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Abstract

Motivation: DNA methylation datasets are growing ever larger both in sample size and genome

coverage. Novel computational solutions are required to efficiently handle these data.

Results: We have developed meffil, an R package designed for efficient quality control, normaliza-

tion and epigenome-wide association studies of large samples of Illumina Methylation BeadChip

microarrays. A complete re-implementation of functional normalization minimizes computational

memory without increasing running time. Incorporating fixed and random effects within functional

normalization, and automated estimation of functional normalization parameters reduces technical

variation in DNA methylation levels, thus reducing false positive rates and improving power.

Support for normalization of datasets distributed across physically different locations without

needing to share biologically-based individual-level data means that meffil can be used to reduce

heterogeneity in meta-analyses of epigenome-wide association studies.

Availability and implementation: https://github.com/perishky/meffil/

Contact: josine.min@bristol.ac.uk or matthew.suderman@bristol.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

DNA methylation is the addition of methyl groups to cytosine bases in

the DNA sequence, most often in the context of a CpG dinucleotide, a

cytosine followed by a guanine. The addition or loss of methyl groups

is often associated with changes in gene expression, and through epi-

genome wide associations studies (EWAS) it has been shown to associ-

ate with a wide range of complex traits. A number of technologies

have been developed for interrogating DNA methylation including

microarrays and sequencing-based methods. The Illumina Infinium

HumanMethylation450 BeadChip (450k array) can be used to meas-

ure DNA methylation of 485k CpG sites, comprising just under 2%

of the total genomic CpG content mainly clustered around the tran-

scription start sites (Michels et al., 2013). The new Illumina Infinium

MethylationEPIC BeadChip (EPIC array) expands this coverage to

�850k sites to include enhancer regions identified by ENCODE

(Hong et al., 2016) and FANTOM5 (Andersson et al., 2014).

Batch effects present a well-known challenge to microarray ana-

lysis (Teschendorff et al., 2011), particularly in datasets composed

of thousands of samples since they cannot all possibly be processed

at the same times and by the same technical personnel (Leek et al.,

2010). This unwanted variation can increase both false negative and

false positive rates if correlated with the outcome of interest, and

controlling for this is not trivial, especially as sample sizes continue

to grow.

Following the popularity of quantile normalization for analyzing

gene expression microarrays (Bolstad et al., 2003), many variations

based on quantile normalization have been developed for DNA

methylation microarrays (Lehne et al., 2015; Teschendorff et al.,

2013; Touleimat and Tost, 2012), however, all assume that global

methylation does not vary between samples (Hicks and Irizarry,

2015). When this does not hold, most notably between tumor and

normal samples, between different tissue types, or when there are

batch differences between cases and controls, quantile normalization
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can remove biological variation along with technical variation [e.g.

(Fortin et al., 2014b; Heiss and Brenner, 2015)]. A feature of 450k

and EPIC arrays is the inclusion of control probes–probes that do

not assay biological variation and only vary due to technical effects.

Functional normalization (FN; Fortin et al., 2014b) exploits control

probes to separate biological variation from technical variation, and

its performance compares favorably to other approaches (Fortin

et al., 2014b; Heiss and Brenner, 2015; Lehne et al., 2015; Liu and

Siegmund, 2016; Maksimovic et al., 2015).

Many DNA methylation datasets using 450k and EPIC arrays

have now been generated independently and are being used in

EWAS to discover associations between CpG sites and a variety of

exposures, complex traits and disease risks. Much like genome-wide

association studies (GWAS), the widespread use of the Illumina plat-

form has made possible large-scale meta-analyses organized by

international consortium-based efforts that are combining ever

larger numbers of subjects to reach statistical power to detect robust

associations. However, unlike GWAS, it comes with a number of

crucial challenges that have not been fully resolved. First, most exist-

ing software tools for quality control and normalizing DNA methy-

lation levels were not designed to handle datasets comprising

thousands of samples, and recently developed tools in R (Gorrie-

Stone, 2018) and Java (Almeida et al., 2017) may not provide

desired functionality. Second, sharing of individual-level data is pro-

hibited due to ethical considerations, so meta-analyses are liable to

encounter heterogeneity introduced when datasets are normalized

independently. Third, there is currently no universally accepted

standard approach that addresses all aspects of dataset quality con-

trol and normalization of large datasets. Fourth, there is no standar-

dized approach for selecting and comparing statistical models for

EWAS, including selection and generation of covariates. Fifth, there

is currently no standard for sharing quality control information and

EWAS findings.

