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Abstract

Collecting comprehensive data sets of the same subject has become a standard in

neuroscience research and uncovering multivariate relationships among collected

data sets have gained significant attentions in recent years. Canonical correlation

analysis (CCA) is one of the powerful multivariate tools to jointly investigate relation-

ships among multiple data sets, which can uncover disease or environmental effects

in various modalities simultaneously and characterize changes during development,

aging, and disease progressions comprehensively. In the past 10 years, despite an

increasing number of studies have utilized CCA in multivariate analysis, simple con-

ventional CCA dominates these applications. Multiple CCA-variant techniques have

been proposed to improve the model performance; however, the complicated multi-

variate formulations and not well-known capabilities have delayed their wide applica-

tions. Therefore, in this study, a comprehensive review of CCA and its variant

techniques is provided. Detailed technical formulation with analytical and numerical

solutions, current applications in neuroscience research, and advantages and limita-

tions of each CCA-related technique are discussed. Finally, a general guideline in how

to select the most appropriate CCA-related technique based on the properties of

available data sets and particularly targeted neuroscience questions is provided.
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1 | INTRODUCTION

Recently in neuroscience research, multiple types of data are usually

collected from the same individual, including demographics, clinical

symptoms, behavioral and neuropsychological measures, genetic

information, structural and functional magnetic resonance imaging

(fMRI) data, position emission tomography (PET) data, functional near-

infrared spectroscopy (fNIRS) data, and electrophysiological data.

Each of these data types, termed modality here, contains multiple

measurements and provides a unique view of the subject. These mea-

surements can be the raw data (e.g., neuropsychological tests) or

derived information (e.g., brain regional volume and thickness mea-

sures derived from T1-weighted MRI).

Neuroscience research has been focused on uncovering associa-

tions between measurements from multiple modalities. Convention-

ally, a single measurement is selected from each modality, and their

one-to-one univariate association is analyzed. Multiple correction is

then performed to guarantee statistically meaningful results. TheseXiaowei Zhuang and Zhengshi Yang contributed equally to this manuscript.
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univariate associations have illuminated numerous findings in various

neurological diseases, such as association between gray-matter den-

sity and Mini Mental State Examination score in Alzheimer's disease

(Baxter et al., 2006), correlation between brain network temporal

dynamics and Unified Parkinson Disease Rating Scale part III motor

scores in Parkinson's disease subjects (Zhuang et al., 2018), and rela-

tionship between imaging biomarkers and cognitive performances in

fighters with repetitive head trauma (Mishra et al., 2017).

However, the one-to-one univariate association overlooks the mul-

tivariate joint relationship among multiple measurements between

modalities. Furthermore, when dealing with brain imaging data, highly

correlated noise further decreases the effectiveness and sensitivity of

mass-univariate voxel-wise analysis (Cremers, Wager, & Yarkoni, 2017;

Zhuang et al., 2017), and different methods of multiple corrections

might lead to various statistically meaningful results. Multivariate analy-

sis, alternatively, uncovers the joint covariate patterns among different

modalities and avoids multiple correction steps, which would be more

appropriate to disentangle joint relationship between modalities and

guarantees full utilization of all common information.

Canonical correlation analysis (CCA) is one candidate to uncover

these joint multivariate relationships among different modalities. CCA

is a statistical method that finds linear combinations of two random

variables so that the correlation between the combined variables is

maximized (Hotelling, 1936). CCA can identify the source of common

statistical variations among multiple modalities, without assuming any

particular form of directionality, which suits neuroscience applications.

In practice, CCA has been mainly implemented as a substitute for

univariate general linear model (GLM) to link different modalities, and

therefore, is a major and powerful tool in multimodal data fusion. Mul-

tiple CCA variants, including kernel CCA, constrained CCA, deep CCA,

and multiset CCA, also have been applied in neuroscience research.

However, the complicated multivariate formulations and obscure

capabilities remain obstacles for CCA and its variants to being widely

applied.

In this study, we review CCA applications in neuroscience

research from a technical perspective to improve the understanding

of the CCA technique itself and to provide neuroscience researchers

with guidlines of proper CCA applications. We briefly discuss studies

through December 2019 that have utilized CCA and its variants to

uncover the association between multiple modalities. We explain the

existing CCA method and its variants for their formulations, properties,

relationships to other multivariate techniques, and advantages and lim-

itations in neuroscience applications. We finally provide a flowchart

and an experimental example to assist researchers to select the most

appropriate CCA technique based on their specific applications.

2 | INCLUSION/EXCLUSION OF STUDIES

Using the PubMed search engine in December 2019, we searched

neuroimaging or neuroscience articles using CCA with the following

string: (“canonical correlation” analysis) AND (neuroscience OR neuro-

imaging). This search yielded 192 articles; 11 additional articles were

included based on authors' preidentification. We excluded non-

English articles, conference abstracts and duplicated studies, yielding

188 articles assessed for eligibility. We further identified 160 studies

that met the following criteria: (a) primarily focused on a CCA or CCA-

variant technique and (b) with an application to neuroimaging or neu-

roscience modalities. Reasons for exclusion and numbers of articles

meeting exclusion criteria at each stage are shown in Figure 1.

The remaining articles were full-text reviewed and divided into

five categories based on the applied CCA technique (Figure 2a): CCA

(N = 67); constrained CCA (N = 53); nonlinear CCA (N = 7); multiset

CCA (N = 29); and CCA-other (N = 7). Three articles applied con-

strained multiset CCA, thus are categorized into both constrained

CCA and multiset CCA. Numbers of articles of every year from 1990

to 2019 are plotted in Figure 2 (B).

In the following sections, we present technical details (Section 3)

and neuroscience applications for each category (Section 4). In Section 5,

we discuss technical differences and summarize advantages and limita-

tions of each CCA-related technique. We finally provide an experimental

example and guidance in Section 6 to researchers who are interested in

applying multivariate CCA-related techniques in their work.

3 | TECHNICAL DETAILS

Figure 3 shows the detailed CCA equations (red box) and linkages

between CCA and its variants. Constrained CCA (yellow boxes),

nonlinear CCA (gray boxes), and multiset CCA (orange boxes) are

focused, and linkages between CCA and other univariate (light green

boxes) and multivariate (dark green boxes) techniques are also included.

Here, we provide basic formulations and solutions of each CCA and its

variants. We also discuss how CCA is mathematically linked to its vari-

ants and to other multivariate or univariate techniques. Researchers

interested in further details can refer to the corresponding references.

3.1 | Conventional CCA

Formulations. CCA is designed to maximize the correlation between

two latent variables y1�
p1 ×1 and y2�

p2 ×1 , which are also being

referred to as modalities. Here, we denote Yk�N× pk ,k =1,2 as col-

lected samples of these two variables, where N represents the number

of observations (samples) and pk, k = 1, 2 represent the number of fea-

tures in each variable. CCA determines the canonical coefficients

u1�p1 ×1 and u2�p2 ×1 for Y1 and Y2, respectively, by maximizing

the correlation between Y1u1 and Y2u2:

CCA :max
u1 ,u2

ρ= corr Y1u1,Y2u2ð Þ= uT1Σ12u2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uT1Σ11u1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uT2Σ22u2

q : ð1Þ

In Equation (1), Σ11 and Σ22 are the within-set covariance matri-

ces and Σ12 is the between-set covariance matrix. The denominator in

Equation (1) is used to normalize within-set covariance, which guaran-

tees that CCA is invariant to the scaling of coefficients.
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Solutions. Canonical coefficients u1 and u2 can be found by setting the

partial derivative of the objective function (Equation (1)) with respect

to u1 and u2 to zero, respectively, leading to:

Σ12u2 = ρΣ11u1 andΣ21u1 = ρΣ22u2: ð2Þ

Equation (2) can be further reduced to a classical eigenvalue prob-

lem, if Σkk is invertible, as follows:

F IGURE 1 Inclusion and exclusion criteria for this review

F IGURE 2 Number of articles summarized by category (a) and year (b)

ZHUANG ET AL. 3809



Σ−1
11 Σ12Σ−1

22 Σ21u1 = ρ
2u1

Σ−1
22 Σ21Σ−1

11 Σ12u2 = ρ
2u2

: ð3Þ

Each pair of canonical coefficients {u1, u2} are the eigenvectors

of Σ−1
11 Σ12Σ−1

22 Σ21 and Σ−1
22 Σ21Σ−1

11 Σ12 , respectively with the same

eigenvalue ρ2. Following Equation (3), up to M = min(p1, p2)

pairs of canonical coefficients can be achieved through singular

value decomposition (SVD), and every pair of canonical variables

Y1u
mð Þ
1 ,Y2u

mð Þ
2

n o
,m=1,2,…,M , are uncorrelated with another pair of

canonical variables. Corresponding M canonical correlation values are

in descending order as ρ(1) > ρ(2) >…> ρ(M).

As we stated above, one requirement for solving the CCA

problem (Equation (1)) through this eigenvalue problem (Equation (3))

is that within-set covariance matrices Σ11 and Σ22 must be invertible.

F IGURE 3 Technical details of CCA and relationship between CCA and its variants. Background color indicates different techniques: red:
conventional CCA; gray: nonlinear CCA; yellow: constrained CCA; orange: multiset CCA; green: other techniques related to CCA. CCA, canonical
correlation analysis; PCA, principle component analysis; PLS, partial least square
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To satisfy this requirement, the number of observations in Y1

and Y2 should be greater than the number of features, that

is, N > pk, k = 1, 2. Furthermore, since the square of canonical corre-

lation values (ρ2) are the eigenvalues of matrices Σ−1
11 Σ12Σ−1

22 Σ21

and Σ−1
22 Σ21Σ−1

11 Σ12, both matrices are required to be positive definite.

