connectivity analysis.
Instead of using the mean ROI time series directly for analysis, multiple
time series are specified for each ROl and CCA searches the optimally
weighted mean time series during the analysis. Sato et al. (2010) com-
pute multiple eigen-time series for each ROl and determine the granger
causality between two ROIs by maximizing the canonical correlation
between eigen-time series at time point t and t-1 of the two ROls. In a
more recent work, instead of using eigen-time series of each ROI, Gulin
et al. (2014) compute an optimized linear combination of signals from

each ROI in CCA to enable a more accurate causality measurement.

4.1.2 | Practical considerations and data reduction

steps

As we stated in Section 3.1, only if numbers of observations are more
than numbers of features in both Y, and Y5, thatis, N> p,, k =1, 2,
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conventional CCA can produce statistically stable and meaningful
results. However, in neuroscience applications, this requirement is
not always fullfilled, especially when Y, or Y, represents brain activi-
ties where each brain voxel is considered a feature individually. In
this case, any feature can be picked up and learned by the CCA pro-
cess and directly applying Equation (1) to two sets will produce
overfitted and unstable results. Therefore, additional data-reduction
steps applied before CCA or constraints incorporated in the CCA
algorithm are necessary to avoid overfitting in CCA applications. In
this section, we focus on data reduction steps applied before
conventional CCA.

The most commonly used data reduction technique is the PCA
method applied to Y1 and Y, separately. Through orthogonal transfor-
mation, PCA converts Y, and Y, into sets of linearly uncorrelated
principal components. The principal components that do not pass cer-
tain criteria are discarded, leading to dimension-reduced variables:
Y1 €RN*% and Y, eRN*%  where N> gy, k = 1, 2. Equation (1) can
then be applied to Y1 and Y». Multiple studies applied PCA to reduce
data dimensions before applying CCA to find joint multivariate corre-
lations between two high-dimensional variables (Abrol et al., 2017,
Churchill et al., 2012; Hackmack et al., 2012; Li et al., 2019; Mihalik
et al., 2019; Ouyang et al., 2015; Sato et al., 2010; Smith et al., 2015;
Sui et al., 2010; Sui et al., 2011; Zarnani et al., 2019).

In addition, the least absolute shrinkage and selection operator
(LASSO) algorithm (Tibshirani, 1996) has also been applied prior
to CCA as a feature selection step to eliminate less informative
features. For instance, in delineating the association between neuro-
physiological measures, which are derived from transcranial mag-
netic stimulation and electromyographic recordings, and kinematic-
clinical-demographic measurements in Parkinson's disease subjects,
Bologna et al. (2018) first perform logistic regression with LASSO
penalty to determine the most predictive features for the disease
in both variables. CCA is then applied to link the most predictive
features from each variable. Similarly, sparse regression techniques
have also been applied before CCA to genetic data in a neu-
rodevelopmental cohort (Zille et al, 2018). Furthermore, feature
selection can also be implemented in PCA as done in L;-norm penal-
ized sparse PCA (sPCA; Witten & Tibshirani, 2009; Yang, Zhuang,
Bird, et al., 2019), which removes noninformative features during
the dimension reduction step.

There is no single “correct” way or “gold standard” of the feature
reduction step before applying CCA. Decisions should be made based
on the data itself and the specific question that researchers are
interested in.

4.2 | Constrained CCA: Removing noninformative
features and stabilizing results

The other common solution in practice for N < py, k = 1, 2 is to incor-
porate constraints into the CCA algorithm directly, and consequently
noninformative features can be removed and overfitting problems can
be avoided (Table 2).

421 | Constraints in CCA algorithms: Sparse CCA
to remove noninformative features

Most studies apply the sparse CCA method (detailed in the
section “Special case: Ly-norm penalty and sparse CCA”), which maxi-
mizes canonical correlations between Y, and Y,, and suppresses non-
informative features in Y; and Y, simultaneously (Badea et al., 2019;
Lee et al., 2019; Moser et al., 2018; Pustina et al., 2018; Thye &
Mirman, 2018; Vatansever et al., 2017; Wang et al, 2018; Xia
et al., 2018). The features determined to be noninformative are
assigned with zero coefficients. Therefore, sparse CCA is particularly
appropriate to combine modalities with large noise or substantial non-
informative features, such as voxel-wise, regional-wise or connectivity-
based brain features and genetic sequences (Avants et al., 2010;
Deligianni et al., 2014; Du et al., 2017; Du, Liu, Yao, et al., 2019; Du,
Zhang, et al., 2016; Duda et al., 2013; Gossmann et al., 2018; Grellmann
et al.,, 2015; Jang et al., 2017; Kang et al., 2018; McMiillan et al., 2014,
Sheng et al, 2014; Sintini, Schwarz, Martin, et al., 2019; Sintini,
Schwarz, Senjem, et al., 2019; Szefer et al., 2017; Wan et al., 2011).
Rosa et al. (2015) further induce nonnegativity in the L;-norm penalty
in sparse CCA to investigate multivariate similarities between the
effects of two antipsychotic drugs on cerebral blood flow using col-
lected arterial spin labeling data.

