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Abstract: Poor sleep quality and disrupted circadian behavior are a normal part of aging and include
excessive daytime sleepiness, increased sleep fragmentation, and decreased total sleep time and sleep
quality. Although the neuronal decline underlying the cellular mechanism of poor sleep has been
extensively investigated, brain function is not fully dependent on neurons. A recent antemortem
autographic study and postmortem RNA sequencing and immunohistochemical studies on aged
human brain have investigated the relationship between sleep fragmentation and activation of the
innate immune cells of the brain, microglia. In the process of aging, there are marked reductions in the
number of brain microglial cells, and the depletion of microglial cells disrupts circadian rhythmicity
of brain tissue. We also showed, in a previous study, that pharmacological suppression of microglial
function induced sleep abnormalities. However, the mechanism underlying the contribution of
microglial cells to sleep homeostasis is only beginning to be understood. This review revisits the
impact of aging on the microglial population and activation, as well as microglial contribution to
sleep maintenance and response to sleep loss. Most importantly, this review will answer questions
such as whether there is any link between senescent microglia and age-related poor quality sleep and
how this exacerbates neurodegenerative disease.
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1. Introduction

Due to advanced medical support, there are more individuals aged >65 years than
children aged <5 years in the world. A growing body of evidence shows that the incidence
of age-related diseases, which are mostly neurodegenerative diseases, is increasing and will
increase in the future. Compared with other organs, brain aging draws the most attention
in clinical settings because senescent changes are irreversible and severely impact the daily
lives of older people and caregivers [1]. Aging is the leading predisposing factor of most
common neurodegenerative diseases, such Alzheimer’s disease (AD) and Parkinson’s
disease (PD) [2], and sleep disturbances are considered additional risk factors underlying
the pathophysiology of these neurodegenerative diseases. Regarding AD, a study showed
that older women who slept <5 h per night over a 2 year period had worse cognitive
performance than those who slept 7 h per night [3]. Furthermore, the sleeping brain effi-
ciently cleanses β-amyloid (Aβ), a notorious protein for AD brain, highlighting a critical
function of the sleep/wake cycle for metabolic detoxification for this disease [4]. Regarding
PD, patients with idiopathic rapid eye movement (REM) sleep behavior disorder (IRBD)
showed remarkably reduced 18F-DOPA uptake in a positron emission tomography (PET)
imaging study, indicating an association between this sleep disorder and PD pathogene-
sis [5]. In addition to sleep disturbances in neurodegenerative diseases, prolonged sleep
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latency, increased transition frequencies to lighter stages of sleep and wakefulness, more
time spent awake after sleep onset, more fragmented sleep, and less time in slow-wave
sleep are common sleep patterns of healthy elderly individuals [6]. It has been postulated
that, with the growing aging population, the burden of poor-quality sleep will continue to
rise. Therefore, a better understanding of the pathophysiology at the molecular and cellular
levels is necessary to obtain the mechanistic and therapeutically relevant insights into poor
sleep in elderly people and in patients with age-related neurodegenerative diseases.

Unusual synaptic structures, such as decreased synaptic density and terminals, are
noted in the neurons of aged brains [7]. A study using the highly validated radiotracer 11C-
PK11195-PET to target an 18-kDa translocator protein, which was overexpressed in activated
microglia [8], showed profound neuroinflammation, in addition to neuronal changes, in
patients with IRBD [5]. In brain neuroinflammation, microglia and innate immune cells
are key modulators driving neurodegeneration [9,10]. However, increasing evidence has
shown the involvement of microglial cells in maintaining normal homeostatic function of
the brain through normal visual function maintenance, sleep maintenance, and diurnal body
temperature regulation [11–13]. In addition, the number of microglial cells is dramatically
decreased in aged mice [14], a finding that we also found in aged rat brain (Figure 1).
Furthermore, microglia in the aged brain show dystrophic, gnarling, and beading features
with an increased secretory profile [15]. This review summarizes the current knowledge of
functional and phenotypic properties of senescent microglia and highlights the contribution
of senescent microglia to sleep abnormalities among the elderly population.
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Figure 1. Age-induced drastic decline of the microglial cell population, as revealed by flow cytom-
etry with CD45 and CD11b staining. Microglia are identified (A) within gray circles and (B) with 
Figure 1. Age-induced drastic decline of the microglial cell population, as revealed by flow cytometry
with CD45 and CD11b staining. Microglia are identified (A) within gray circles and (B) with
immunofluorescent Iba1 staining (red). Prefrontal brain tissue of 2- and 22-month-old male Wistar
rats was used for flow cytometry and immunofluorescence, as described in our previous study [12].
Brain sampling was performed at Zeitgeber time (ZT) 7. Scale bar = 40 µm.
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2. Microglia and Their Role in Normal Adult Brain