Statistical inferences. Parametric inferences exist for CCA if both vari-

ables strictly follow the Gaussian distribution. The null hypothesis is that

no (zero) canonical correlation exists between Y1 and Y2, that

is, ρ(1) = ρ(2) = … = ρ(M) = 0. The alternative hypothesis is that at least one

canonical correlation value is nonzero. A test statistic based on Wilk's Λ

is (Bartlett, 1939):

Λ= − N−
p1 + p2 + 3

2

� �
log

YM
i=1

1−ρ ið Þ
� �

, ð4Þ

which follows a chi-square distribution χ2p1 × p2
with degree of freedom

of p1× p2. It is also of interest to test if a specific canonical correlation

value (ρ(m), 1≤m≤M) is different from zero. In this case, the test sta-

tistic in Equation (4) becomes:

Λ mð Þ = − N−
p1 + p2 + 3

2

� �
log

YM
i=m+1

1−ρ ið Þ
� �

, ð5Þ

which follows χ2p1−mð Þ p2−mð Þ.

In practice, this parametric inference is not commonly used since

it requires variables to strictly follow the Gaussian distribution and

is sensitive to outliers (Bartlett, 1939). Instead, permutation-based

nonparametric statistics have been widely used in CCA applications.

In general, observations of one variable are randomly shuffled (Y1

becomes cY1 ) while observations of the other variable are kept intact

(Y2 remains). A new set of canonical correlation values are then com-

puted for cY1 and Y2 following Equation (3). This random shuffling is

repeated multiple times, and the null distribution of canonical correla-

tion values is generated. Statistical significance (p-values) for the

true canonical correlation values are finally obtained from this null

distribution.

3.2 | CCA variants

The conventional CCA (Equation (1)) can be modified for different

purposes. Constrained CCA penalizes canonical coefficients u1 and u2

to satisfy certain requirements and more specifically, to avoid over-

fitting and unstable results caused by insufficient observations in Y1

or Y2. Kernel and deep CCA are designed to uncover nonlinear corre-

lations between modalities by projecting the original variables to new

nonlinear feature spaces. Multiset CCA is proposed to find multivari-

ate associations among more than two modalities. In this section, we

systematically review constrained CCA, nonlinear CCA, multiset CCA,

and other special CCA cases.

3.2.1 | Constrained CCA

Generalized constrained CCA

Formulation. Constrained CCA is implemented by adding penalties to

coefficients uk in Equation (1). Penalties can be either equality con-

straints or inequality constraints, and based on researcher's own con-

siderations, penalties can be added to either u1 or u2, or to both u1

and u2. Therefore, in general, the constrained CCA problem can be

formulated in terms of the constrained optimization problem as:

max
u1,u2

ρ= corr Y1u1,Y2u2ð Þ

=
uT1Σ12u2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uT1Σ11u1
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uT2Σ22u2
q ; s:t:

coni u1,u2ð Þ=0,8i�E;
conj u1,u2ð Þ>0,8j�InE;

(
ð6Þ

where E represents the set of equality constraints and InE represents

the set of inequality constraints.

Solution. Analytical solutions usually do not exist for constrained

CCA problems, and solving Equation (6) requires numerical solutions

through iterative optimization techniques. Multiple optimization tech-

niques can be applied, such as the Broyden–Fletcher–Goldfarb–Shanno

algorithm, augmented-Lagrangian algorithm, reduced gradient method

and sequential quadratic programming. Examples and details of solving

constrained CCA problems through above optimization techniques can

be found in Yang, Zhuang, et al. (2018) and Zhuang et al. (2017).

Special case: L1-norm penalty and sparse CCA

Formulation. The most commonly implemented penalty in constrained

CCA is the L1-norm penalty added to either u1 or u2, and is termed

sparse CCA:

sparseCCA :max
u1,u2

ρ= corr Y1u1,Y2u2ð Þ

=
uT1Σ12u2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uT1Σ11u1
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uT2Σ22u2
q ; s:t: u1j j1 < c1, u2j j1 < c2,

ð7Þ

where |ui|1 < ci are inequality constraints.

The L1-norm penalty induces sparsity on canonical coefficients,

and therefore sparse CCA can be implemented to high-dimensional

variables. When dealing with high-dimensional variables, the within-

set covariance matrices Σ11 and Σ22 in Equation (7) are also high-

dimensional matrices, which are memory intensive. In addition, when

the number of observations is less than the number of features, the

covariance matrices cannot be estimated reliably from the sample. In

these cases, within-set covariance matrices are usually replaced by

identity matrices, and sparse CCA is then equivalent to sparse PLS.

Please note that researchers may still name this technique as sparse

CCA even after this replacement (Witten, Tibshirani, & Hastie, 2009).

With known prior information about features or observations,

sparse CCA can be further modified to structure sparse CCA or discrim-

inant sparse CCA, respectively. If the known prior information is

ZHUANG ET AL. 3811



about features, such as categorizing features into different groups

(Lin et al., 2014) or characterizing connections between features

(Kim et al., 2019), the prior information will be implemented as an

additional penalty on features, leading to structure sparse CCA. Alter-

natively, if the known prior information is about observations, such

as diagnostic group of each subject, the prior information will be

implemented as additional constraint on observations, leading to

discriminant sparse CCA (Wang et al., 2019).

Solutions. Sparse CCA, structure sparse CCA, and discriminant sparse

CCA can all be considered as special cases of a generalized con-

strained CCA (Equation (6)) problem with different equality and

inequality constraint sets. Iterative optimization techniques used to

solve the generalized constrained CCA problem are also applicable

here to solve these special cases.

3.2.2 | Nonlinear CCA

Both CCA and constrained CCA assume linear intervariable relation-

ships, however, this assumption does not hold in general for all

variables in real data. Nonlinear CCA uncovers the joint nonlinear rela-

tionship between different variables, which is a complementary tool

to conventional CCA methods. Kernel CCA, temporal kernel CCA, and

deep CCA are the foremost techniques in this category.

Kernel CCA and temporal kernel CCA

Formulation. Kernel CCA uncovers the joint nonlinear relationship

between two variables by mapping the original feature space in Y1

and Y2 on to a new feature space through a predefined kernel function.

However, this new feature space is not explicitly defined. Instead,

the original feature space for each observation in Yk is implicitly pro-

jected to a higher dimensional feature space Yk ! ϕ(Yk) embedded in

a prespecified kernel function Hk �N×N , which is independent of the

number of features in the projected space. After transforming

uk to ϕ(Yk)
Tvk, the CCA form in Equation (1) in the higher dimensional

feature space, namely kernel CCA can be written as:

KernelCCA :max
u1,u2

ρ= corr ϕ Y1ð Þu1,ϕ Y2ð Þu2ð Þ=max
v1,v2

vT1H1H2v2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vT1H

2
1v1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vT2H

2
2v2

q ;

whereHk = dot ϕ Ykð Þ,ϕ Ykð Þð Þ�N×Nand uk =ϕ Ykð ÞTvk ,k =1,2,
ð8Þ

where v1 and v2 are unknowns to estimate, instead of u1 and u2.

Temporal kernel CCA is a kernel CCA variant that is specifically

designed for two time series with temporal delays. In temporal kernel

CCA, one variable, for example, Y1, is shifted for multiple different

time points and a new variable ~Y1 is formed by concatenating the

original Y1 and the temporally shifted Y1. The new variable ~Y1 and the

original Y2 are then input to kernel CCA as in Equation (8).

Solution. Closed-form analytical solution exists for kernel CCA

(Equation (8)). By setting the partial derivatives of the objective

function in Equation (8) with respect to v1 and v2 to zero separately,

kernel CCA can be converted to the following problem:

H1H2v2 = ρH
2
1v1 andH2H1v1 = ρH

2
2v2: ð9Þ

Note that the kernel CCA problem defined in Equation (9) always

holds true when ρ = 1. To avoid this trivial solution, a penalty term

needs to be introduced to the norm of original canonical coefficients

uk, such that vTkH
2
kvk become vTkH

2
kvk + λ ukk k2 = vTk H2

k + λHk

� �
vk , where

λ is a regularization parameter. This regularized kernel CCA problem

can be further represented as an eigenvalue problem (Hardoon,

Szedmak, & Shawe-Taylor, 2004):

H1 + λIð Þ−1H2 H2 + λIð Þ−1H1v1 = ρ2v1

H2 + λIð Þ−1H1 H1 + λIð Þ−1H2v2 = ρ
2v2

, ð10Þ

where a closed-form solution exists in the new feature space.

Deep CCA

Formulation. Kernel CCA requires a predefined kernel function for the

feature mapping to uncover the joint nonlinear relationship between

two variables. Alternatively, recent development of deep learning makes

it possible to learn the feature mapping from data itself. The deep learn-

ing variant of CCA, deep CCA (Andrew, Bilmes, & Livescu, 2013), pro-

vides a more flexible and robust way to learn and search the nonlinear

association between two variables. More specifically, deep CCA first

passes the original Y1 and Y2 through multiple stacked layers of

nonlinear transformations. Let θ1 and θ2 represent vectors of all parame-

ters through all layers for Y1 and Y2, respectively, deep CCA can be rep-

resented as:

DeepCCA :max
θ1,θ2

ρ= corr f Y1;θ1ð Þ, f Y2;θ2ð Þð Þ: ð11Þ

Solution. Deep CCA is solved through a deep learning schema by

dividing the original data into training and testing sets. θ1 and θ2 are

optimized by following the gradient of the correlation objective as

estimated on the training data (Andrew et al., 2013). The number of

unknown parameters in deep CCA is much higher than the number of

unknowns in other CCA variants; therefore, a large number of training

samples (in tens of thousands) are required for deep CCA to produce

meaningful results. In most studies, it is unlikely to have enough

observations (e.g. subjects) as training samples for deep CCA algo-

rithms. Instead, in neuroscience applications, treating each brain voxel

as a training sample, similar to Yang et al. (2020, 2019), would be

more promising in deep CCA applications.

3.2.3 | Multiset CCA

Multiset CCA extends the conventional CCA from uncovering associa-

tions between two variables to finding common patterns among more

than two variables. Constraints can also be incorporated in multiset

CCA for various purposes.

3812 ZHUANG ET AL.



Multiset CCA

Formulation. The most intuitive formulation of multiset CCA is to opti-

mize canonical coefficients of all variables by maximizing pairwise

canonical correlations, nameed as SUMCOR multiset CCA:

SUMCORmultisetCCA : max
u1,…,uK

XK

i,j,i6¼j
corr Y iui,Y ju j

� �
, ð12Þ

where K > 2 is the number of variables. A new matrix bΣ�K ×K is

defined where each element bΣi,j is a canonical correlation between

two variables Yi and Yj:

bΣ=

uT1Σ11u1 uT1Σ12u2

uT2Σ21u1 uT2Σ22u2
� � �

uT1Σ1KuK

uT2Σ2KuK

..