Prior knowledge about Y4 and Y, might also be available in neuro-
science data. With known prior information of the feature dimension,
structure-sparse CCA has been applied to associate brain activities
with genetic information (Du et al., 2014; Du et al., 2015; Du, Huang,
et al., 2016a; Du, Huang, et al., 2016b; Du, Liu, Zhang, et al., 2017,
Kim et al.,, 2019; Lin et al., 2014; Liu et al., 2017; Yan et al., 2014),
and to link structural and functional brain activities (Lisowska &
Rekik, 2019; Mohammadi-Nejad et al., 2017). If prior knowledge is
available of the observation dimension, such as memberships of diag-
nostic groups, discriminant sparse CCA is applied to investigate joint
relationship between brain activities and genetic information for sub-
jects with Schizophrenia disease spectrum (Fang et al., 2016) or
Alzheimer's disease spectrum (Wang et al.,, 2019; Yan et al,, 2017).
Longitudinal data could also be collected in neuroscience research
and are useful to monitor disease progression. Temporal constrained
sparse CCA has been proposed to uncover how single nucleotide
polymorphisms affect brain gray matter density across multiple time
points in subjects with Alzheimer's disease spectrum (Du, Liu, Zhu,
et al,, 2019; Hao, Li, Yan, et al., 2017).

4.22 | Constraints in CCA algorithm: Constrained
CCA to stabilize results

Multiple constraints have also been proposed in CCA applications to
stabilize CCA coefficients between brain activities and clinical symp-
toms. For instance, to avoid overfitting between fNIRS signals during
a moral judgment task and psychopathic personality inventory scores
in healthy adults, Dashtestani et al. (2019) introduce a regularization

parameter A to keep the canonical coefficients small and to avoid high



ZHUANG ET AL.

WILEY_L %%

TABLE 2 Constrained CCA application

CCA variant Modality 1 Modality 2

Sparse CCA (L1-norm
penalty)

Brain imaging data

Brain imaging data

Brain imaging data

Genetic information

Structure-sparse CCA Brain imaging data

Brain imaging data

Discriminant sparse
CCA

Brain imaging data

Constrained CCA Brain imaging data

Brain imaging data Task design

Other constraints in Longitudinal brain
CCA imaging data

Abbreviation: CCA, canonical correlation analysis.

bias problem. Similarly, in preclinical research, Grosenick et al. (2019)
uses two regularization parameters 4, and 1, to penalize the estimated
covariance matrices for the resting-state functional connectivity fea-
tures and Hamilton Rating Scale for Depression clinical symptoms,
respectively.

Furthermore, as we stated in Section 4.1.1, CCA has been applied
to detect brain activations in response to task stimuli during fMRI
experiments. In these type of applications, Y; represents time series
from local neighborhood that is considered simultaneously in deter-

mining the activation status of the central voxels, and Y, represents

Clinical/behavioral/neuropsychological
measurements

Brain imaging data

Genetic information

Clinical/behavioral/measurements

Brain imaging data

Genetic information

Genetic information/blood data

Clinical/behavioral/neuropsychological
measurements

Genetic information
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Nejad, Hossein-Zadeh, and Soltanian-
Zadeh (2017)

Du et al. (2014, 2015, 20163, 2016b;

Du et al. (2017); Kim et al. (2019);
Liu et al. (2017; Lin, Calhoun, and
Wang, 2014; Yan et al. (2014

Fang et al. (2016); Wang, Shao, Hao, Shen,
and Zhang (2019); Yan, Risacher, Nho,
Saykin, and Shen (2017)

Grosenick et al. (2019); Dashtestani
et al. (2019)

Cordes, Jin, Curran, and
Nandy, (2012a, 2012b); Dong et al. (2015);
Friman, Borga, Lundberg, and
Knutsson (2003); Zhuang et al. (2017);
Zhuang et al. (2019)

Du, Liu, Zhu, et al. (2019) (temporal multitask
sparse CCA); Hao et al. (2017) (temporal
group sparse CCA);

the task design matrix. CCA is applied to find optimized coefficients
u, and u,, such that the correlation between combined local voxels
and task design is maximized. In this case, even though the central
voxel may be inactivated in the task, activated neighboring voxels
would lead to a high canonical correlation and thus produce falsely
activated status of the central voxel, which is termed assmoothing
artifact (Cordes et al., 2012a). To eliminate this artifact and to uncover
real activation status, multiple constraints have been applied to u; to
guarantee the dominant effect of the central voxel in a local neighbor-
hood (Cordes et al., 2012b; Dong et al., 2015; Friman et al., 2003;
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Zhuang et al., 2017; Zhuang et al., 2019). Yang, Zhuang, et al. (2018)
further extend the constraints from two-dimensional local neighbor-

hood to three-dimensional neighboring voxels.