We have developed meffil (Efficient algorithms for analyzing

DNA methylation data) to provide solutions in a user-friendly

and open source R package (https://github.com/perishky/meffil).

Figure 1 shows the meffil work-flow from raw data to quality con-

trol to normalized data to EWAS. Meffil includes functionality for

identifying low quality methylation measurements, discovering and

rectifying sample mismatches, merging datasets containing both

450k and EPIC arrays, removing confounding effects of cell type

heterogeneity and assessing the quality of observed associations.

In this paper, we describe its implementation and evaluate the

computational and statistical advantages that it achieves, while dem-

onstrating where limitations might still exist.

2 Materials and methods

2.1 Data
Full details of the Accessible Resource for Integrated Epigenomic

Studies (ARIES; Relton et al., 2015) and Genetics of Overweight

Young Adults (GOYA; Paternoster et al., 2011) datasets are pro-

vided in the Supplementary Material. DNA methylation was

quantified in bisulfite-converted genomic DNA using 450k arrays

for all samples. Some samples were removed due to genotype and

gender mismatches and methylation quality (low detection scores,

low number of beads, methylated/unmethylated ratio, strong

dye-bias, post-normalization checks). Samples were normalized

using FN using meffil. After normalization we checked for batch

effects including bisulfite-conversion plate (‘plate’) and beadchip

(‘slide’).

2.2 Implementation of meffil
Meffil is designed around a re-implementation of FN as imple-

mented in the minfi R package (Fortin et al., 2014b). Output using

default settings and without enhancements is therefore identical to

minfi (Aryee et al., 2014). Meffil uses the illuminaio R package

(Smith et al., 2013) to parse Illumina IDAT files into QC objects

(Fig. 1) which contain raw control probe summaries, quantile distri-

butions of raw probe intensities, poor quality probes based on detec-

tion P-values and number of beads, predicted sex (Aryee et al.,

2014), predicted cellular composition (Houseman et al., 2012) when

a cell type reference is specified and batch variable values. As in

minfi, probe intensities are dye-bias and background corrected using

the ‘noob’ method (Triche et al., 2013). Control probes are summar-

ized as 42 different control types in a control matrix with one row

for each control type and one column for each sample.

This summary object is all that is needed to perform quality con-

trol, sample and CpG site filtering, identification of batch effects

and the normalization of sample quantiles, the first normalization

step of FN. In this step, probe intensity quantiles are normalized be-

tween samples by fitting linear models with these quantiles to the

top principal components of the control matrix. The resulting quan-

tile residuals for each QC object are retained as a set of normalized

quantiles which are then used in the second normalization step

where the raw probe intensities for each sample are adjusted to con-

form to its set of normalized quantiles.

This memory-reducing innovation makes it possible to perform

the second normalization step on small subsets of the dataset, each

at different times or on different compute servers. Parallelization of

the normalization is possible when either a single compute server

has multiple processors or the normalization is being performed on

a compute cluster. After the second normalization step has been

completed for each individual sample, the resulting normalized

methylation data subsets may be merged into a single dataset for

DNA methylation analyses. The order of or server on which the

samples were normalized does not affect the final normalized values

in any way.

2.3 Quality control features
In meffil, quality control reports can be generated in order to un-

cover variation due to technical artefacts, identify outliers and flag

poor quality probes and samples using detection P-values, number

of beads, ratio of unmethylated/methylated signal, dyebias and

Raw data (IDAT files)

QC objects

Parameter metrics

Normalized data

Normalized objects

QC report

Normalization report

Remove outliers

EWAS statistics EWAS report

QC data 
extraction

Normalize 
quantiles
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Fig. 1. The workflow of meffil
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control probe checks. The report also provides checks for

sample swap detection using SNP discordance between methyla-

tion and genotype arrays as well as a gender check (Supplementary

Fig. S1).

Meffil generates a normalization report with coefficients plots

comparing the strength of associations between batch variables with

control probes and with normalized data. The report contains a

table with ANOVA F and post-hoc t-statistics that pass a user-

defined significance threshold to identify problematic batches, e.g. a

specific slide with technical artefacts that are not sufficiently

resolved by normalization (Supplementary Fig. S2). All reports are

generated in markdown and HTML.