. . .
. ..

.

uTKΣK1u1 uTKΣK2u2 � � � uTKΣKKuK

2666664

3777775, ð13Þ

and uTkΣkkuk ,k = 1,…,K is set to 1 for normalization.

Besides maximizing SUMCOR, Kettenring (1971) summarizes

four other possible objective functions in multiset CCA optimization:

(a) SSQCOR, maximizing sum of squared pairwise correlations
PK

i,j
bΣ2

ij
;

(b) MAXVAR, maximizing largest eigenvalue of correlation matrix

λmax bΣ� �
; (c) MINVAR, minimizing smallest eigenvalue of correlation

matrix λmin
bΣ� �

; and (d) GENVAR, minimizing the determinant of cor-

relation matrix det bΣ� �
. In practice, SUMCOR multiset CCA is most

commonly used followed by MAXVAR and SSQCOR multiset CCA.

Solution. Analytical solutions of multiset CCA are obtained by calculat-

ing the partial derivatives of the objective function with respect to

each ui. Since SUMCOR and SSQCOR are linear and quadratic func-

tions of each ui, respectively, closed-form analytical solutions can be

obtained for these two cost functions by setting the partial derivatives

equal to 0, which leads to generalized eigenvalue problems. Multiset

CCA with all these five objective functions can also be solved by

means of the general algebraic modeling system (Brooke, Kendrick,

Meeraus, & Rama, 1998) and NLP solver CONOPT (Drud, 1985).

Multiset CCA with constraints

In constrained multiset CCA, penalty terms can be added to each ui

individually. Here we give examples of two commonly incorporated

constraints in multiset CCA: sparse multiset CCA and multiset CCA

with reference.

Formulation: Sparse multiset CCA. Similar to sparse CCA, sparse multi-

set CCA applies the L1-norm penalty to one or more ui in Equa-

tion (12), and therefore induces sparsity on canonical coefficient(s)

and can be applied to high-dimensional variables. Here, we give the

equation of SUMCOR sparse multiset CCA as an example:

SUMCOR sparsemultisetCCA :

max
u1,…,uK

XK
i, j, i6¼j

corr Y iui,Y ju j

� �
, s:t: uij j1 < ci: ð14Þ

Formulation: Multiset CCA with reference. Multiset CCA with reference

enables the discovery of multimodal associations with a specific refer-

ence variable across subjects, such as a neuropsychological measure-

ment (Qi, Calhoun, et al., 2018). In multiset CCA with reference,

additional constraints of correlations between each canonical variable

and the reference variable (vref) are added:

SUMCORmultisetCCAwith ref :

max
u1,…,uK

XK
i, j, i6¼j

corr Y iui,Y ju j

� �
+ λ corr Y iui ,vrefð Þj jj j22

� �
, ð15Þ

where λ>0 is the tuning parameter and j � jj j22 is the L2-norm. There-

fore, multiset CCA with reference is a supervised multivariate tech-

nique that can extract common components across multiple variables

that are associated with a specific prior reference.

Solution. Both Equations (14) and (15) can be viewed as constrained

optimization problems with an objective function and multiple

equality and inequality constraints. In this case, iterative optimiza-

tion techniques are required to solve constrained multiset CCA

problems.

3.2.4 | Other CCA-related techniques

There are many other CCA-related techniques developed, and here

we only included three that have been applied in the neuroscience

field: supervised local CCA, Bayesian CCA, and tensor CCA.

Supervised local CCA

CCA by formulation is an unsupervised technique that uncovers joint

relationships between two variables. Meanwhile, CCA can become a

supervised technique by (a) adding additional constraints such as CCA

(multiset CCA) with reference discussed in the section “Multiset CCA

with constraints,” or (b) directly incorporating group information into

the objective function as in the supervised local CCA technique (Zhao

et al., 2017).

Supervised local CCA is based on locally discriminant CCA (Peng,

Zhang, & Zhang, 2010), which uses local group information to con-

struct a between-set covariance matrix ~Σ12 , as a replacement of Σ12

in Equation (1). More specifically, ~Σ12 is defined as the covariance

matrix from d nearest neighboring within-class samples (Σw) penalized

by the covariance from d nearest neighboring between-class samples

(Σb) with a tuning parameter λ,

~Σ12 =Σw−λΣb: ð16Þ

However, this technique only considers the local group informa-

tion with the global discriminating information ignored. To address

this issue, Fisher discrimination information together with local group

information is considered in supervised local CCA, which can be

written as:

ZHUANG ET AL. 3813



Supervised localCCA :max
u1,u2

ρ=
uT1 ~Σ12u2 + uT1S1u1 + u

T
2S2u2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uT1Σ11u1
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uT2Σ22u2
q , ð17Þ

Sk =Y
T
kUYk ,k =1,2,U�N×N,

where Sk denote the between-group scatter matrices of the dataset

k. If samples i and j belong to cth class, Uij is set to 1
nc
, where nc

denotes the number of samples in cth class; otherwise, Uij is set to

0. Supervised local CCA is usually applied sequentially with gradually

decreased d (named as hierarchical supervised local CCA) to reduce

the influence of the neighborhood size and improve classification

performance.

Bayesian CCA

Bayesian CCA is another technique that overcomes the overfitting prob-

lem when applying CCA to variables with small sample sizes. Bayesian

CCA is also proposed to complement CCA by providing a principal com-

ponent analysis (PCA)-like description of variations that are not captured

by the correlated components (Klami, Virtanen, & Kaski, 2013). Input to

CCA in Equation (1), Y1 and Y2, can be considered as N observations of

one-dimensional random variables y1�
p1 ×1 and y2�

p2 ×1 . Using the

same notations, Bayesian CCA can be formulated as a latent variable

model (with latent variable z) between y1 and y2 (Klami & Kaski, 2007;

Wang, 2007):

z�N 0, Ið Þ,

yk �N Akz+Bkzk,Dkð Þ,k =1,2,
ð18Þ

where N 0, Ið Þ denotes the multivariate Gaussian distribution with

mean vector 0 and identity covariance matrix I. Dk are diagonal covari-

ance matrices and indicate features in yk with independent noise. The

latent variable z�q×1 , where q represents the number of shared

components, captures the shared variation between y1 and y2, and

can be linearly transformed back to the original space of yk through

Akz, k = 1, 2. Similarly, the latent variable, where qk represents

the number of variable-specific components, captures the variable

k-specific variation not shared between y1 and y2, and can be linearly

transformed back to the original space in yk by Bkzk.

Browne (1979) demonstrated that Equation (18) was equivalent

to CCA in Equation (1) by showing that maximum likelihood solutions

to both Equations (1) and (18) share the same canonical coefficients

with an unknown rotational transform, that is, Equation (18) is equiva-

lent to conventional CCA (Equation (1)) in the aspect that their solu-

tions share the same subspace. However, unlike conventional CCA

(Equation (1)) that uses two variables u1 and u2 to project y1 and y2 to

this subspace, Bayesian CCA maintains the shared variation between

y1 and y2 in a single variable z.

The formulation of yk in Equation (18) can be rewritten

as yk �N Akz,BkB
T
k +Dk

� �
,k =1,2 after algebra operations. With

Ψk =BkB
T
k +Dk , the model in Equation (18) can be transformed to

z�N 0, Ið Þ,

yk �N Akz,Ψkð Þ,k =1,2:
ð19Þ

In Equation (19), prior knowledge of the parameters (e.g., Ak and

Ψk) are required to construct the latent variable model for Bayesian

CCA. For instance, the inverse Wishart distribution as a prior for the

covariance Ψk and the automatic relevance determination (ARD;

Neal, 2012) prior for the linear mappings Ak are used when Bayesian

CCA is proposed (Klami & Kaski, 2007; Wang, 2007). Since then,

multiple Bayesian inference techniques have been developed, how-

ever, the early work of Bayesian CCA is limited to low-dimensional

data (not more than eight dimensions in Klami & Kaski, 2007 and

Wang, 2007) due to the computational complexity to estimate the

posterior distribution over the pk × pk covariance matrices Ψk (Klami

et al., 2013). A group-wise ARD prior (Klami et al., 2013) was recently

introduced for Bayesian CCA, which automatically identifies variable-

specific and shared components. More importantly, this change made

Bayesian CCA applicable for high-dimensional data. More technical

details about Bayesian CCA can be found in Klami et al. (2013).

Tensor CCA

Two-dimensional CCA and tensor CCA for high-dimensional variables.

Variables input to CCA (Yk�N× pk ,k = 1,2,…, ) are usually required to

be 2D matrices with a dimension of number of observations (N) times

number of features (pk) in each variable. Yk can be considered as N

observations of the 1D variable yk�
pk ×1 . In practice, tensor data,

such as 3D images or 4D time series, are commonly involved in neuro-

science applications, and these variables are required to be vectorized

before inputting to CCA algorithms. This vectorization could poten-

tially break the feature structures. In this case, to analyze 3D data,

such as N samples of 2D variables (N× p1× p2), without breaking the

2D feature structure, two-dimensional CCA (2DCCA) has been pro-

posed by Lee and Choi (2007).

Mathematically, 2DCCA maximizes the canonical correlation

between two variables with N observations of 2D features: Y1 :

Yn
1�

p11 × p12 ,n=1,…,N
	 


and Y2 : Yn
2�

p21 × p22 ,n=1,…,N
	 


. For each

variable, 2DCCA searches left transforms l1�p11 × 1 and l2�p21 ×1

and right transforms r1�p12 ×1 and r2�p22 ×1 in order to maximize

the correlation between lT1Y1r1 and lT2Y2r2:

2DCCA : max
l1 , l2, r1,r2

ρ= cov lT1Y1r1, l
T
2Y2r2

� �
, s:t:var lT1Y1r1

� �
=1,var lT2Y2r2

� �
=1:

ð20Þ

In Equation (20), for fixed l1 and l2, r1 and r2 can be obtained with

the SVD algorithm similar to the one used in conventional CCA, and l1

and l2 can be obtained for fixed r1 and r2, alternatingly. Therefore, an

iterative alternating SVD algorithm (Lee & Choi, 2007) has been devel-

oped to solve Equation (20).