4.3 | Kernel CCA: Focusing on a nonlinear
relationship between two modalities

Above CCAapplications assume joint linear relationships between two
modalities; however, this assumption might not always hold in neuro-
science research. Kernel CCA has been proposed to uncover the
nonlinear relationship between modalities without explicitly specifying
the nonlinear feature space (Equation (8)). In human research, kernel
CCA has been applied to investigate the joint nonlinear relationship
between simultaneously collected fMRI and EEG data (Yang, Cao,
et al., 2018), to uncover gene-gene co-association in Schizophrenia
subjects (Ashad Alam et al., 2019), and to detect brain activations
in response to fMRI tasks (Hardoon et al, 2007; Yang, Zhuang,
et al.,, 2018). In preclinical research, temporal kernel CCA has been pro-
posed to investigate the temporal-delayed nonlinear relationship
between simultaneously recorded neural (electrophysiological record-
ing in frequency-time space) and hemodynamic (fMRI in voxel space)
signals in monkeys (Murayama et al, 2010), and to investigate a
nonlinear predictive relationship between EEG signals from two differ-
ent brain regions in macaques (Rodu et al., 2018) (Table 3).

44 | Multiset CCA: More than two modalities

Multiset CCA has been specifically proposed to find common multi-
variate patterns across K modalities, with K > 2. The widest applica-
tion of multiset CCA in neuroscience research is to uncover covariated
patterns among demographics, clinical characteristics, behavioral
measurements and multiple brain activities, including structural MRI
derived measurements (gray matter, white matter, and cerebrospinal
fluid densities), diffusion weighted MRI derived measurements (myelin
water fraction and white matter tracts), fMRI derived measurements
(static and dynamic functional connectivity, task fMRI activations,
amplitude of low frequency contributions) and PET derived measure-
ments (standardized uptake values) (Baumeister et al., 2019; Langers
et al., 2014; Lerman-Sinkoff et al., 2017; Lerman-Sinkoff et al., 2019;

TABLE 3 Nonlinear Kernel CCA applications

CCA variant Modality 1

Kernel CCA Brain imaging data

Brain imaging data

Genetic information

Temporal kernel CCA

Abbreviation: CCA, canonical correlation analysis.

Modality 2
Brain imaging data

Task design

Genetic information

Simultaneously recorded multiple modalities

Lin, Vavasour, et al., 2018; Lottman et al., 2018; Stout et al., 2018; Sui
et al.,, 2013; Sui et al., 2015) (Table 4).

Multiset CCA has also been applied to group analysis, which com-
bines data from multiple subjects within a single modality. In this type
of applications, data from each subject are treated as one modality,
and multiset CCA is used to uncover common patterns in fMRI data
(Afshin-Pour et al., 2012; Afshin-Pour et al., 2014; Correa, Adali,
et al., 2010; Varoquaux et al., 2010), consistent signals in electrophysi-
ological recordings (Koskinen & Seppa, 2014; Lankinen et al., 2014;
Lankinen et al., 2016; Lankinen et al., 2018; Zhang et al., 2017), covar-
ied components in fNIRS data (Liu & Ayaz, 2018), and correlated fMRI
and EEG signals (Correa, Eichele, et al., 2010) across multiple subjects.

Sparse multiset CCA has been applied to combine more than two
variables and remove noninformative features simultaneously. Specifi-
cally, sparse multiset CCA has been applied to combine multiple brain
imaging modalities with genetic information (Hao et al., 2017; Hu
et al,, 2016; Hu et al., 2018).

Multiset CCA with reference is specifically proposed as a supervised
multimodal fusion technique in neuroscience research. Using neuropsy-
chological measurements such as working memory or cognitive mea-
surements as the reference, studies have uncovered stable covariated
patterns among fractional amplitude of low frequency contribution
maps derived from resting-state fMRI, gray matter volumes derived
from structural MRI and fractional anisotropy maps derived from
diffusion-weighted MRI that are linked with and can predict core cogni-
tive deficits in schizophrenia (Qi, Calhoun, et al., 2018; Sui et al., 2018).
Using genetic information as a prior reference, multiset CCA with refer-
ence has also uncovered multimodal covariated MRI biomarkers that are
associated with microRNA132 in medication-naive major depressive
patients (Qi, Yang, et al., 2018). Furthermore, with clinical depression
rating score as guidance, Qi et al. (2020) have demonstrated that the
electroconvulsive therapy Hdepressive disorder patients produces a
covariated remodeling in brain structural and functional images, which is
unique to an antidepressant symptom response. As a supervised tech-
nique, multiset CCA can be applied to uncover covariated patterns

across multiple variables of special interest.

4.5 | Other applications

CCA has also been applied in a supervised and hierarchical fashion.
Zhao et al. (2017) have performed supervised local CCA with

Reference
Yang, Cao, et al. (2018)

Hardoon, Mourao-Miranda, Brammer, and Shawe-
Taylor (2007); Yang, Zhuang, et al. (2018)

Ashad Alam, Komori, Deng, Calhoun, and Wang (2019)

John et al. (2017); Murayama et al. (2010); Rodu, Klein,
Brincat, Miller, and Kass (2018)
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TABLE 4 Multiset CCA applications