2.4 Extending FN to reduce technical variation
Meffil provides two new features to reduce technical variation:

(i) a method to identify the number of principal components

that minimizes the residual variance unexplained by the given

number of principal components. Residual variance is calculated

under a 10-fold cross-validation scheme in order to avoid

overfitting. (ii) We observed that FN failed to completely remove

the variance due to certain technical artefacts such as sample

slide or slide row. To address this, we allow the user to normalize

sample quantiles using additional fixed and random effects.

Random effects are handled using the lme4 R package (Bates et al.,

2015).

2.5 EWAS pipeline
To deliver a comprehensive and integrated toolkit for methylation

analysis, meffil also provides an EWAS pipeline. Linear regression

models are fitted using limma (Ritchie et al., 2015). Confounding

effects are handled by including appropriate covariates in the

EWAS. By default, meffil fits four different regression models: no

covariates, only supplied covariates, supplied and surrogate varia-

bles obtained by surrogate variable analysis (SVA; Leek et al., 2012;

Leek and Storey, 2007) and supplied and surrogate variables

obtained by independent surrogate variable analysis (ISVA;

Teschendorff et al., 2011). Meffil allows estimation of cellular com-

position using the Houseman algorithm (Houseman et al., 2012)

from DNA methylation profiles based on several publicly available

blood reference datasets including three cord blood references

(Bakulski et al., 2016; de Goede et al., 2015; Gervin et al., 2016)

and one peripheral blood reference (Reinius et al., 2012) or from

user-supplied references.

EWAS results are summarized in a report that includes quantile-

quantile, Manhattan, covariate and variable-of-interest plots as well

as tables and scatterplots showing the strongest as well as user-

defined candidate CpG site associations. Outputs are displayed to

allow comparison between each of the different EWAS models

(Supplementary Fig. S3).

2.6 Analysis that protects study participant privacy
Because the control probes capture only technical variation, they are

fundamentally non-disclosive. It is possible to use meffil to normal-

ize datasets residing on distinct servers together while sharing only

the control probe summaries and probe intensity quantiles between

the two servers. This information cannot be used to identify individ-

uals and should not violate most cohort participant privacy agree-

ments. Actual phenotype or DNA methylation levels need never be

shared.

3 Results

3.1 Automated normalization for heterogeneous data

with improved computational efficiency
3.1.1 Computational efficiency

Our original motivation for creating meffil was an inability to suc-

cessfully normalize �5400 450k arrays using available software

tools and computational resources. The main impediment was the

large memory requirement of loading all data into memory before

normalization could be initiated. We discovered, however, that FN

(Fortin et al., 2014b) could be reimplemented in a way that uses a

small fraction (�1/20) of the memory required by the entire dataset.

In particular, we realized that FN could be completed one sample at

a time while holding in memory a relatively small summary of probe

intensities for each sample. The summary consists of a control probe

matrix and probe intensity quantiles. After the summary has been

collected, FN then proceeds to normalize intensity quantiles by

removing control probe variation. Normalized methylation levels

for each sample can then be derived from the normalized quantiles

independently of all other samples.

To minimize running time, the meffil implementation makes use

of the R parallel package (R Core Team, 2014) to allow normaliza-

tion of multiple samples simultaneously. Normalization of 5469

450k arrays took 3 h on a compute server with 64 Gb of RAM and

16 processors. A comparison shows that the memory requirements

to normalize the same dataset using another popular software tool,

minfi, were much larger (Table 1). Most other popular packages

(Assenov et al., 2014; Morris et al., 2014) that provide FN capabil-

ity are simply wrappers for the minfi implementation. Two recently

developed tools, bigMelon (Gorrie-Stone, 2018) and DiMmeR

(Almeida et al., 2017) were also specifically designed to normalize

large datasets. Although neither implements FN, we provide their

performance characteristics for comparison.