Above described 2DCCA can be treated as a constrained optimiza-

tion problem with low-rank restrictions on canonical coefficients, similar
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restrictions are used in (Chen, Kolar, & Tsay, 2019), where 2DCCA has

been extended to higher dimensional tensor data, termed tensor CCA.

The tensor CCA (Chen et al., 2019) searches two rank-one tensors

u1 = u11∘� � �∘u1m�p11 × ���× p1m and u2 = u21∘� � �∘u2m�p21 × ���× p2m to maxi-

mize the correlation between Y1 : Yn
1�

p11 × ���× p1m ,n=1,…,N
	 


and

Y2 : Yn
2�

p21 × ���× p2m ,n=1,…,N
	 


, where “∘” denotes outer product and

uk1, …, ukm are vectors. Chen et al. (2019) also introduced an efficient

optimization algorithm to solve tensor CCA for high dimensional

data sets.

Tensor CCA for multiset data. Another way to handle input variables

with high-dimensional feature spaces is to generalize conventional CCA

by analyzing constructed covariance tensors (Luo, Tao, Ramamohanarao,

Xu, & Wen, 2015). This method requires random variables to be vec-

torized and is similar to multiset CCA since both of them deal with more

than two input modalities. The differences between tensor CCA and

multiset CCA in this case lie in that tensor CCA constructs a high-order

covariance tensor for all input variables (Luo et al., 2015), whereas multi-

set CCA finds pair-wise covariance matrices. In addition, tensor CCA

(Luo et al., 2015) does not maximize the pairwise correlation as in multi-

set CCA; instead, it directly maximizes the correlation over all canonical

variables,

max
u1,…,uK

ρ=Corr Y1u1, � � �,YKuKð Þ= Y1u1ʘ� � �ʘYKuKð ÞT

×1;s:t: Ykukð ÞTYkuk =1,k =1,…,K, ð21Þ

where ʘ denotes element-wise product and 1�N×1 is an all ones

vector. The problem formulated in Equation (21) can be solved by

using the alternating least square algorithm (Kroonenberg & de

Leeuw, 1980).

3.2.5 | Statistical inferences of CCA variants

Nonparametric permutation tests have been widely performed in CCA

variant techniques to determine the statistical significance of each

canonical correlation value and the corresponding canonical coeffi-

cients. In these permutation tests, as we described in Section 3.1,

observations of one variable are randomly shuffled (Y1 becomes cY1 ),

while observations of the other variable are kept intact (Y2 remains).

This random shuffling is repeated multiple times (�5,000), and the

exact same CCA variant technique is applied to each shuffled data.

The obtained canonical correlation values from these randomly shuf-

fled data form the null distribution. Statistical significances (p-values)

of true canonical correlation values are determined by comparing true

values to this null distribution.

Besides permutation tests, a null distribution can also be built by

creating null data input to CCA variant techniques. The null data are

usually generated based on the physical properties of input variables.

For instance, when applying CCA-variant technique to link task fMRI

data and the task stimuli, the null data of task fMRI can be obtained by

applying wavelet-resampling to resting-state fMRI data (Breakspear,

Brammer, Bullmore, Das, & Williams, 2004; Zhuang et al., 2017). The

null hypothesis here is that task fMRI data are not multivariately corre-

lated with task stimuli, and the wavelet resampled resting-state fMRI

data fits the requirements of the null data in this case.

3.3 | Technical differences

3.3.1 | Technical differences among CCA-related
techniques

There are three prominent CCA techniques: conventional CCA shares

the simplest formulation and can be easily applied to uncover multi-

variate linear relationships between two variables; nonlinear CCA by

definition can extract multivariate nonlinear relationship between two

variables through feature mapping with known predefined functions;

and multiset CCA are able to find common covariated patterns among

more than two variables. These three methods can be efficiently

solved with closed-form analytical solutions, which are obtained by

taking the partial derivatives of the objective function with respective

to each unknown, separately.

Constrained (multiset) CCA incorporates prior information about

input variables into each of the three CCA methods, in terms of equality

and inequality constraints on the unknowns. Prior knowledge about the

data or specific hypothesis are required for its applications. Closed-form

solutions are no longer available for constrained (multiset) CCA and iter-

ative optimization techniques are required to solve these problems.

Recently developed deep CCA is different from all other CCA-

related techniques as it learns the optimum feature mapping from the

data itself through deep learning with training and testing data being

specified. Machine learning and deep leaning expertise are required to

solve this problem.

3.3.2 | Relationship between CCA and other
multivariate and univariate techniques

Relationship with other multivariate techniques

In general, CCA can be directly rewritten in terms of the multivariate

multiple regression (MVMR) model:

Y1u1 =Y2u2 + ε, ð22Þ

where u1 and u2 are obtained by minimizing the residual term

ε�N×1 . Since CCA is scale-invariant, a solution to Equation (22) is

also a solution of Equation (1). Furthermore, with normalization terms

of uT1Σ11u1 = 1 and uT2Σ22u2 = 1, the MVMR model is exactly equiva-

lent to CCA, that is, maximizing the canonical correlation between Y1

and Y2 is equivalent to minimizing the residual term ε:

max
u1,u2

corr Y1u1,Y2u2ð Þð Þ,max
u1,u2

uT1Σ12u2 ,min
u1,u2

−uT1Σ12u2

,min
u1,u2

Y1u1−Y2u2j jj j22: ð23Þ
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In addition, by replacing the covariance matrices Σ11 and Σ22 in

the denominator in Equation (1) with the identity matrix I, conven-

tional CCA is converted to partial least square (PLS), which maximizes

the covariance between latent variables. If Y1 is the same as Y2, the

PLS will maximize the variance within a single variable, which is equiv-

alent to PCA.

Relationship with univariate techniques

If one variable in CCA, for example, Y1, only has a single feature, that

is, y�N×1 , u1 can then be defined as 1 and CCA becomes a linear

regression problem:

y =Xβ+ ε, ð24Þ

where Y1 is renamed as y and Y2 is renamed as X to follow conven-

tional notations. ε�N×1 denotes the residual term. If both variables

Y1 and Y2 contain only one feature, the canonical correlation between

Y1 and Y2 becomes the Pearson's correlation between Y1 and Y2 as in

the univariate analysis.

4 | NEUROSCIENCE APPLICATIONS

4.1 | CCA: Finding linear relationships

4.1.1 | Direct application of CCA

Combine phenotypes and brain activities

To date, the most common CCA application in neuroscience is to find

joint multivariate linear associations between phenotypic features and

neurobiological activities. Phenotypic features usually include one or

more measurements from demographics, genetic information, behav-

ioral measurements, clinical symptoms, and performances of neuropsy-

chological tests. Neurobiological activities are generally summarized

with brain structural measurements, functional activations during spe-

cific tasks, both static and dynamic resting-state functional connectivity

measurements, network topological measurements, and electrophysio-

logical recordings (Table 1).

In normal healthy subjects, using CCA, multiple studies have delin-

eated the joint multivariate relationships between the above imaging-

derived features and nonimaging measurements, which have boosted

our understandings of healthy development and healthy aging (Irimia &

van Horn, 2013; Kuo et al., 2019; Shen et al., 2016; Tsvetanov

et al., 2016). Furthermore, using multivariate CCA to combine imaging

and nonimaging features have provided new insights to understand the

joint relationship between brain activities and subjects' clinical symp-

toms, behavioral measurements, and performances of neuropsychologi-

cal tests in various diseased populations, such as psychosis disease

spectrum (Adhikari et al., 2019; Bai et al., 2019; Kottaram et al., 2019;

Laskaris et al., 2019; Palaniyappan et al., 2019; Rodrigue et al., 2018;

Tian et al., 2019; Viviano et al., 2018), Alzheimer's disease spectrum

(Brier et al., 2016; Liao et al., 2010; McCrory & Ford, 1991; Zhu

et al., 2016), neurodevelopmental diseases (Chenausky et al., 2017; Lin,

Cocchi, et al., 2018; Zille et al., 2018), depression (Dinga et al., 2019),

Parkinson's disease (Lin, Baumeister, Garg, and McKeown, 2018; Liu

et al., 2018), multiple sclerosis (Leibach et al., 2016; Lin et al., 2017), epi-

lepsy (Kucukboyaci et al., 2012) and drug addictions (Dell'Osso

et al., 2014).

Brain activation in response to task stimuli

CCA has also been applied to detect brain activations in responses

to stimuli during task-based fMRI experiments. Compared to the most

commonly general linear regression model, local neighboring voxels are

considered simultaneously in CCA to determine activation status of the

central voxel (Friman, Cedefamn, Lundberg, Borga, & Knutsson, 2001;

Nandy & Cordes, 2003; Nandy & Cordes, 2004; Rydell et al., 2006;

Shams et al., 2006). In addition, in task-based electrophysiological exper-

iments, Dmochowski et al. (2018) and de Cheveigne et al. (2018)

have maximized the canonical correlation between an optimally trans-

formed stimulus and properly filtered neural responses to delineate the

stimulus–response relationship in electroencephalogram (EEG) data.

Denoising neuroscience data

Another application of CCA in neuroscience research is to remove

noises from signals in the raw data. Through a blind source separation

(BSS) framework, von Luhmann et al. (2019) extract comodulated

canonical components between fNIRS signals and accelerometer sig-

nals, and consider those components above a canonical correlation

threshold to be motion artifact. Through BSS-CCA algorithms, multi-

ple studies demonstrate that muscle artifact can be efficiently

removed from EEG signals (Hallez et al., 2009; Janani et al., 2020;

Somers & Bertrand, 2016; Vergult et al., 2007). Furthermore, Churchill

et al. (2012) remove physiological noise from fMRI signals through

a CCA-based split-half resampling framework, and Li et al. (2017)

remove gradient artifacts in concurrent EEG/fMRI recordings through

maximizing the temporal autocorrelations of the time series.

Canonical granger causality

CCA has also been used to determine the causal relationship among

regions of interest (ROIs) in fMRI functional connectivity analysis.