CCA variant

Multiset CCA Combine multiple brain

imaging data

Combine brain imaging data

and other information

Combine multiple subjects

within a single modality

Combine multiple subjects

from two modalities

Combine multiple ROIs
within a single modality

Constraints in
multiset
CCA

Sparse multiset CCA

Multiset CCA with
reference

Detailed modalities

rsfMRI + task fMRI + sMRI

sMRI (WM + GM + CSF) + rsfMRI
sMRI + fMRI + dMRI

Multiple task fMRI

sMRI + fMRI + EEG

Brain imaging data (sMRI/fMRI) +

neuropsychological measurements +
clinical/behavioral measurements

Brain imaging data (PET + sMRI + fMRI) +

neuropsychological measurements

Subl + Sub2 + ... + SubN within a single
modality

Subl + Sub2+ ... + SubN from fMRI and
EEG

ROI1 + ROI2 + ... + ROIN within a single
modality

Brain imaging data + genetic information +
clinical measurements

Brain imaging data (fMRI + sMRI + dMRI)
with neuropsychological measurements
as reference

Brain imaging data (fMRI + sMRI + dMRI)

Reference

Lerman-Sinkoff et al. (2017); Lerman-Sinkoff,
Kandala, Calhoun, Barch, and Mamah (2019)

Lottman et al. (2018)

Sui et al. (2013, 2015)

Langers, Krumbholz, Bowtell, and Hall (2014)
Correa, Adali, Li, and Calhoun (2010)

Baumeister et al. (2019); Lin, Cocchi, et al. (2018);
Lin, Vavasour, et al. (2018)

Stout et al. (2018)

Afshin-Pour, Hossein-Zadeh, Strother, and Soltanian-
Zadeh (2012); Afshin-Pour, Grady, and
Strother (2014); Correa, Adali, et al. (2010);
Gaebler et al. (2014); Koskinen and Seppa (2014);
Lankinen, Saari, Hari, and Koskinen (2014);
Lankinen et al. (2016, 2018); Liu and Ayaz (2018);
Varoquaux et al. (2010); Zhang, Borst, Kass, and
Anderson (2017)

Correa, Eichele, Adali, Li, and Calhoun (2010)

Deleus et al. (2011)

Hu, Lin, Calhoun, and Wang (2016); Hu et al. (2018);
Yu et al. (2015)

Qi et al. (2020), Qi, Calhoun, et al. (2018);
Sui et al. (2018)

Qi, Yang, et al. (2018)

with genetic information as reference

Abbreviations: CCA, canonical correlation analysis; CSF, cerebrospinal fluid; dMRI, diffusion-weighted MRI; EEG, electroencephalogram; GM, gray matter;
MRI, magnetic resonance imaging; PET, position emission tomography; ROI, regions of interest; rsfMRI, resting-state functional MRI; sMRI, structural MRI;

Sub, subject; WM, white matter.

gradually varying neighborhood sizes in early autism diagnosis, and in
each iteration, CCA is used to combine canonical variates from the
previous step (Table 5).

Bayesian CCA has been used to realign fMRI activation data between
actors and observers during simple motor tasks to investigate whether
seeing and performing an action activates similar brain areas (Smirnov
et al,, 2017). The Bayesian CCA assigns brain activations to one of three
types (actor-specific, observer-specific and shared) via a group-wise
sparse ARD prior. Furthermore, using Bayesian CCA, Fujiwara et al. (2013)
establish mappings between the stimulus and the brain by automatically
extracting modules from measured fMRI data, which can be used to gen-
erate effective prediction models for encoding and decoding.

More recently, in network neuroscience, Graa and Rekik (2019)
propose a multiview learning-based data proliferator that enables the
classification of imbalanced multiview representations. In their pro-
posed approach, tensor-CCA is used to align all original and prolifer-

ated views into a shared subspace for the target classification.

TABLE 5 Other CCA applications

CCAvariant  CCA application
Supervised Combine two modalities
local CCA
Tensor CCA Morphological networks
Bayesian Realign fMRI data from
CCA multiple subjects
Task fMRI activation
detection
Others Toolbox
Reviews

Reference

Zhao, Qiao, Shi, Yap,
and Shen (2017)

Graa and Rekik (2019)
Smirnov et al. (2017)

Fujiwara, Miyawaki, and
Kamitani (2013)

Bilenko and
Gallant (2016)

Liu and Calhoun (2014)
and Sui, Adali, Yu,
Chen, and
Calhoun (2012)

Abbreviations: CCA, canonical correlation analysis; fMRI, functional mag-

netic resonance imaging.
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5 | ADVANTAGES AND LIMITATIONS OF
EACH CCATECHNIQUE IN NEUROSCIENCE
APPLICATIONS

Table 6 explains the advantages and limitations of each CCA and its
variant techniques.

5.1 | Canonical correlation analysis

5.11 | Advantages

CCA can be applied easily to two variables and solved efficiently in closed-
form using algebraic methods (Equation (3)). In CCA, the intermodality
relationship is assumed to be linear and both modalities are exchangeable
and treated equally. Canonical correlations are invariant to linear trans-
forms of features in Y4 or Y5. In neuroscience research, CCA uncovers the
joint multivariate linear relationship between two modalities and has
proven to be an effective multivariate and data-driven analysis method.