Pio del Rio-Hortega [16] first introduced microglia as Hortega cells, which were de-
scribed as invasive, mesodermally oriented, and amoeboid-like brain cells. In the healthy
mature brain, microglia are ramified in morphology with a small somata containing fine
cellular processes. Due to inherent difficulties in studying this cell, it was conventionally
considered to be a resting or immunologically quiescent type of cell, a belief that remained
unchanged for a long time until the development of in vivo two-photon laser scanning mi-
croscopy in the early 2000s. At that time, there was a growing body of evidence supporting
the hypothesis that microglial processes followed neuronal activity patterns. Using two-
photon microscopy, Nimmerjahn and his colleagues [17] analyzed microglial cells from a
transgenic mouse line in which enhanced green fluorescent protein (EGFP) expression was
achieved by inserting its reporter gene in the CX3CR1 locus, which encodes the chemokine
receptor CX3CR1. They found that, under physiological conditions, microglia were mostly
in a “resting” state, with highly motile processes continuously “patrolling” the surrounding
microenvironment. In the process of screening, microglial cells shift their territories and
continuously sense the surrounding microenvironment, dynamically interacting with the
surrounding elements. Furthermore, increased neuronal activity caused by the exposure
to the GABAA receptor antagonist, bicuculline, enhances microglial process sampling.
A later study [18] using Iba1-EGFP and Thy1 promoter-GFP mice showed that microglia
formed a bulbous contact with synapses and that contact was preferential and specific as
microglia extended processes and made bulbous contacts with spines/synapses but did
not make any contact with dendritic shafts. Moreover, the suppression of neuronal activity,
detected by binocular eye enucleation, tetrodotoxin injection into both retinas, or body
temperature reduction decreased microglial contact with synapses at specific regions of
the brain. These findings suggest that the microglia–synapse contact is neuronal activity
dependent. An extraordinary study by Tremblay and her colleagues [11] on juvenile mice
showed that the extracellular space apposing microglia was larger than the space not ap-
posing microglia, suggesting an influence of microglia in the creation of extracellular space.
In vivo imaging of CX3CR1-GFP/Thy1-YFP double-cross transgenic mice demonstrated
that dendritic spines close to microglial processes were smaller than the rest of the spine
population. Most fascinatingly, two-photon imaging showed the involvement of microglia
in controlling the synaptic structures of both axon and dendrites. In response to different
brain experiences, microglia were found to change their behavior with the synapse and
surrounding neurons, such as the regulation of extracellular spaces, apposition and phago-
cytosis of synaptic elements, and dynamic interaction with subsets of dendritic spines [11].
Li and her colleagues [19] reported that the surveillance activity of the resting microglia in
larval zebrafish was not a seemingly random process but was instructed primarily by local
neuronal activity. Microglial processes preferentially navigated toward and simultaneously
made bulbous contact with neurons that exhibited higher spontaneous activity. They [19]
also demonstrated that a high level of neuronal activity releases a “find-me signal” (ATP
as a candidate) for microglia to come close to highly active neurons through sensing the
signal. More interestingly, they demonstrated that contact made by microglia relaxes the
neuronal activity. Together, these findings indicate that microglia–neuron interactions
under physiological conditions are necessary for establishing, maintaining, and guarding
neuronal activity necessary for normal daily activities.