Instead of using the mean ROI time series directly for analysis, multiple

time series are specified for each ROI and CCA searches the optimally

weighted mean time series during the analysis. Sato et al. (2010) com-

pute multiple eigen-time series for each ROI and determine the granger

causality between two ROIs by maximizing the canonical correlation

between eigen-time series at time point t and t-1 of the two ROIs. In a

more recent work, instead of using eigen-time series of each ROI, Gulin

et al. (2014) compute an optimized linear combination of signals from

each ROI in CCA to enable a more accurate causality measurement.

4.1.2 | Practical considerations and data reduction
steps

As we stated in Section 3.1, only if numbers of observations are more

than numbers of features in both Y1 and Y2, that is, N � pk, k = 1, 2,
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conventional CCA can produce statistically stable and meaningful

results. However, in neuroscience applications, this requirement is

not always fullfilled, especially when Y1 or Y2 represents brain activi-

ties where each brain voxel is considered a feature individually. In

this case, any feature can be picked up and learned by the CCA pro-

cess and directly applying Equation (1) to two sets will produce

overfitted and unstable results. Therefore, additional data-reduction

steps applied before CCA or constraints incorporated in the CCA

algorithm are necessary to avoid overfitting in CCA applications. In

this section, we focus on data reduction steps applied before

conventional CCA.

The most commonly used data reduction technique is the PCA

method applied to Y1 and Y2 separately. Through orthogonal transfor-

mation, PCA converts Y1 and Y2 into sets of linearly uncorrelated

principal components. The principal components that do not pass cer-

tain criteria are discarded, leading to dimension-reduced variables:
~Y1�N× q1 and ~Y2�N× q2 , where N� qk, k = 1, 2. Equation (1) can

then be applied to ~Y1 and ~Y2 . Multiple studies applied PCA to reduce

data dimensions before applying CCA to find joint multivariate corre-

lations between two high-dimensional variables (Abrol et al., 2017;

Churchill et al., 2012; Hackmack et al., 2012; Li et al., 2019; Mihalik

et al., 2019; Ouyang et al., 2015; Sato et al., 2010; Smith et al., 2015;

Sui et al., 2010; Sui et al., 2011; Zarnani et al., 2019).

In addition, the least absolute shrinkage and selection operator

(LASSO) algorithm (Tibshirani, 1996) has also been applied prior

to CCA as a feature selection step to eliminate less informative

features. For instance, in delineating the association between neuro-

physiological measures, which are derived from transcranial mag-

netic stimulation and electromyographic recordings, and kinematic-

clinical-demographic measurements in Parkinson's disease subjects,

Bologna et al. (2018) first perform logistic regression with LASSO

penalty to determine the most predictive features for the disease

in both variables. CCA is then applied to link the most predictive

features from each variable. Similarly, sparse regression techniques

have also been applied before CCA to genetic data in a neu-

rodevelopmental cohort (Zille et al., 2018). Furthermore, feature

selection can also be implemented in PCA as done in L1-norm penal-

ized sparse PCA (sPCA; Witten & Tibshirani, 2009; Yang, Zhuang,

Bird, et al., 2019), which removes noninformative features during

the dimension reduction step.

There is no single “correct” way or “gold standard” of the feature

reduction step before applying CCA. Decisions should be made based

on the data itself and the specific question that researchers are

interested in.

4.2 | Constrained CCA: Removing noninformative
features and stabilizing results

The other common solution in practice for N � pk, k = 1, 2 is to incor-

porate constraints into the CCA algorithm directly, and consequently

noninformative features can be removed and overfitting problems can

be avoided (Table 2).

4.2.1 | Constraints in CCA algorithms: Sparse CCA
to remove noninformative features

Most studies apply the sparse CCA method (detailed in the

section “Special case: L1-norm penalty and sparse CCA”), which maxi-

mizes canonical correlations between Y1 and Y2, and suppresses non-

informative features in Y1 and Y2 simultaneously (Badea et al., 2019;

Lee et al., 2019; Moser et al., 2018; Pustina et al., 2018; Thye &

Mirman, 2018; Vatansever et al., 2017; Wang et al., 2018; Xia

et al., 2018). The features determined to be noninformative are

assigned with zero coefficients. Therefore, sparse CCA is particularly

appropriate to combine modalities with large noise or substantial non-

informative features, such as voxel-wise, regional-wise or connectivity-

based brain features and genetic sequences (Avants et al., 2010;

Deligianni et al., 2014; Du et al., 2017; Du, Liu, Yao, et al., 2019; Du,

Zhang, et al., 2016; Duda et al., 2013; Gossmann et al., 2018; Grellmann

et al., 2015; Jang et al., 2017; Kang et al., 2018; McMillan et al., 2014;

Sheng et al., 2014; Sintini, Schwarz, Martin, et al., 2019; Sintini,

Schwarz, Senjem, et al., 2019; Szefer et al., 2017; Wan et al., 2011).

Rosa et al. (2015) further induce nonnegativity in the L1-norm penalty

in sparse CCA to investigate multivariate similarities between the

effects of two antipsychotic drugs on cerebral blood flow using col-

lected arterial spin labeling data.

Prior knowledge about Y1 and Y2 might also be available in neuro-

science data. With known prior information of the feature dimension,

structure-sparse CCA has been applied to associate brain activities

with genetic information (Du et al., 2014; Du et al., 2015; Du, Huang,

et al., 2016a; Du, Huang, et al., 2016b; Du, Liu, Zhang, et al., 2017;

Kim et al., 2019; Lin et al., 2014; Liu et al., 2017; Yan et al., 2014),

and to link structural and functional brain activities (Lisowska &

Rekik, 2019; Mohammadi-Nejad et al., 2017). If prior knowledge is

available of the observation dimension, such as memberships of diag-

nostic groups, discriminant sparse CCA is applied to investigate joint

relationship between brain activities and genetic information for sub-

jects with Schizophrenia disease spectrum (Fang et al., 2016) or

Alzheimer's disease spectrum (Wang et al., 2019; Yan et al., 2017).

Longitudinal data could also be collected in neuroscience research

and are useful to monitor disease progression. Temporal constrained

sparse CCA has been proposed to uncover how single nucleotide

polymorphisms affect brain gray matter density across multiple time

points in subjects with Alzheimer's disease spectrum (Du, Liu, Zhu,

et al., 2019; Hao, Li, Yan, et al., 2017).

4.2.2 | Constraints in CCA algorithm: Constrained
CCA to stabilize results

Multiple constraints have also been proposed in CCA applications to

stabilize CCA coefficients between brain activities and clinical symp-

toms. For instance, to avoid overfitting between fNIRS signals during

a moral judgment task and psychopathic personality inventory scores

in healthy adults, Dashtestani et al. (2019) introduce a regularization

parameter λ to keep the canonical coefficients small and to avoid high
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bias problem. Similarly, in preclinical research, Grosenick et al. (2019)

uses two regularization parameters λ1 and λ2 to penalize the estimated

covariance matrices for the resting-state functional connectivity fea-

tures and Hamilton Rating Scale for Depression clinical symptoms,

respectively.

Furthermore, as we stated in Section 4.1.1, CCA has been applied

to detect brain activations in response to task stimuli during fMRI

experiments. In these type of applications, Y1 represents time series

from local neighborhood that is considered simultaneously in deter-

mining the activation status of the central voxels, and Y2 represents

the task design matrix. CCA is applied to find optimized coefficients

u1 and u2, such that the correlation between combined local voxels

and task design is maximized. In this case, even though the central

voxel may be inactivated in the task, activated neighboring voxels

would lead to a high canonical correlation and thus produce falsely

activated status of the central voxel, which is termed assmoothing

artifact (Cordes et al., 2012a). To eliminate this artifact and to uncover

real activation status, multiple constraints have been applied to u1 to

guarantee the dominant effect of the central voxel in a local neighbor-

hood (Cordes et al., 2012b; Dong et al., 2015; Friman et al., 2003;

TABLE 2 Constrained CCA application

CCA variant Modality 1 Modality 2 Reference

Sparse CCA (L1-norm

penalty)

Brain imaging data Clinical/behavioral/neuropsychological

measurements

Badea et al. (2019); Lee, Moser, Ing, Doucet,

and Frangou (2019); Moser et al. (2018);

Pustina, Avants, Faseyitan, Medaglia, and

Coslett (2018); Thye and Mirman (2018);

Vatansever et al. (2017); Wang

et al. (2018); Xia et al. (2018)

Brain imaging data Brain imaging data Avants, Cook, Ungar, Gee, and

Grossman (2010); Deligianni, Carmichael,

Zhang, Clark, and Clayden (2016);

Deligianni, Centeno, Carmichael, and

Clayden (2014); Duda, Detre, Kim, Gee,

and Avants (2013); Jang et al. (2017);

Kang, Kwak, Yoon, and Lee (2018); Rosa

et al. (2015); Sintini, Schwarz, Martin

et al. (2019); Sintini, Schwarz, Senjem,

et al. (2019)

Brain imaging data Genetic information Du et al. (2016); Du, Liu, Yao, et al. (2019);

Du, Liu, Zhu, et al. (2019); Grellmann

et al. (2015); Gossmann, Zille, Calhoun,

and Wang (2018); McMillan et al. (2014);

Sheng et al. (2014); Szefer, Lu, Nathoo,

Beg, and Graham (2017); Wan et al. (2011)

Genetic information Clinical/behavioral/measurements Leonenko et al. (2018)

Structure-sparse CCA Brain imaging data Brain imaging data Lisowska and Rekik (2019); Mohammadi-

Nejad, Hossein-Zadeh, and Soltanian-

Zadeh (2017)

Brain imaging data Genetic information Du et al. (2014, 2015, 2016a, 2016b;

Du et al. (2017); Kim et al. (2019);

Liu et al. (2017; Lin, Calhoun, and

Wang, 2014; Yan et al. (2014

Discriminant sparse

CCA

Brain imaging data Genetic information/blood data Fang et al. (2016); Wang, Shao, Hao, Shen,

and Zhang (2019); Yan, Risacher, Nho,

Saykin, and Shen (2017)

Constrained CCA Brain imaging data Clinical/behavioral/neuropsychological

measurements

Grosenick et al. (2019); Dashtestani

et al. (2019)

Brain imaging data Task design Cordes, Jin, Curran, and

Nandy, (2012a, 2012b); Dong et al. (2015);

Friman, Borga, Lundberg, and

Knutsson (2003); Zhuang et al. (2017);

Zhuang et al. (2019)

Other constraints in

CCA

Longitudinal brain

imaging data

Genetic information Du, Liu, Zhu, et al. (2019) (temporal multitask

sparse CCA); Hao et al. (2017) (temporal

group sparse CCA);

Abbreviation: CCA, canonical correlation analysis.
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Zhuang et al., 2017; Zhuang et al., 2019). Yang, Zhuang, et al. (2018)

further extend the constraints from two-dimensional local neighbor-

hood to three-dimensional neighboring voxels.