3.1.2 Scalable pipeline and reporting mechanisms

Normalization and analysis of datasets, particularly large datasets,

is rarely automatic and requires interactive problem-solving. Ideally,

Table 1. Comparison between software packages on a server with

16 available processors

meffil minfi meffil bigMelona bigMelonb diMmeR

Number of

samples

1000 1000 5469 5469 5469 5469

Normalization

method

FN FN FN Dasen Dasen QN

Platform R R R R R Java

Size of summary

(Gb)c

0.2 0.8

Memory (Gb) 3/5d 15 3/67d 57 12 4.4

Time (min) 16 54 180 350 450 82

Size of output

(Gb)e

3.5 2.8 17 90 90

abigMelon applied with chunksize set to 500.
bbigMelon applied with chunksize set to 100.
cOnly meffil generates a summary object.
dIf the output from meffil is a matrix in R, then memory use peaks at

67 Gb. If the output is saved to ‘gdsfmt’(Zheng et al., 2012, 2017) file like

bigMelon, then the memory use peaks at 3 Gb. We note that the running time

will be the same for both options.
eDimMeR does not save output until after a permutation-based EWAS is run.

We terminated analysis after normalization so output size was not determined.
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then, analysis tools should reflect this, allowing for some level of

automation while also allowing high-level tasks to be broken down

into more specific tasks with customizable solutions. Graphical user

interface packages, which are most convenient for users, are often

not available on computational servers or high-performance com-

puting cluster. Graphical interfaces like shinyMethyl (Fortin et al.,

2014a) and MethylAid (van Iterson et al., 2014) handle this problem

by extracting data summaries that can be loaded and manipulated

on a desktop computer. In meffil, we address this challenge by pro-

viding functions that nearly completely automate the entire process

but can be replaced with calls to sets of functions that allow more

detailed interaction with data processing. After each main process-

ing step (quality control, normalization and EWAS), HTML reports

are generated that summarize the results of each (Supplementary

Figs S1–S3), allowing the user to evaluate the success of each step

before proceeding to the next and to share with collaborators. We

also provide extensively tested quality control protocols on the mef-

fil wiki website (https://github.com/perishky/meffil/wiki). We note

that EWAS in meffil actually fits four different regression models:

no covariates and user-supplied covariates with or without surrogate

variables obtained by applying SVA or ISVA.

3.1.3 Analysis of mixed 450k and EPIC datasets

Given the large number of datasets that have 450k DNA methyla-

tion profiles and the apparent popularity of the new EPIC micro-

array, it will likely be necessary to merge 450k and EPIC datasets

for analysis. This is made possible in meffil by applying identical

methods to probes common to both microarrays. We have yet to as-

sess the performance of this approach due to the lack of an available

mixed dataset. Fortin et al., 2017 have made a first attempt using

the minfi package but their assessment dataset includes only three

EPIC microarrays supplied by the manufacturer.

3.2 Extending FN to reduce technical variation
To assess the performance of new features in meffil we processed

raw data from ARIES (Supplementary Methods). Although the ut-

most care was taken in the generation of the high-quality methyla-

tion profiles in ARIES, practical constraints lead to inconsistencies

in the way samples were collected and processed. For example,

DNA was extracted from a variety different sample types: whole

blood, white cells, peripheral blood lymphocytes and blood spots,

each with slight differences in the resulting methylation measure-

ments. We exploit this heterogeneity to evaluate the performance of

FN. An EWAS of pre-natal tobacco exposure was then applied to

the cord blood samples comprising white cells and bloodspots

(n¼777). To ensure that our observations weren’t specific to ARIES

given the differences between sample starting material (e.g. blood

spots versus white blood cells), we repeated the analysis in the

GOYA study (Paternoster et al., 2011; Supplementary Methods).

Performance was assessed by comparing resulting association statis-

tics in the two datasets to 5801 associations of a large EWAS meta-

analysis of pre-natal smoking (Joubert et al., 2016). As there are

multiple options for selecting covariates to include in the EWAS re-

gression model, we considered three options: no covariates, cellular

composition estimates from cord or adult blood panels plus other

covariates and surrogate variables obtained using ISVA (Leek and

Storey, 2007; Teschendorff et al., 2011). Consistent with previous

findings, ISVA surrogate appear to sufficiently account for most

confounding factors including heterogeneity of cellular composition

(McGregor et al., 2016) resulting in highly sensitive and specific

EWAS findings (Supplementary Fig. S4).