3. Sleep–Wake Cycle Impact on Microglia–Synapse Interaction

At the onset of sleep, there is a surge in ATP level across several brain regions,
including the frontal cortex and hippocampus [20]. As stated in Section 2, ATP is considered
an important chemoattractant of microglia, and its breakdown product ADP binds to the
P2Y12 receptor, which is a purinergic receptor expressed by homeostatic microglia [21,22].
The systemic administration of clopidogrel, a P2Y12 receptor inhibitor, increased the density
of cortical dendritic spines during the light phase, suggesting that microglia prune synapses
during sleep through purinergic signaling [23]. Krueger and his colleagues [24] reported
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that the administration of a P2X receptor agonist increased non-REM (NREM) sleep and
electroencephalographic (EEG) delta power, whereas a P2X receptor antagonist suppressed
NREM sleep in rat. In the light phase or under anesthesia, microglial processes displayed
highly active motility and the phagocytosis of synapses compared with the wake state
and dexamethasone, which sedated microglial functions and disrupted sleep [12,25]. The
administration of minocycline, a tetracycline-derived antibiotic widely used in reducing
microglial phagocytic and inflammatory functions, affected sleep homeostasis in mice [26]
and humans [27]. In the sleep–wake cycle, microglia show morphological and molecular
alterations, as well as various responses to neuromodulators and cytokines, thus suggesting
the possible involvement of microglia in sleep regulation.

4. Diurnal Rhythmicity in Microglial Structure

A leading study on this topic by Hayashi and colleagues [23] reported that corti-
cal microglia exhibited diurnal morphological changes in mice that were maintained
by clock gene-driven diurnal expression of P2Y12R. Morphometrical investigation with
skeletonized images reconstructed from Z-stack images of Iba1-immunostained microglia
showed pronounced diurnal rhythmicity in cortical microglia that were characterized by
more elongated and complex processes during the dark than during the light phase. The
administration of the P2Y12R inhibitor, clopidogrel, reduced the circadian behavior of
microglia process alteration. They also speculated that the release of ATP and glutamate
from highly active neurons played a critical role behind the rhythmicity of the microglial
process. Recently, we also confirmed such interesting diurnal rhythmicity in microglial
morphology, specifically on the size and granularity of cellular somata at the prefrontal
cortex, using flow cytometry, in which microglia showed higher forward and side scatter
values at the onset of the light phase than those at the onset of the dark phase. These results
suggest that microglia at the onset of sleep are larger and more granular than those at the
onset of waking [12].

5. Diurnal Rhythmicity in Microglial Interactions with Neurons and Neuronal Elements

Over the last decade, microglial interactions with synapses were shown to play crucial
roles in the formation, maintenance, and elimination of synapses, and to be involved
in neuronal plasticity for learning, memory, and adaptation to enriched or stressful en-
vironments. Beyond immunosurveillance, microglia showed diurnal rhythmicity with
synapse phagocytosis for maintaining the homeostasis of synaptic strength [12,28,29]. In a
time-lapse imaging study on dexmedetomidine (DEX)-sedated mice, microglia showed
greater motility and made more frequent contacts with motile cortical dendritic spines [25].
Concomitantly, another study showed the microglia of isoflurane-anesthetized mice had
increased process velocity and length, as well as a greater number of intersections and
branch points [30]. However, to date, such time-lapse imaging observations still lack the
verification of diurnal rhythmicity in microglial motility and interaction with neurons
during normal sleep. The sleep–wake cycle has an important role in the determination
of synaptic strength, and the strength of both excitatory and inhibitory synapses are re-
duced during sleep [31]. This finding suggests that wakefulness increases spine density
and synaptic strength, whereas sleep reduces them. The pruning of dendritic spines or
filopodia in sleep is higher than during wakefulness. It is considered that the downscaling
of spine density during sleep reduces the signal-to-noise ratio, bringing favorable inputs
in memory consolidation or allowing for new learning during subsequent awake periods.
During the sleep process, functional synapses are preserved, whereas nonfunctional ones
are eliminated [32,33]. In the brains of adolescent mice, the mean spine density in the
cerebral cortex during sleep is lower than that during wakefulness [28]. Likewise, im-
munoblotting of microglia sorted using flow cytometry from the prefrontal brain tissue
showed a higher expression of the synaptic marker synapsin1 in the beginning of the light
phase than in the dark phase. This finding indicates that microglia engulf more synapses at
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the onset of sleep to ready the brain for the next day. Furthermore, these findings support
the hypothesis that sleep is critical for microglial control of synapse homeostasis [12].