4.3 | Kernel CCA: Focusing on a nonlinear
relationship between two modalities

Above CCAapplications assume joint linear relationships between two

modalities; however, this assumption might not always hold in neuro-

science research. Kernel CCA has been proposed to uncover the

nonlinear relationship between modalities without explicitly specifying

the nonlinear feature space (Equation (8)). In human research, kernel

CCA has been applied to investigate the joint nonlinear relationship

between simultaneously collected fMRI and EEG data (Yang, Cao,

et al., 2018), to uncover gene–gene co-association in Schizophrenia

subjects (Ashad Alam et al., 2019), and to detect brain activations

in response to fMRI tasks (Hardoon et al., 2007; Yang, Zhuang,

et al., 2018). In preclinical research, temporal kernel CCA has been pro-

posed to investigate the temporal-delayed nonlinear relationship

between simultaneously recorded neural (electrophysiological record-

ing in frequency-time space) and hemodynamic (fMRI in voxel space)

signals in monkeys (Murayama et al., 2010), and to investigate a

nonlinear predictive relationship between EEG signals from two differ-

ent brain regions in macaques (Rodu et al., 2018) (Table 3).

4.4 | Multiset CCA: More than two modalities

Multiset CCA has been specifically proposed to find common multi-

variate patterns across K modalities, with K > 2. The widest applica-

tion of multiset CCA in neuroscience research is to uncover covariated

patterns among demographics, clinical characteristics, behavioral

measurements and multiple brain activities, including structural MRI

derived measurements (gray matter, white matter, and cerebrospinal

fluid densities), diffusion weighted MRI derived measurements (myelin

water fraction and white matter tracts), fMRI derived measurements

(static and dynamic functional connectivity, task fMRI activations,

amplitude of low frequency contributions) and PET derived measure-

ments (standardized uptake values) (Baumeister et al., 2019; Langers

et al., 2014; Lerman-Sinkoff et al., 2017; Lerman-Sinkoff et al., 2019;

Lin, Vavasour, et al., 2018; Lottman et al., 2018; Stout et al., 2018; Sui

et al., 2013; Sui et al., 2015) (Table 4).

Multiset CCA has also been applied to group analysis, which com-

bines data from multiple subjects within a single modality. In this type

of applications, data from each subject are treated as one modality,

and multiset CCA is used to uncover common patterns in fMRI data

(Afshin-Pour et al., 2012; Afshin-Pour et al., 2014; Correa, Adali,

et al., 2010; Varoquaux et al., 2010), consistent signals in electrophysi-

ological recordings (Koskinen & Seppa, 2014; Lankinen et al., 2014;

Lankinen et al., 2016; Lankinen et al., 2018; Zhang et al., 2017), covar-

ied components in fNIRS data (Liu & Ayaz, 2018), and correlated fMRI

and EEG signals (Correa, Eichele, et al., 2010) across multiple subjects.

Sparse multiset CCA has been applied to combine more than two

variables and remove noninformative features simultaneously. Specifi-

cally, sparse multiset CCA has been applied to combine multiple brain

imaging modalities with genetic information (Hao et al., 2017; Hu

et al., 2016; Hu et al., 2018).

Multiset CCA with reference is specifically proposed as a supervised

multimodal fusion technique in neuroscience research. Using neuropsy-

chological measurements such as working memory or cognitive mea-

surements as the reference, studies have uncovered stable covariated

patterns among fractional amplitude of low frequency contribution

maps derived from resting-state fMRI, gray matter volumes derived

from structural MRI and fractional anisotropy maps derived from

diffusion-weighted MRI that are linked with and can predict core cogni-

tive deficits in schizophrenia (Qi, Calhoun, et al., 2018; Sui et al., 2018).

Using genetic information as a prior reference, multiset CCA with refer-

ence has also uncovered multimodal covariated MRI biomarkers that are

associated with microRNA132 in medication-naïve major depressive

patients (Qi, Yang, et al., 2018). Furthermore, with clinical depression

rating score as guidance, Qi et al. (2020) have demonstrated that the

electroconvulsive therapy Hdepressive disorder patients produces a

covariated remodeling in brain structural and functional images, which is

unique to an antidepressant symptom response. As a supervised tech-

nique, multiset CCA can be applied to uncover covariated patterns

across multiple variables of special interest.

4.5 | Other applications

CCA has also been applied in a supervised and hierarchical fashion.

Zhao et al. (2017) have performed supervised local CCA with

TABLE 3 Nonlinear Kernel CCA applications

CCA variant Modality 1 Modality 2 Reference

Kernel CCA Brain imaging data Brain imaging data Yang, Cao, et al. (2018)

Brain imaging data Task design Hardoon, Mour~ao-Miranda, Brammer, and Shawe-

Taylor (2007); Yang, Zhuang, et al. (2018)

Genetic information Genetic information Ashad Alam, Komori, Deng, Calhoun, and Wang (2019)

Temporal kernel CCA Simultaneously recorded multiple modalities John et al. (2017); Murayama et al. (2010); Rodu, Klein,

Brincat, Miller, and Kass (2018)

Abbreviation: CCA, canonical correlation analysis.
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gradually varying neighborhood sizes in early autism diagnosis, and in

each iteration, CCA is used to combine canonical variates from the

previous step (Table 5).

Bayesian CCA has been used to realign fMRI activation data between

actors and observers during simple motor tasks to investigate whether

seeing and performing an action activates similar brain areas (Smirnov

et al., 2017). The Bayesian CCA assigns brain activations to one of three

types (actor-specific, observer-specific and shared) via a group-wise

sparse ARD prior. Furthermore, using Bayesian CCA, Fujiwara et al. (2013)

establish mappings between the stimulus and the brain by automatically

extracting modules from measured fMRI data, which can be used to gen-

erate effective prediction models for encoding and decoding.

More recently, in network neuroscience, Graa and Rekik (2019)

propose a multiview learning-based data proliferator that enables the

classification of imbalanced multiview representations. In their pro-

posed approach, tensor-CCA is used to align all original and prolifer-

ated views into a shared subspace for the target classification.

TABLE 4 Multiset CCA applications

CCA variant Detailed modalities Reference

Multiset CCA Combine multiple brain

imaging data

rsfMRI + task fMRI + sMRI Lerman-Sinkoff et al. (2017); Lerman-Sinkoff,

Kandala, Calhoun, Barch, and Mamah (2019)

sMRI (WM + GM + CSF) + rsfMRI Lottman et al. (2018)

sMRI + fMRI + dMRI Sui et al. (2013, 2015)

Multiple task fMRI Langers, Krumbholz, Bowtell, and Hall (2014)

sMRI + fMRI + EEG Correa, Adali, Li, and Calhoun (2010)

Combine brain imaging data

and other information

Brain imaging data (sMRI/fMRI) +

neuropsychological measurements +

clinical/behavioral measurements

Baumeister et al. (2019); Lin, Cocchi, et al. (2018);

Lin, Vavasour, et al. (2018)

Brain imaging data (PET + sMRI + fMRI) +

neuropsychological measurements

Stout et al. (2018)

Combine multiple subjects

within a single modality

Sub1 + Sub2 + … + SubN within a single

modality

Afshin-Pour, Hossein-Zadeh, Strother, and Soltanian-

Zadeh (2012); Afshin-Pour, Grady, and

Strother (2014); Correa, Adali, et al. (2010);

Gaebler et al. (2014); Koskinen and Seppa (2014);

Lankinen, Saari, Hari, and Koskinen (2014);

Lankinen et al. (2016, 2018); Liu and Ayaz (2018);

Varoquaux et al. (2010); Zhang, Borst, Kass, and

Anderson (2017)

Combine multiple subjects

from two modalities

Sub1 + Sub2+ … + SubN from fMRI and

EEG

Correa, Eichele, Adali, Li, and Calhoun (2010)

Combine multiple ROIs

within a single modality

ROI1 + ROI2 + … + ROIN within a single

modality

Deleus et al. (2011)

Constraints in

multiset

CCA

Sparse multiset CCA Brain imaging data + genetic information +

clinical measurements

Hu, Lin, Calhoun, and Wang (2016); Hu et al. (2018);

Yu et al. (2015)

Multiset CCA with

reference

Brain imaging data (fMRI + sMRI + dMRI)

with neuropsychological measurements

as reference

Qi et al. (2020), Qi, Calhoun, et al. (2018);

Sui et al. (2018)

Brain imaging data (fMRI + sMRI + dMRI)

with genetic information as reference

Qi, Yang, et al. (2018)

Abbreviations: CCA, canonical correlation analysis; CSF, cerebrospinal fluid; dMRI, diffusion-weighted MRI; EEG, electroencephalogram; GM, gray matter;

MRI, magnetic resonance imaging; PET, position emission tomography; ROI, regions of interest; rsfMRI, resting-state functional MRI; sMRI, structural MRI;

Sub, subject; WM, white matter.

TABLE 5 Other CCA applications

CCA variant CCA application Reference

Supervised

local CCA

Combine two modalities Zhao, Qiao, Shi, Yap,

and Shen (2017)

Tensor CCA Morphological networks Graa and Rekik (2019)

Bayesian

CCA

Realign fMRI data from

multiple subjects

Smirnov et al. (2017)

Task fMRI activation

detection

Fujiwara, Miyawaki, and

Kamitani (2013)

Others Toolbox Bilenko and

Gallant (2016)

Reviews Liu and Calhoun (2014)

and Sui, Adali, Yu,

Chen, and

Calhoun (2012)

Abbreviations: CCA, canonical correlation analysis; fMRI, functional mag-

netic resonance imaging.
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5 | ADVANTAGES AND LIMITATIONS OF
EACH CCA TECHNIQUE IN NEUROSCIENCE
APPLICATIONS

Table 6 explains the advantages and limitations of each CCA and its

variant techniques.