3.2.1 Extending FN to include fixed and random effects

We and others (Akulenko et al., 2016) have found that FN often

fails to completely remove slide and plate effects (Supplementary

Table S1). Slide effects occur because groups of samples are meas-

ured using the same glass slide or bead chip (12 samples per slide for

450 K microarrays and 8 per slide for EPIC microarrays). Plate

effects occur because groups of samples are bisulfite converted on

the same 96-well plate. We therefore revised our implementation of

FN to allow additional fixed and random effects to be included with

the control probe summaries.

Normalization reports for ARIES showed a large drop in batch-

associated variation after including batch (slide) as a random effect

in FN. It was not possible to model batch as a fixed effect because

induced group sizes were too small. When we performed an EWAS

of pre-natal tobacco exposure in the resulting normalized version of

ARIES, we observed increased specificity and sensitivity to detect

previously meta-analyzed associations (Joubert et al., 2016; Fig. 2).

Area under the curve (AUC) increased in ARIES (0.63 to 0.65,

P<2.2 x 10�16, DeLong’s test) and in GOYA (when including plate

as a random effect; 0.58 to 0.59, P¼1.8 x 10�7). For comparison,

we also applied a random effects EWAS to FN normalized data.

Including slide as a random effect in an EWAS of ARIES was not an

improvement over our extension of FN (AUC decreased from 0.65

to 0.64, P¼1.8 x 10�6), however including plate as a random effect

in an EWAS of GOYA was an improvement (AUC increased from

0.59 to 0.61, P<2.2 x 10�16). All receiver operating characteristic

(ROC) curves are shown in Figure 2. Users could use a similar ap-

proach using the normalization report and well-established EWAS

findings to make normalization decisions.

3.2.2 Automated parameter selection

FN has one main parameter that can be set by the user: the number

of principal components (maximum¼42) derived from control fea-

tures to be used to normalize the probe quantiles (Fortin et al.,

2014b). The default number advised by Fortin et al., 2014b is two,

derived as the number maximizing discovery of differentially methy-

lated signals in a few examples. In meffil, we implemented an ap-

proach that estimates the number of principal components as the

number that best explains variation in the probe intensity quantiles.

This test is performed under cross validation in order to avoid over-

fitting (Supplementary Material).

To evaluate the performance of the automatic parameter selec-

tion, we generated nine normalizations of ARIES and GOYA cord

blood samples, each normalized with a different number of control

Fig. 2. Effect of adjusting ‘slide’ or ‘plate’ as a random effect. True positive

rates (TPRs) are consistently higher in a downstream EWAS when variation

due to ‘slide’ effects in ARIES (a) and ‘plate’ effects in GOYA (b) are removed

using random effects models. Random effects models were applied either

probe quantiles along with control variation in FN (‘FNþre’) or during the

EWAS (‘FNþewas.re’). TPRs were estimated by comparison to associations

from a large meta-analysis (Joubert et al., 2016)
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summary principal components and evaluated the sensitivity and

specificity of identifying associations with pre-natal tobacco expos-

ure. ROC curves show that parameter choice can have a large influ-

ence (Fig. 3a and b), with the recommended choice of 10 returning

the best performance.

3.2.3 Reducing heterogeneity in Meta-analyses with minimal data

sharing

Due to the way that FN is re-implemented in meffil, it is possible to

normalize datasets residing on distinct servers together while sharing

only the control probe summaries and probe intensity quantiles be-

tween the two servers (Fig. 4a). We evaluated the effect of this ap-

proach on heterogeneity in a meta-analysis of age in seven publicly

available DNA methylation datasets (n¼2967, Supplementary

Table S2, Supplementary Methods). In a first meta-analysis, each

dataset was normalized separately and, in a second meta-analysis

(the ‘mega’ EWAS), the datasets were normalized together (Fig. 4a).

Heterogeneity was compared between meta-analyses by paired t-test

of tau2 (Rucker et al., 2008) to only those CpG sites associated with

age in an EWAS of all datasets merged together (Bonferroni adjusted

P<0.05 and at least 0.1% change in methylation per year). In each

EWAS surrogate variables generated either by ISVA or SVA were

used as covariates. The ISVA mega EWAS identified 2487 CpG sites

associated with age (Bonferroni adjusted P<0.05 and absolute

value of the regression coefficient greater than 0.1% per year)

whereas the SVA mega EWAS identified 7697 sharing 1773 associa-

tions. The regression coefficients of the pooled set of 8411 associa-

tions were highly correlated between them (R¼0.91).