5.1.2 | Limitations

CCA assumes and uncovers only a linear intermodality relationship,
which might not hold for neuroscience data. Furthermore, directly
applying CCA requires sufficient observation support of the variables
(detailed in Section 3.1). For neuroscience data, especially voxel-wise
brain imaging data, it is usually difficult to have more observations
(e.g., subjects) than features (e.g., voxels). In this case, any feature in
Y1 and Y, can be picked up and learned by the CCA process, and
directly applying CCA will produce overfitted and unstable results.
ROIl-based analysis, data reduction (e.g., PCA), and feature selection
(e.g., LASSO) steps are commonly applied to reduce the number of
features in neuroscience data prior to CCA.

Another limitation of CCA in general is that signs of the canonical
correlations and canonical coefficients are indeterminate. Solving the
eigenvalue problem in Equation (3) will always give a positive canoni-
cal correlation value, and reversing the signs of u; and u, simulta-
neously will lead to the same canonical correlation value. Therefore,
with CCA, we can only conclude that two modalities are linearly and

TABLE 6 Advantages and limitations of each CCA-related technique

Category
CCA

Constrained
CCA

Nonlinear
CCA

Multiset
CCA

CCA variant
CCA

Sparse CCA

Structure sparse
CCA

Discriminant
sparse CCA

Generalized
constrained
CCA

Kernel CCA

Temporal kernel
CCA

Deep CCA

Multiset CCA

Sparse multiset
CCA

Multiset CCA
with reference

Advantages

1) Has closed-form analytical solution
2) Easy to apply
3) Invariant to scaling

)

)

1) Removes noninformative features and solves N < pj
2) Performs reasonably with high-dimensional-co-linear data

1) Improves effectiveness
of sparse CCA.

2) Produces biological
meaningful results

Removes noninformative features,
solving N < py with prior
information about the data

Discovers group
discriminant features

1) Reduces false positives
2) Maintains most of the variance in a stable model

1) Finds nonlinear relationship among modalities
2) Has analytical solution

Most appropriate to simultaneously collect data from two modalities
with time delay

1) Finds unknown nonlinear relationship
2) Purely data-driven

1) Good for more than two modalities
2) Good for group analysis
)
)

1) Good for more than two modalities
2) Removes noninformative features and solves N < py

Supervised fusion technique to link common patterns with a prior
known variable

Abbreviation: CCA, Canonical correlation analysis.

Limitations

1) Requires N > p,, k=1, 2
2) Signs of canonical correlations are
indeterminate

Requires optimization expertise

1) Requires optimization expertise
2) Requires prior knowledge about the
data

1) Requires optimization expertise
2) Requires predefined constraints

1) Requires predefined kernel
functions

2) Difficult to project from kernel
space back to original feature space,
leading to difficulties in
interpretation

3) Only linear kernel space can be
projected back to the original
feature space.

1) Requires deep learning expertise
2) Requires large number of training
samples (in tens of thousands)

1) Requires predefined objective
functions

2) The number of final canonical
components does not represent the
intersected common patterns across
all modalities
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multivariately correlated without determining the direction of the lin-

ear relationship.

5.2 | Constrained CCA

5.2.1 | Advantages

Incorporating constraints in CCA can in general avoid overfitted and
unstable results in CCA. More specifically, different constraints can
benefit neuroscieence research in various ways.

Sparse CCA incorporates the L;-norm penalty on the canonical
coefficients uy, k = 1, 2 such that noninformative features are auto-
matically removed by suppressing their weights. Thus, sparse CCA is
suitable for high-dimensional co-linear data, such as whole-brain
voxel-wise activities or genetic data. In practice, the within-modality
covariance matrices Xy, k = 1, 2 are replaced with the identity matrix I
in sparse CCA, since estimating X, from the high-dimensional collin-
ear data are both memory and time consuming. This replacement
saves both computation time and physical resources, and is widely
adopted in the neuroscience field.

Structure and discriminant sparse CCA removes noninformative
features and incorporates prior information about the data in the algo-
rithms simultaneously. Prior knowledge about feature structure or
group assignment of each observation are required, respectively,
for these two techniques. In neuroscience applications, information
implanted in features can improve the performance and effectiveness
of sparse CCA (Du, Liu, Zhang, et al., 2017) and guide the algorithm to
produce more biologically meaningful results (Du, Huang, et al., 2016a;
Liu et al., 2017). Alternatively, with group assignments implanted in
each observation, discriminant sparse CCA is able to discover group
discriminant features, which can later improve the performance of
supervised classification (Wang et al., 2019).

Other constraints are also beneficial in neuroscience research. For
instance, the Ly-norm penalty on canonical coefficients retains all fea-
tures in the model with regularized weights, and therefore most of the
variance can be maintained in a stable model (Dashtestani et al., 2019).
In addition, when applied to task fMRI activation detection, locally con-
strained CCA penalizes weights on the neighboring voxels to guarantee
the dominance of the central voxel and therefore, is able to reduce false
positives (Cordes et al., 2012b; Zhuang et al., 2017).

5.2.2 | Limitations
One major limitation of constrained CCA is the requirement of exper-
tise in optimization techniques. By having additional penalty terms
on canonical coefficients or covariance matrices, analytical solutions
of constrained CCA no longer exist, and, instead, iterative optimiza-
tion methods are required to solve the constrained CCA problems
efficiently.