5.1 | Canonical correlation analysis

5.1.1 | Advantages

CCA can be applied easily to two variables and solved efficiently in closed-

form using algebraic methods (Equation (3)). In CCA, the intermodality

relationship is assumed to be linear and both modalities are exchangeable

and treated equally. Canonical correlations are invariant to linear trans-

forms of features in Y1 or Y2. In neuroscience research, CCA uncovers the

joint multivariate linear relationship between two modalities and has

proven to be an effective multivariate and data-driven analysis method.

5.1.2 | Limitations

CCA assumes and uncovers only a linear intermodality relationship,

which might not hold for neuroscience data. Furthermore, directly

applying CCA requires sufficient observation support of the variables

(detailed in Section 3.1). For neuroscience data, especially voxel-wise

brain imaging data, it is usually difficult to have more observations

(e.g., subjects) than features (e.g., voxels). In this case, any feature in

Y1 and Y2 can be picked up and learned by the CCA process, and

directly applying CCA will produce overfitted and unstable results.

ROI-based analysis, data reduction (e.g., PCA), and feature selection

(e.g., LASSO) steps are commonly applied to reduce the number of

features in neuroscience data prior to CCA.

Another limitation of CCA in general is that signs of the canonical

correlations and canonical coefficients are indeterminate. Solving the

eigenvalue problem in Equation (3) will always give a positive canoni-

cal correlation value, and reversing the signs of u1 and u2 simulta-

neously will lead to the same canonical correlation value. Therefore,

with CCA, we can only conclude that two modalities are linearly and

TABLE 6 Advantages and limitations of each CCA-related technique

Category CCA variant Advantages Limitations

CCA CCA 1) Has closed-form analytical solution

2) Easy to apply

3) Invariant to scaling

1) Requires N � pk, k = 1, 2

2) Signs of canonical correlations are

indeterminate

Constrained

CCA

Sparse CCA 1) Removes noninformative features and solves N � pk
2) Performs reasonably with high-dimensional-co-linear data

Requires optimization expertise

Structure sparse

CCA

Removes noninformative features,

solving N � pk with prior

information about the data

1) Improves effectiveness

of sparse CCA.

2) Produces biological

meaningful results

1) Requires optimization expertise

2) Requires prior knowledge about the

data

Discriminant

sparse CCA

Discovers group

discriminant features

Generalized

constrained

CCA

1) Reduces false positives

2) Maintains most of the variance in a stable model

1) Requires optimization expertise

2) Requires predefined constraints

Nonlinear

CCA

Kernel CCA 1) Finds nonlinear relationship among modalities

2) Has analytical solution

1) Requires predefined kernel

functions

2) Difficult to project from kernel

space back to original feature space,

leading to difficulties in

interpretation

3) Only linear kernel space can be

projected back to the original

feature space.

Temporal kernel

CCA

Most appropriate to simultaneously collect data from two modalities

with time delay

Deep CCA 1) Finds unknown nonlinear relationship

2) Purely data-driven

1) Requires deep learning expertise

2) Requires large number of training

samples (in tens of thousands)

Multiset

CCA

Multiset CCA 1) Good for more than two modalities

2) Good for group analysis

1) Requires predefined objective

functions

2) The number of final canonical

components does not represent the

intersected common patterns across

all modalities

Sparse multiset

CCA

1) Good for more than two modalities

2) Removes noninformative features and solves N � pk

Multiset CCA

with reference

Supervised fusion technique to link common patterns with a prior

known variable

Abbreviation: CCA, Canonical correlation analysis.
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multivariately correlated without determining the direction of the lin-

ear relationship.

5.2 | Constrained CCA

5.2.1 | Advantages

Incorporating constraints in CCA can in general avoid overfitted and

unstable results in CCA. More specifically, different constraints can

benefit neuroscieence research in various ways.

Sparse CCA incorporates the L1-norm penalty on the canonical

coefficients uk, k = 1, 2 such that noninformative features are auto-

matically removed by suppressing their weights. Thus, sparse CCA is

suitable for high-dimensional co-linear data, such as whole-brain

voxel-wise activities or genetic data. In practice, the within-modality

covariance matrices Σkk, k = 1, 2 are replaced with the identity matrix I

in sparse CCA, since estimating Σkk from the high-dimensional collin-

ear data are both memory and time consuming. This replacement

saves both computation time and physical resources, and is widely

adopted in the neuroscience field.

Structure and discriminant sparse CCA removes noninformative

features and incorporates prior information about the data in the algo-

rithms simultaneously. Prior knowledge about feature structure or

group assignment of each observation are required, respectively,

for these two techniques. In neuroscience applications, information

implanted in features can improve the performance and effectiveness

of sparse CCA (Du, Liu, Zhang, et al., 2017) and guide the algorithm to

produce more biologically meaningful results (Du, Huang, et al., 2016a;

Liu et al., 2017). Alternatively, with group assignments implanted in

each observation, discriminant sparse CCA is able to discover group

discriminant features, which can later improve the performance of

supervised classification (Wang et al., 2019).

Other constraints are also beneficial in neuroscience research. For

instance, the L2-norm penalty on canonical coefficients retains all fea-

tures in the model with regularized weights, and therefore most of the

variance can be maintained in a stable model (Dashtestani et al., 2019).

In addition, when applied to task fMRI activation detection, locally con-

strained CCA penalizes weights on the neighboring voxels to guarantee

the dominance of the central voxel and therefore, is able to reduce false

positives (Cordes et al., 2012b; Zhuang et al., 2017).

5.2.2 | Limitations

One major limitation of constrained CCA is the requirement of exper-

tise in optimization techniques. By having additional penalty terms

on canonical coefficients or covariance matrices, analytical solutions

of constrained CCA no longer exist, and, instead, iterative optimiza-

tion methods are required to solve the constrained CCA problems

efficiently.

The predefined constraint itself also requires prior knowledge

about the data. For structure and discriminant sparse CCA, prior

information about the observation domain or the feature domain

is required. Furthermore, in neuroscience application, the constraint

itself is usually data specific. For instance, when applying local con-

strained CCA to task fMRI activation detection, the predefined con-

straint should be strong enough to penalize neighboring voxels, but

loose enough to guarantee the multivariate contribution of neighbor-

ing voxels to the central voxel. This constraint can only be selected

through simulating a series of synthetic data that mimic real fMRI

signals, which requires prior knowledge of the data and is time-

consuming.

5.3 | Nonlinear CCA

5.3.1 | Advantages

By definition, nonlinear CCA is able to uncover multivariate nonlinear

relationships between two modalities, which commonly exist in neu-

roscience variables. For instance, during an fMRI task, collected

fMRI signals are nonlinearly correlated with the task design due to

the unknown hemodynamic response function; and kernel CCA can

extract this multivariate nonlinear relationship and produce a localized

brain activation map (Hardoon et al., 2007).

In general, kernel CCA first implicitly transforms the original fea-

ture space into a kernel space with a predefined kernel function. With

this transform, nonlinear relationship between two modalities can be

discovered. Furthermore, in the new kernel space, kernel CCA can be

solved efficiently with a closed-form analytical solution.

Temporal kernel CCA shares similar advantages with kernel CCA,

with additional benefits from considering temporal delays between

modalities when applied to simultaneously collected data. In neurosci-

ence research, simultaneously collected EEG/fMRI data are a typical

candidate for temporal kernel CCA, as neural activities collected by

fMRI data, which are the blood oxygenated level-dependent signals,

contain temporal delays caused by the hemodynamic response func-

tion (Ogawa, Lee, Kay, & Tank, 1990), as compared to the simulta-

neously collected EEG signals.

Deep CCA, a purely data-driven technique, can reveal unknown

nonlinear relationships between variables without assuming any

predefined nonlinear intermodality relationship. It has the potential to

be applied to neuroscience data that contains enough samples for

training a deep learning schema.

5.3.2 | Limitations

For kernel CCA, a predefined kernel function needs to be selected and

this selection will affect final results. This choice of kernel functions

requires additional knowledge about data and the kernel function.

Another major limitation of both kernel CCA and temporal kernel CCA

is that it is difficult to project the kernel space (H1 and H2) back to the

original feature space (Y1 and Y2), leading to additional difficulties in

interpreting results (Hardoon et al., 2007). For instance, when applying
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kernel CCA to link fMRI task stimuli and collected BOLD signals

for activation detection, the obtained high-dimensional features can-

not be mapped backwards to an individual voxel in order to assign the

activation value because the feature embedded for commonly used

nonlinear kernels (e.g., Gaussian kernel and power kernel) have infor-

mation from multiple voxels. Therefore, kernel CCA with a general

nonlinear kernel remains unsolved for fMRI activation analysis, and

only linear kernels were used for constructing activation maps in fMRI.

Unlike kernel CCA, deep CCA does not require a predefined func-

tion and learns the nonlinear feature mapping from the data itself.

However, in deep CCA, the number of unknown parameters signifi-

cantly increases with the number of layers, which requires much more

samples in the training data. In neuroscience data, it is usually difficult

to have enough number of subjects as training samples for deep CCA.

Furthermore, deep learning expertise is also required for selecting the

appropriate deep learning structures for nonlinear feature mapping.

5.4 | Multiset CCA

5.4.1 | Advantages

In neuroscience research, more than two variables are commonly col-

lected for the same set of subjects. Multiset CCA uncovers multivari-

ate joint relationships among multiple variables, which is well defined

to link all collected data in this case. Furthermore, if data from one

subject are treated as one modality (or variable), multiset CCA will also

discover the common patterns across subjects, which becomes a pow-

erful data-driven group analysis method.

Sparse multiset CCA combines more than two modalities and

suppresses noninformative features simultaneously, and therefore

shares the advantages and limitations with both multiset CCA and

sparse CCA.

Multiset CCA with reference is the only supervised CCA tech-

nique and is proposed specifically for neuroscience applications. It dis-

covers joint multivariate relationships among variables in response to

a specific reference variable. For instance, using this method, common

brain changes from structural, fMRI and diffusion MRI with respect to

a specific neuropsychological measurement can be discovered.