Using ISVA, heterogeneity was actually lower when datasets

were normalized separately prior to meta-analysis (mean tau2

difference ¼ 1.2 x 10�7, P<7.7 x 10�54; Fig. 4b). Conversely, when

SVA was used, heterogeneity was much lower when datasets were

normalized together (mean tau2 difference ¼ 2.4 x 10�8; P<1.4 x

10�194; Fig. 4b).

Agreement between meta-analyzed and mega EWAS was also

highly covariate-dependent and followed expectations that reduced

heterogeneity led to greater agreement. Agreement was quantified

by treating the mega EWAS associations as the true set of associa-

tions and calculating the false discovery rate (FDR) and TPR of the

corresponding meta-analysis. For ISVA-based EWAS, FDR was

35% and TPR was 63% when datasets were normalized separately.

When datasets were normalized together, FDR was slightly higher

(36%) and TPR lower (49%). For SVA, FDR was much lower at

6% and TPR much higher at 78% when datasets were normalized

separately. When datasets were normalized together, FDR was

slightly lower (4%) and TPR slightly higher (81%). From these

results, we conclude that normalization prior to meta-analysis may

improve results but this is not guaranteed.

3.3 Perfect confounding between batch effects and

biological phenotypes is not resolved by functional

normalization
A common problem in epidemiological datasets is perfect confound-

ing with batch, particularly for opportunistic case-control studies in

which data is generated for cases subsequent to data collected from

a control population. We evaluated the efficacy of FN to remove

only technical variation based on control variation while leaving

biological variation intact. To test this, we compared methylation

differences between methylation profiles obtained from cord blood

against peripheral blood collected in adolescence under two scen-

arios, one in which there was perfect confounding with batch (e.g.
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Fig. 3. Parameter selection for FN. The main parameter for FN is the number

of principal components of control variation with which to normalize probe

quantiles. Screeplots (a, b, d, e) show the metric used to meffil for choosing

the optimal number of principal components in ARIES (a, b, c) and GOYA

(d, e, f), the amount of probe quantile variation unexplained by the principal

components under 10-fold cross validation. The explained variation is mainly

due to technical variance as the control probes should not be correlated with

biological signal (Supplementary Material). Screeplots (a, d) show the vari-

ation without regressing out random effects whereas plots (b) and (e) show

the variation after regressing out slide (b) or plate (e) as random effect. Plots

(c) and (f) compares true and false positive rates in a downstream EWAS of

pre-natal smoking in ARIES (c) and GOYA (f) after normalizing with different

numbers of principal components and regressing out slide or plate as a

random effect. TPRs were estimated by comparison to associations from a

large meta-analysis (Joubert et al., 2016)

Fig. 4. Meta-analysis with normalized data. Data can be normalized using

meffil as illustrated in (a) by generating QC objects for each dataset, sending

them to a normalization server for normalization and then sending them back

to each dataset to complete normalization of each sample. (b) The heterogen-

eity tau2 statistic is shown for CpG sites in the meta-analyses of age per-

formed with and without normalizing the seven datasets together prior to

meta-analysis. The top plot shows heterogeneity when ISVA is used to gener-

ate surrogate covariates and the bottom plot when SVA is used instead. CpG

sites shown in the plot are those identified as associated with age in the

EWAS of the combined dataset, 2486 associations for ISVA and 7697 for SVA.

The dark diagonal line shows y¼x and the grey line the regression line
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GOYA cord against ARIES adolescence) and another in which batch

was randomized (e.g. ARIES cord versus ARIES adolescence). In the

unconfounded analysis, only 14 DNA methylation differences were

identified (Bonferroni adjusted P<0.05) after adjusting for hetero-

geneity in cellular composition. In contrast, in the confounded ana-

lysis, there were 38 950 methylation differences and this included

only seven of the 14 differences from the unconfounded analysis. Of

the 38 950, 62% had effect sizes in the same direction as in the

unconfounded analysis. This suggests that the vast majority of the

38 950 were false positives.