The predefined constraint itself also requires prior knowledge

about the data. For structure and discriminant sparse CCA, prior

information about the observation domain or the feature domain
is required. Furthermore, in neuroscience application, the constraint
itself is usually data specific. For instance, when applying local con-
strained CCA to task fMRI activation detection, the predefined con-
straint should be strong enough to penalize neighboring voxels, but
loose enough to guarantee the multivariate contribution of neighbor-
ing voxels to the central voxel. This constraint can only be selected
through simulating a series of synthetic data that mimic real fMRI

signals, which requires prior knowledge of the data and is time-

consuming.
5.3 | Nonlinear CCA
53.1 | Advantages

By definition, nonlinear CCA is able to uncover multivariate nonlinear
relationships between two modalities, which commonly exist in neu-
roscience variables. For instance, during an fMRI task, collected
fMRI signals are nonlinearly correlated with the task design due to
the unknown hemodynamic response function; and kernel CCA can
extract this multivariate nonlinear relationship and produce a localized
brain activation map (Hardoon et al., 2007).

In general, kernel CCA first implicitly transforms the original fea-
ture space into a kernel space with a predefined kernel function. With
this transform, nonlinear relationship between two modalities can be
discovered. Furthermore, in the new kernel space, kernel CCA can be
solved efficiently with a closed-form analytical solution.

Temporal kernel CCA shares similar advantages with kernel CCA,
with additional benefits from considering temporal delays between
modalities when applied to simultaneously collected data. In neurosci-
ence research, simultaneously collected EEG/fMRI data are a typical
candidate for temporal kernel CCA, as neural activities collected by
fMRI data, which are the blood oxygenated level-dependent signals,
contain temporal delays caused by the hemodynamic response func-
tion (Ogawa, Lee, Kay, & Tank, 1990), as compared to the simulta-
neously collected EEG signals.

Deep CCA, a purely data-driven technique, can reveal unknown
nonlinear relationships between variables without assuming any
predefined nonlinear intermodality relationship. It has the potential to
be applied to neuroscience data that contains enough samples for
training a deep learning schema.

5.3.2 | Limitations

For kernel CCA, a predefined kernel function needs to be selected and
this selection will affect final results. This choice of kernel functions
requires additional knowledge about data and the kernel function.
Another major limitation of both kernel CCA and temporal kernel CCA
is that it is difficult to project the kernel space (H; and H,) back to the
original feature space (Y; and Y,), leading to additional difficulties in

interpreting results (Hardoon et al., 2007). For instance, when applying
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kernel CCA to link fMRI task stimuli and collected BOLD signals
for activation detection, the obtained high-dimensional features can-
not be mapped backwards to an individual voxel in order to assign the
activation value because the feature embedded for commonly used
nonlinear kernels (e.g., Gaussian kernel and power kernel) have infor-
mation from multiple voxels. Therefore, kernel CCA with a general
nonlinear kernel remains unsolved for fMRI activation analysis, and
only linear kernels were used for constructing activation maps in fMRI.

Unlike kernel CCA, deep CCA does not require a predefined func-
tion and learns the nonlinear feature mapping from the data itself.
However, in deep CCA, the number of unknown parameters signifi-
cantly increases with the number of layers, which requires much more
samples in the training data. In neuroscience data, it is usually difficult
to have enough number of subjects as training samples for deep CCA.
Furthermore, deep learning expertise is also required for selecting the

appropriate deep learning structures for nonlinear feature mapping.

54 | Multiset CCA

541 | Advantages

In neuroscience research, more than two variables are commonly col-
lected for the same set of subjects. Multiset CCA uncovers multivari-
ate joint relationships among multiple variables, which is well defined
to link all collected data in this case. Furthermore, if data from one
subject are treated as one modality (or variable), multiset CCA will also
discover the common patterns across subjects, which becomes a pow-
erful data-driven group analysis method.

Sparse multiset CCA combines more than two modalities and
suppresses noninformative features simultaneously, and therefore
shares the advantages and limitations with both multiset CCA and
sparse CCA.

Multiset CCA with reference is the only supervised CCA tech-
nigue and is proposed specifically for neuroscience applications. It dis-
covers joint multivariate relationships among variables in response to
a specific reference variable. For instance, using this method, common
brain changes from structural, fMRI and diffusion MRI with respect to

a specific neuropsychological measurement can be discovered.

5.4.2 | Limitations

There are five possible objective functions for multiset CCA optimiza-
tion, and different objective functions will lead to various results. The
closed-form analytical solution only exists for SUMCOR and SSQCOR
objective functions. Optimization expertise are required to solve multi-
set CCA with other objective functions, and with constraints as well.
Another major limitation of multiset CCA is that the number of final
canonical components output from the algorithm does not represent
the intersected common patterns across all modalities, or subjects.
Instead, multiset CCA discovers the unified similarities among every
modality pair (Levin-Schwartz, Song, Schreier, Calhoun, & Adali, 2016).

55 | Abstract

To summarize, conventional CCA uncovers joint multivariate linear rela-
tionships between two modalities and can be quickly and easily applied.
In neuroscience research, due to the existing multiple modalities and
nonlinear intermodality relationships, multiset CCA and nonlinear CCA
have their own advantages when applied accordingly to appropriate var-
iables. Constraints can be applied in these three methods to stabilize
results, remove noninformative features, and produce supervised mean-
ingful results. However, optimization expertise and prior knowledge

about the data are required to select the appropriate constraints.