5.4.2 | Limitations

There are five possible objective functions for multiset CCA optimiza-

tion, and different objective functions will lead to various results. The

closed-form analytical solution only exists for SUMCOR and SSQCOR

objective functions. Optimization expertise are required to solve multi-

set CCA with other objective functions, and with constraints as well.

Another major limitation of multiset CCA is that the number of final

canonical components output from the algorithm does not represent

the intersected common patterns across all modalities, or subjects.

Instead, multiset CCA discovers the unified similarities among every

modality pair (Levin-Schwartz, Song, Schreier, Calhoun, & Adali, 2016).

5.5 | Abstract

To summarize, conventional CCA uncovers joint multivariate linear rela-

tionships between two modalities and can be quickly and easily applied.

In neuroscience research, due to the existing multiple modalities and

nonlinear intermodality relationships, multiset CCA and nonlinear CCA

have their own advantages when applied accordingly to appropriate var-

iables. Constraints can be applied in these three methods to stabilize

results, remove noninformative features, and produce supervised mean-

ingful results. However, optimization expertise and prior knowledge

about the data are required to select the appropriate constraints.

6 | CHOOSING THE APPROPRIATE CCA
TECHNIQUE

The first step in selecting a CCA technique is to decide what type of

neuroscience application is of interest. Based on the types of combined

modalities, CCA applications can be summarized into four categories

(a–d): (a) finding relationship among multiple measurements; (b) detecting

brain activations in response to task stimuli; (c) uncovering common pat-

terns among multiple subjects; and (d) denoising the raw data. Table 7

summarizes current and potential techniques that can be applied for each

application.

After determining the application of interest, the flowchart in

Figure 4 provides a detailed guidance in selecting an appropriate

CCA technique. Based on the number of variables (K) and linear or

nonlinear intermodality relationships, three major applications are

mostly common in neuroscience research: uncover linear relationship

TABLE 7 Current applied and potential CCA techniques for each
application

Applications Currently applied
Potential
techniques

Link two modalities • CCA

• Sparse CCA

• Structure/

discriminant

sparse CCA

• Kernel CCA

• Temporal

kernel CCA

• Deep CCA

Detect task fMRI

activation

• CCA

• Constrained CCA

• Kernel CCA

• Deep CCA

• Sparse CCA

Uncover common

patterns across

multiple modalities

• Multiset CCA

• Sparse

multiset CCA

• Multiset

constrained

CCA

• Deep CCA

Denoise raw data • CCA • Constrained

CCA

• Kernel CCA

• Deep CCA

Abbreviations: CCA, canonical correlation analysis; fMRI, functional mag-

netic resonance imaging.
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between two variables (dashed yellow box); find nonlinear relationship

between two variables (dashed gray box) and discover covariated pat-

terns among more than two variables (dashed orange box). Detailed

choices are further made based on the number of observations and

number of features within each variable, known prior knowledge

about the variable, such as feature structures, and specific questions

of interest for research studies.

Furthermore, here, we give an experimental example of CCA

applications in neuroscience research.

Among many neuroscience applications, CCA is commonly used as

a data fusion technique to uncover the association between two

datasets. In the following, we demonstrate how to follow the guidance

in Figure 4 to link disease-related pathology using fMRI and structural

MRI data from cognitive normal subjects and subjects with mild cogni-

tive impairment (MCI). As a prodromal stage of Alzheimer's disease, both

functional and structural pathology are expected in MCI subjects. Yang,

Zhuang, Bird, et al. (2019) used CCA to examine the disease-related links

between voxel-wise functional information (e.g., eigenvector centrality

mapping from fMRI data, X1�N× p1 ) and voxel-wise structural infor-

mation (e.g., voxel-based morphometry from T1 structural MRI data,

X2�N× p2 ), where N is the number of subjects, and p1 and p2 are the

number of voxel-wise features for fMRI and structural MRI data,

respectively. Since there are only two imaging modalities in the analy-

sis, multiset CCA is not an option for this case. Considering that deep

CCA requires a large number of samples but N� p1 or p2, and kernel

CCA has the difficulty to project coefficients back to original voxel-

wise feature space as mentioned in Section 5.3, a linear relationship

between these two imaging modalities is considered. There are two

approaches for the scenario that the number of samples is much less

than the number of features.

The first approach is to perform dimension reduction before feed-

ing data into conventional CCA as shown in Figure 5a. Yang, Zhuang,

Bird, et al. (2019) used PCA or sPCA (Witten et al., 2009) for dimension

reduction and then fed CCA with dimension-reduced data Y1 and Y2.

CCA found a set of canonical coefficients Uk, k = 1, 2 and the

corresponding canonical variables Ak. The voxel-wise weight coefficient

can be obtained with a pseudo inverse operation. The other approach is

to implement constrained CCA as shown in Figure 5b. With the assump-

tion that a proportion of voxels in the brain is not informative for finding

the association between fMRI and structural MRI data, sparse CCA was

applied with X1 and X2 directly without dimension reduction step (Yang,

Zhuang, Bird, et al., 2019). The canonical coefficients Uk, k = 1, 2 are in

the voxel-wise feature space, thus no operation is required to calculate

voxel-wise weight coefficients.

The voxel-wise weight coefficients play a role in uncovering

which brain regions are most relevant for finding the association

between datasets. The voxel-wise weight maps for the most signifi-

cant disease-related component in Ak for (s)PCA + CCA and sparse

CCA is shown in Figure 5c. A nonparametric permutation test is

applied to test the significance of the association between fMRI and

structural MRI data with p values shown at the bottom of Figure 5c.

In this study, the canonical variables Ak computed from sPCA + CCA

have the highest classification accuracy for both fMRI and structural

MRI data.

F IGURE 4 Selecting a canonical correlation analysis (CCA)-technique that suits your application. Three scenarios are most commonly
encountered in neuroscience applications: CCA with and without constraints (dashed yellow box); nonlinear CCA (dashed gray box) and multiset
CCA (dashed orange box)
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7 | FUTURE DIRECTION OF CCA IN
NEUROSCIENCE APPLICATIONS

Currently, when applying CCA to data with a smaller number of obser-

vations than features, either a data reduction orfeature selection step

is performed as a preprocessing step, or an L1 norm penalty is added

as a constraint to remove noninformative features. Future efforts

should be made toward incorporating prior information on feature

structures of input variables that are more reasonable or more biologi-

cal meaningful, and canonical correlation values should be computed in

a one step process that includes prior information. Furthermore, apply-

ing CCA and its variant techniques to uncover joint multivariate rela-

tionships between two modalities has dominated the current CCA

applications in the neuroscience field. In these applications, various

techniques have been proposed to incorporate prior information

within variables to boost the model performance, such as considering

group-discriminant features to strengthen group separation. However,

much less effort was put to incorporate these prior information within

the variables in multiset CCA. In neuroscience research, collecting mul-

tiple modalities of a single subject has become a commonplace, and

with more than two variables, multiset CCA should be considered for

this multimodal data-fusion more often. Future efforts toward incorpo-

rating prior information within each variable to further improve the

performance of multiset CCA could shed new lights in neuroscience

research. For instance, we suggest incorporating group information in

multiset CCA to extract common group-discriminant patterns among

multiple measurements derived from fMRI, or to uncover correlated

group-discriminant feature among brain imaging data and behavioral

or clinical measurements. Furthermore, nonlinear relationships among

multiple modalities have not been explored within multiset CCA in

neuroscience research. It might be of interest to incorporate kernels in

multiset CCA to uncover covariated nonlinear patterns among multiple

brain imaging data, or to input each variable through multiple layers to

generate “deep” features before applying multiset CCA.

In addition, future efforts are also required to statistically interpret

CCA results. Currently, a parametric statistical significance of CCA

model is only well defined for conventional CCA. Statistical significances

of CCA variants are usually determined nonparametrically through per-

mutation tests, which are time-consuming and methods dependent. Fur-

thermore, even using permutation tests, statistical significance can only

be determined for each canonical correlation value, instead of canonical

coefficients. Therefore, we cannot determine the statistical significance

of a specific feature in the model. Identifying important features as

potential biomarkers is usually an end goal in neuroscience. Therefore,

developing test statistics to interpret CCA results by determining statis-

tically important features would also benefit neuroscience research.

8 | CONCLUSION

Uncovering multivariate relationships between modalities of the same

subjects have gained significant attentions in neuroscience research.

F IGURE 5 Example of choosing canonical correlation analysis (CCA) variants by following the guideline. Voxel-wise functional and structural
MRI information from cognitive normal subjects and subjects with mild cognitive impairment were used for data fusion analysis. (a) Schematic
diagram of (sparse) principal component analysis (PCA) + CCA. The abbreviation sPCA stands for sparse PCA. (b) Schematic diagram of sparse
CCA (sCCA). (c) Top panel shows the most disease-discriminant functional and structural component and the bottom panel shows the correlation
between datasets (ρ), the significance of the correlation derived from nonparametric permutation test (pcorr) and the classification accuracy for
each method
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CCA is a powerful tool to investigate these joint associations and

has been widely applied. Multiple CCA-variant techniques have been

proposed to fulfill specific analysis requirements. In this study, we

reviewed CCA and its variant techniques from a technical perspective,

with summarized applications in neuroscience research. Of each CCA-

related technique, detailed formulation and solution, relationship with

other techniques, current applications, advantages, and limitations are

provided. Selecting the most appropriate CCA-related technique to

take full advantages of available information embedded in every vari-

able in joint multimodal research might shed new lights in our under-

standings of normal development, aging, and disease processes.

9 | CODE AVAILABILITY

Python-based CCA toolbox (Bilenko & Gallant, 2016) is available on

github: http://github.com/gallantlab/pyrcca; CCA package in R can be

found in González, Déjean, Martin, and Baccini (2008). Codes for apply-

ing CCA and kernel CCA to detect task-fMRI activations are available

on github (Yang, Zhuang, et al., 2018; Zhuang et al., 2017): https://

github.com/pipiyang/CCA_GUI. Bayesian CCA with group-wise ARD

prior and the relevant techniques are implemented in R CCAGFA pack-

age (https://cran.r-project.org/web/packages/CCAGFA/index.html).
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