6. Diurnal Rhythmicity in the Expression of Genes Related to Microglial Phagocytosis

The possible involvement of diurnal variation in microglial synapse phagocytosis to
maintain synaptic plasticity has been suggested for many years [28]. In our previous work,
we demonstrated increased expression of CD68, a microglial phagosome-specific marker
in the brain, during sleep onset than during wake onset [12]. CX3CR1, one of the marker
genes expressed in the microglia of mice and humans, is implicated in numerous microglial
functions. CX3CR1 expression was linked to synapse elimination [34,35], and high ex-
pression of CX3CR1 was found at the onset of sleep. Moreover, the phagocytic molecules
related to the “eat me” signal, such as complement protein C3, C1qB, milk fat globule-EGF
factor 8 protein (MFG-E8), mer tyrosine kinase receptor (MerTK), growth arrest-specific protein
6 (GAS6), and protein S, were diurnally changed and found at high levels at the onset of
sleep. Similarly, levels of the mRNA encoding matrix metalloproteinase 2 (MMP2), which
microglia commonly use in remodeling events in the surrounding cellular region, also
showed a high pattern of expression change at the onset of sleep [12]. Additionally, diurnal
changes of cathepsin S mRNA expression were also observed in mice, with cathepsin S
used by microglia for the degradation and modification of extracellular matrix (ECM)
molecules [28].

7. Diurnal Rhythmicity in the Expression of Genes Related to Microglial Inflammation

Rhythmic regulation occurs at least partly at the transcriptional or posttranscriptional
level because transcripts of different cytokines show a 24-h rhythm [36]. The induction
of the cytokines IL-6, IL-12, CCL2, and CCL5 from macrophages was found to be greater
in mice challenged with the Toll-like receptor 4 (TLR4) ligand lipopolysaccharide (LPS) at
the active phase than at the resting phase [37]. Further, an analysis of the macrophage
transcriptome at the level of the transcripts involved in the TLR4 response and associated
pathway showed that 8% of the transcripts varied with the circadian rhythm, highlighting
the control of the circadian clock [37]. Therefore, this strict control of the circadian clock on
macrophage TLR4-related pathways indicates its involvement in immune cells for pathogen
recognition and immune response [38]. Hippocampal brain tissue of rat showed higher
inflammatory priming for LPS challenge at the resting period than at the active period,
and the rhythmic expression of proinflammatory cytokines, such as IL-1β, TNF-α, IL-6,
and IL1R1, in hippocampal tissues of sorted microglia was seen in hippocampal tissues.
Moreover, microglia isolated at the light phase show increased inflammatory priming
following LPS stimulation compared to the dark phase [39]. This group also showed that
the microglial-mediated inflammatory response in tail shock-exposed rats was higher when
the shock was introduced at the resting phase versus the active phase [40].

8. Extrinsic Cellular Factors behind Microglial Rhythmicity

A recent study from our laboratory reported higher levels of noradrenaline in pre-
frontal cortex lysate at the onset of wakefulness than those at the onset of sleep [12].
This change alternatively associated with diurnal rhythmicity of microglial structure and
rhythmic expressional changes of a microglial phagocytic marker. In addition, pharmaco-
logical manipulation of noradrenaline using reserpine and L-threo-dihydroxyphenylserine
changed microglial diurnal rhythmicity [12]. In the context of microglial phagocytosis, we
reported that the exposure of glutamate-stimulated rat microglial cells to noradrenaline de-
creased the expression of MMP2, cathepsin S, MFG-E8, C1qb, MerTK, CX3CR1, and IRF1 [12],
and similar findings were also obtained in LPS-stimulated cells [41]. The diurnal rhythmic-
ity of microglial cells follows the rhythmic changes of noradrenaline concentrations of the
prefrontal cortex. More surprisingly, modulating diurnal rhythmicity for noradrenaline
contents through shifting light on and off timing induced expressional changes of mi-
croglial phagocytic markers for synapse [12]. Stowell et al. [25] examined the effects of
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DEX on microglia. DEX exerts a sedative action by lowering the release of noradrenaline
from the locus coeruleus. They found that DEX-sedated mice showed a robust increase
in the size of microglial arborization and enhanced microglial surveillance. Use of the β2-
adrenergic receptor selective agonist clenbuterol caused a marked retraction in microglial
processes and motility, resembling those seen in awake mice. Moreover, the administration
of the β2-adrenergic receptor selective antagonist ICI-118,551 increased ramification and
enhanced surveillance of the parenchyma, as seen during DEX-induced sedation. An-
other study demonstrated the regulation of microglial process surveillance in vivo, where
microglia displayed selective specificity toward noradrenergic tonic signaling [30]. The
abovementioned study also reported that β2-adrenergic receptor antagonism and toxic
insult to locus coeruleus noradrenergic neurons increased microglial process surveillance
in awake mice. The effects of noradrenaline signaling in this study, therefore, mirror the
findings of the study by Stowell and colleagues [30].