6 | CHOOSING THE APPROPRIATE CCA
TECHNIQUE

The first step in selecting a CCA technique is to decide what type of
neuroscience application is of interest. Based on the types of combined
modalities, CCA applications can be summarized into four categories
(a-d): (a) finding relationship among multiple measurements; (b) detecting
brain activations in response to task stimuli; (c) uncovering common pat-
terns among multiple subjects; and (d) denoising the raw data. Table 7
summarizes current and potential techniques that can be applied for each
application.

After determining the application of interest, the flowchart in
Figure 4 provides a detailed guidance in selecting an appropriate
CCA technique. Based on the number of variables (K) and linear or
nonlinear intermodality relationships, three major applications are

mostly common in neuroscience research: uncover linear relationship

TABLE 7 Current applied and potential CCA techniques for each
application

Potential
Applications Currently applied techniques
Link two modalities e CCA e Deep CCA
e Sparse CCA
e Structure/
discriminant
sparse CCA
e Kernel CCA
e Temporal
kernel CCA
Detect task fMRI e CCA e Deep CCA
activation e Constrained CCA e Sparse CCA
e Kernel CCA
Uncover common Multiset CCA e Multiset
patterns across Sparse constrained
multiple modalities multiset CCA CCA
e Deep CCA
Denoise raw data CCA e Constrained

CCA
o Kernel CCA
e Deep CCA

Abbreviations: CCA, canonical correlation analysis; fMRI, functional mag-
netic resonance imaging.



ZHUANG ET AL.

WILEY_| %%

K variables:
Y € RNV*Pk

(constrained) =T Nonlinear
CCA Linear inter-modality CCA
relationship
No No
Yes Data
reduction
Known step:
constraints Dimension

reduced ¥;
and ¥,

i \
X532 Multiset

Non-Linear inter- r CCA |
modality relationship modality relationship [

> Piy No

No For all
k
Data Yes
reduction
depende

nce CCA

| | reduced ]
Yes ) and ¥,

- Temporal -
infol:r?ative iermel ’ Ker&el ’ - infor::‘lnative
No Stures CCA CCA No; but with cature
reference 7
Yes Known information variable Yes
Generalized on features Multiset CCA
{Constrained ’ ( SRAISS 1 /subjects: Structure/ ( with reference ’ { muﬁizaerthCA ’
CCA cea discriminant sparse (Supervised)

CCA

I

\

I

I

\

step: Multi Known l
Dimension set constraints |
I

\

|

I

\

[

[

I

]

FIGURE 4 Selecting a canonical correlation analysis (CCA)-technique that suits your application. Three scenarios are most commonly
encountered in neuroscience applications: CCA with and without constraints (dashed yellow box); nonlinear CCA (dashed gray box) and multiset

CCA (dashed orange box)

between two variables (dashed yellow box); find nonlinear relationship
between two variables (dashed gray box) and discover covariated pat-
terns among more than two variables (dashed orange box). Detailed
choices are further made based on the number of observations and
number of features within each variable, known prior knowledge
about the variable, such as feature structures, and specific questions
of interest for research studies.

Furthermore, here, we give an experimental example of CCA
applications in neuroscience research.

Among many neuroscience applications, CCA is commonly used as
a data fusion technique to uncover the association between two
datasets. In the following, we demonstrate how to follow the guidance
in Figure 4 to link disease-related pathology using fMRI and structural
MRI data from cognitive normal subjects and subjects with mild cogni-
tive impairment (MCI). As a prodromal stage of Alzheimer's disease, both
functional and structural pathology are expected in MCI subjects. Yang,
Zhuang, Bird, et al. (2019) used CCA to examine the disease-related links
between voxel-wise functional information (e.g., eigenvector centrality
mapping from fMRI data, X;€RN*P1) and voxel-wise structural infor-
mation (e.g., voxel-based morphometry from T1 structural MRI data,
X,eRN*P2) where N is the number of subjects, and p; and p, are the
number of voxel-wise features for fMRI and structural MRI data,
respectively. Since there are only two imaging modalities in the analy-
sis, multiset CCA is not an option for this case. Considering that deep
CCA requires a large number of samples but N < p, or p,, and kernel
CCA has the difficulty to project coefficients back to original voxel-
wise feature space as mentioned in Section 5.3, a linear relationship

between these two imaging modalities is considered. There are two
approaches for the scenario that the number of samples is much less
than the number of features.

The first approach is to perform dimension reduction before feed-
ing data into conventional CCA as shown in Figure 5a. Yang, Zhuang,
Bird, et al. (2019) used PCA or sPCA (Witten et al., 2009) for dimension
reduction and then fed CCA with dimension-reduced data Y; and Yo.
CCA found a set of canonical coefficients Uy, k = 1, 2 and the
corresponding canonical variables A,. The voxel-wise weight coefficient
can be obtained with a pseudo inverse operation. The other approach is
to implement constrained CCA as shown in Figure 5b. With the assump-
tion that a proportion of voxels in the brain is not informative for finding
the association between fMRI and structural MRI data, sparse CCA was
applied with X; and X directly without dimension reduction step (Yang,
Zhuang, Bird, et al., 2019). The canonical coefficients Uy, k = 1, 2 are in
the voxel-wise feature space, thus no operation is required to calculate
voxel-wise weight coefficients.