We then asked if adjusting for controls directly in the EWAS re-

gression model would reduce the number of apparent false positives

while retaining some of the true positives. Under this model we

obtained 199 differentially methylated CpG sites, of which 50 over-

lapped with the 38 950 from the confounded analysis and none with

the unconfounded analysis. Of the 199 123 (62%) agreed on the dir-

ection of association. Once again, these results suggest that most or

all of the 199 were false positives. This was not due to the control

probes failing to fully account for batch variation as a few of the

‘hybridization’ controls perfectly differentiated between batches.

The false positives were then possibly due to model instability due

to high correlation between controls and the variable of interest.

4 Discussion

Illumina Infinium DNA methylation microarrays have been used in

a number of large-scale epigenetic epidemiological studies due to

their low cost and large coverage of the genome. Despite the exten-

sive use of these arrays, memory efficient and comprehensive soft-

ware are currently lacking. We have designed meffil to perform pre-

processing, quality control, data harmonization, normalization and

EWAS easily, flexibly and memory-efficiently. We have demon-

strated that meffil can remove unwanted variation both using FN

and by including covariates in EWAS models. Automatic generation

of comprehensive reports at each step allows users to assess the suc-

cess of each and potentially repeat steps after tweaking parameters

to improve performance. The possibility of normalizing remote

datasets together without sharing sensitive information may help to

reduce heterogeneity in meta-analysis.

To evaluate different settings in meffil, we used the ARIES and

GOYA datasets and compared associations with pre-natal tobacco

exposure under various normalization schemes against those pub-

lished for a large meta-analysis (Joubert et al., 2016) as an example.

A limitation of this approach is that the meta-analyzed set of associ-

ations might be contaminated with false positives due to batch and

confounding effects that replicate across meta-analyzed datasets.

Although the meta-analysis appears to be well-powered and there-

fore able to identify associations with small effect sizes, there are un-

doubtedly false negatives due to the variety of different data

generation, quality control and normalization procedures applied to

meta-analyzed datasets. Furthermore, all studies relied on self-

reported smoking during pregnancy.

We used pre-natal smoking where multiple loci with small effect

sizes contribute to the phenotypic variance rather than large case

control effects (such as cancer). As batch effects will have the largest

impact on such small effects, correcting for these effects in the most

optimal way will improve power. In addition, integration and har-

monization across different studies will lead to increased power in

EWAS. However, simulations with different sizes of batch, con-

founder and case control effects are required to find out which

method and settings work best but are not the scope of this paper.

Especially, as for most traits the genomic architecture is unknown,

different assumptions should be made for different traits.

We and others (Akulenko et al., 2016) have noted that FN may

fail to completely remove certain technical effects, either because

that variation is missing from microarray controls or because probe

quantiles rather than probe intensities are directly adjusted. To

address the former possibility, we allow the user to include addition-

al technical variables as fixed or random effects. As shown in

Supplementary Table S1, the addition of a random ‘slide’ effect does

indeed reduce variation associated with ‘slide’. For this reason, it

might be better in some cases to employ a different normalization

method. Crucially, we demonstrate that though FN attempts to sep-

arate technical from biological variation, when batch and phenotype

are perfectly confounded results can be extremely unreliable. We

recommend that cases and controls be assayed jointly within a single

experiment in a random order.

Reducing heterogeneity in meta-analysis is likely to increase

power to observe associations. Although we hypothesized that nor-

malizing between datasets prior to meta-analysis could reduce het-

erogeneity, our analyses show that this cannot always be assumed

and may depend on the regression models used for EWAS, at least

for FN. Further work is needed to better understand the conditions

necessary for reducing heterogeneity by normalization.

We plan in future to provide alternative background subtraction

and normalization approaches, re-implemented in order to preserve

the current low memory requirements of meffil and ability to nor-

malize datasets present on distinct servers. We note however that for

some methods, the re-implementation will not produce identical

results because they depend on the entire dataset being loaded into

memory [e.g. (Lehne et al., 2015)]. For specific parts of the normal-

ization pipeline, we plan to offer means for users apply their own

custom R code. Future directions also include the possibility of inte-

grating meffil within systems like DataShield (Gaye et al., 2014)

that will allow not only combined normalization but also EWAS of

datasets present on distinct servers. This will improve both the

power of and the speed at which meta-analyses of multiple cohort

studies can be completed.
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