Glucocorticoids are other factors that induce microglial circadian changes in synapse
phagocytosis as endogenous glucocorticoid secretion displays a marked effect on cellular
circadian rhythm [39,42]. The peak secretion of glucocorticoids is observed early in the
morning in humans [43] and in the early evening in mice [44]. Administration of the
glucocorticoid dexamethasone suppressed the expression of microglial phagocytic markers
at the onset of sleep when these genes’ expressions were found to be high, normally at
this period of the day [12]. Overall, these findings indicate that the diurnal rhythmicity
of microglia is regulated either in combination or independently by noradrenaline and
corticosterone. However, microglial rhythmic behavioral studies using adrenalectomized
and locus coeruleus-lesioned animals are needed to verify this hypothesis.

9. Intrinsic Molecular Clocks behind Microglial Rhythmicity

The core components of the cellular circadian clock system are expressed in most cells
of the body. The components of this machinery are brain and muscle ARNT-like-1 (BMAL1),
circadian locomotor output cycles kaput (CLOCK), and neuronal PAS domain-containing protein-2
(NPAS2). Normally, BMAL1 and CLOCK form a dimer that translocates to the nucleus
and binds to the enhancer box motifs throughout the genome, thereby controlling the
transcription of clock-controlled genes [45–48]. Genes controlled by the BMAL1/CLOCK
heterodimer include the period circadian regulators (PER1–PER3) and cryptochrome circa-
dian regulators (CRY1 and CRY2) [46,49,50]. The products of these genes use a feedback
mechanism to inhibit their own expression via BMAL1/CLOCK. This feedback process
takes about 24 h and is very tightly regulated [51,52]. An additional level of regulation,
working along with the core clock to establish and regulate the 24 h rhythms, occurs via
REV-ERB/RORα and NFIL3 [53]. The components, loops, and circuits of these complex
cycles contribute to establish the intrinsic 24 h period of the circadian clock. Like other
cells, immune cells, namely, macrophages, dendritic cells, and B cells have functional
molecular clocks, which exhibit daily oscillations in the mRNA abundance of canonical
clock genes [54]. To the best of our knowledge, Nakazato and colleagues [55] first reported
the existence of molecular clock genes in the primary culture of mouse microglia. They also
reported the expression of all clock genes, except CLOCK, in the cells from the BV2 murine
microglial cell line. In the healthy brain, there is the expression of intrinsic molecular
clock genes, such as PER1, PER2, REV-ERBα, and BMAL1, in the microglia of cortical and
hippocampal tissues [28,39]. In mice, except for BMAL1, most of the mRNAs encoding
the molecular clock are found at high levels at night, specifically Zeitgeber time (ZT) 14
than at ZT2 [28]. In rats (another nocturnal mammal), the expression of REV-ERBα and
BMAL1 showed a similar pattern as that in mice; however, mRNA expression of PER1 and
PER2 shows an opposite pattern [39]. The explanation behind these apparent discrepan-
cies between results is unclear but may include potential differences in brain region- and
animal-specific expression patterns of the molecular clock in microglial cells.
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10. Alteration of Clock Genes Changes the Microglial Phenotype

Circadian rhythms are involved in the regulation and maintenance of the immune
response [46]. The mechanism behind the circadian control of microglial inflammatory
cytokine secretion remains unclear in most cases. Emerging evidence supports the under-
standing that the core components of circadian clock machinery, mainly BMAL1, CLOCK,
REV-ERBα, and RORα, are engaged in the regulation of inflammatory functions. Basal
oscillations of the expression of inflammatory genes are regulated by BMAL1 [56]. IL-6 is
an important proinflammatory cytokine of microglial cells and, in response to LPS, IL-6
is produced in primary microglial cell cultures and BV2 microglial cells. However, the
release of IL-6 by microglia and BV2 cells deficient in BMAL1 was significantly lower than
that of normal cells [57]. Moreover, BMAL1-knockout mice showed decreased expression
of IL-1β and Nox2 [58]. The rhythmic modulation of inducible gene expression relies on
interference with transcription factor NF-κB, which is a major transcriptional activator of
inflammation [59]. The core circadian protein CLOCK favors NF-κB-mediated transcription,
and the sequestration of CLOCK by BMAL1-induced rhythmic repression may be via the
expression of NF-κB-mediated inflammatory genes such as IL-6 [59]. In the mouse brain, ge-
netic deletion of REV-ERBα increased microglial expression of Iba1—a marker of microglial
activation. REV-ERBα-deleted microglial cells showed decreased microglial branching and
increased CD68, IL-6, CCl2, and TNF-α expressions [60]. Moreover, REV-ERBα-deficient
mice showed increased microglial phagocytosis of synapses in the CA3 region of the
hippocampus [29]. Similarly, genetic or pharmacological suppression of REV-ERBα in
microglial cells showed decreased uptake and clearance of Aβ [61]. Administration of the
REV-ERBα agonist, SR9011, decreased the inflammatory response of primary microglia [62].
REV-ERBs contribute to a negative feedback loop of the cellular clock repressing a sub-
set of inflammatory genes in a signal-dependent manner by inhibiting enhancer-specific
transcription [63]. Therefore, microglia with dysregulated internal clocks are capable of
perpetuating neurodegeneration in a feedback loop of inflammatory signaling.