The voxel-wise weight coefficients play a role in uncovering
which brain regions are most relevant for finding the association
between datasets. The voxel-wise weight maps for the most signifi-
cant disease-related component in A, for (s)PCA + CCA and sparse
CCA is shown in Figure 5c. A nonparametric permutation test is
applied to test the significance of the association between fMRI and
structural MRI data with p values shown at the bottom of Figure 5c.
In this study, the canonical variables A, computed from sPCA + CCA
have the highest classification accuracy for both fMRI and structural
MRI data.
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FIGURE 5

Example of choosing canonical correlation analysis (CCA) variants by following the guideline. Voxel-wise functional and structural

MRI information from cognitive normal subjects and subjects with mild cognitive impairment were used for data fusion analysis. (a) Schematic
diagram of (sparse) principal component analysis (PCA) + CCA. The abbreviation sPCA stands for sparse PCA. (b) Schematic diagram of sparse
CCA (sCCA). (c) Top panel shows the most disease-discriminant functional and structural component and the bottom panel shows the correlation
between datasets (p), the significance of the correlation derived from nonparametric permutation test (p.o,y) and the classification accuracy for

each method

7 | FUTURE DIRECTION OF CCAIN
NEUROSCIENCE APPLICATIONS

Currently, when applying CCA to data with a smaller number of obser-
vations than features, either a data reduction orfeature selection step
is performed as a preprocessing step, or an L, norm penalty is added
as a constraint to remove noninformative features. Future efforts
should be made toward incorporating prior information on feature
structures of input variables that are more reasonable or more biologi-
cal meaningful, and canonical correlation values should be computed in
a one step process that includes prior information. Furthermore, apply-
ing CCA and its variant techniques to uncover joint multivariate rela-
tionships between two modalities has dominated the current CCA
applications in the neuroscience field. In these applications, various
techniques have been proposed to incorporate prior information
within variables to boost the model performance, such as considering
group-discriminant features to strengthen group separation. However,
much less effort was put to incorporate these prior information within
the variables in multiset CCA. In neuroscience research, collecting mul-
tiple modalities of a single subject has become a commonplace, and
with more than two variables, multiset CCA should be considered for
this multimodal data-fusion more often. Future efforts toward incorpo-
rating prior information within each variable to further improve the
performance of multiset CCA could shed new lights in neuroscience
research. For instance, we suggest incorporating group information in

multiset CCA to extract common group-discriminant patterns among

multiple measurements derived from fMRI, or to uncover correlated
group-discriminant feature among brain imaging data and behavioral
or clinical measurements. Furthermore, nonlinear relationships among
multiple modalities have not been explored within multiset CCA in
neuroscience research. It might be of interest to incorporate kernels in
multiset CCA to uncover covariated nonlinear patterns among multiple
brain imaging data, or to input each variable through multiple layers to
generate “deep” features before applying multiset CCA.

In addition, future efforts are also required to statistically interpret
CCA results. Currently, a parametric statistical significance of CCA
model is only well defined for conventional CCA. Statistical significances
of CCA variants are usually determined nonparametrically through per-
mutation tests, which are time-consuming and methods dependent. Fur-
thermore, even using permutation tests, statistical significance can only
be determined for each canonical correlation value, instead of canonical
coefficients. Therefore, we cannot determine the statistical significance
of a specific feature in the model. Identifying important features as
potential biomarkers is usually an end goal in neuroscience. Therefore,
developing test statistics to interpret CCA results by determining statis-

tically important features would also benefit neuroscience research.

8 | CONCLUSION

Uncovering multivariate relationships between modalities of the same

subjects have gained significant attentions in neuroscience research.
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CCA is a powerful tool to investigate these joint associations and
has been widely applied. Multiple CCA-variant techniques have been
proposed to fulfill specific analysis requirements. In this study, we
reviewed CCA and its variant techniques from a technical perspective,
with summarized applications in neuroscience research. Of each CCA-
related technique, detailed formulation and solution, relationship with
other techniques, current applications, advantages, and limitations are
provided. Selecting the most appropriate CCA-related technique to
take full advantages of available information embedded in every vari-
able in joint multimodal research might shed new lights in our under-

standings of normal development, aging, and disease processes.

9 | CODEAVAILABILITY

Python-based CCA toolbox (Bilenko & Gallant, 2016) is available on
github: http://github.com/gallantlab/pyrcca; CCA package in R can be
found in Gonzélez, Déjean, Martin, and Baccini (2008). Codes for apply-
ing CCA and kernel CCA to detect task-fMRI activations are available
on github (Yang, Zhuang, et al., 2018; Zhuang et al., 2017): https://
github.com/pipiyang/CCA_GUI. Bayesian CCA with group-wise ARD
prior and the relevant techniques are implemented in R CCAGFA pack-

age (https://cran.r-project.org/web/packages/CCAGFA/index.html).
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