11. Senescent Microglia

Aging is a physiological process characterized by a reduction in brain performance, re-
duction in synaptic plasticity, and alterations in neurotransmission, as well as receptor avail-
ability in the central nervous system (CNS) that may affect cognitive performance [64,65].
In human samples, microglia in the aged brain show dystrophic morphology characterized
by a slight enlargement of size, the distinct loss of fine branches, and the formation of cyto-
plasmic spheroids, gnarling, beading, and fragmentation [15]. On the basis of the results
from immunohistochemical and morphological analyses, microglia of aged mice showed
structural alteration characterized by decreased arbor area and increased arbor circularity
index [66]. Using flow cytometry, we recently described such morphological changes in
rats, where microglia from aged rat brain were remarkably larger in size and more granular.
In addition to morphological changes, aged microglia show increased expression of the
phagocytosis-related molecules, CD11b, CD68, and NG2, as well as the proinflammatory
phenotype-related markers, CD86 and CD45 [67]. Moreover, retinal microglia in aged mice
exhibit decreased motility and reactivity in surveying the surrounding CNS microenviron-
ment and the ability to respond to injury and inflammatory conditions [68]. In addition to
the phenotypic changes, Zöller and colleagues showed, using immunohistochemistry, that
the number of Iba1-positive cortical microglia was drastically decreased in aged mice [14].
Our flowcytometric and immunofluorescence microscopic observations of aged rat brain
(Figure 1) showed similar findings, with a reduced population of microglia over the total
number of live cells in the rat prefrontal cortex. Furthermore, profound modifications
in the transcriptome profile, secretome, morphology, and phagocytic activity of aged mi-
croglia are associated with the housekeeping and defensive functions of microglia [69]. In
addition, the functional properties of senescent microglial changes are sex specific [70], and
changes in energy metabolism are considered responsible for their reduced phagocytotic
capacity [71].
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12. Diurnal Rhythmicity of Senescent Microglia

Weak biological rhythmicity in aged brain can occur for different reasons. First, the
deterioration of sense organs, mainly retina, results in a decreased input to the suprachias-
matic nucleus [72]. Second, weakened suprachiasmatic nucleus outputs are associated with
aging [73–75]. In the milieu of the external clock, there is also significantly smaller mesor
and amplitude of the 24 h rhythm of noradrenaline content in an aging rat [76]. Further-
more, decreased noradrenaline caused by senescent degeneration of the locus coeruleus
is implicated in the pathologic activation of microglia in AD [77]. In addition to nora-
drenaline, in the rat, glucocorticoids affect microglial morphology and reduce microglial
activation [78] and phagocytosis [79]. Moreover, continuous low levels with no time-of-day
variations in adrenal corticosterone were observed in aged rat [80]. As mentioned above,
the rhythmicity of microglial cells depends on the patterns of noradrenaline, as well as
corticosterone, and these patterns are compromised in the aged brain.

Regarding the intrinsic molecular clock, the aged rat brain displays diminished
rhythms in the regulation of inflammatory cytokines. More specifically, aged hippocampal
microglia displayed suppressed rhythmic expression of PER1 and PER2; however, they
displayed rhythmicity with BMAL1 and REV-ERB α expression [42]. Moreover, decreased
mRNA expression levels of BMAL1, CLOCK, and PER2 were found in the aged microglia of
the rat prefrontal tissue (Figure 2). The decreased expression of BMAL1 may be associated
with the increased proinflammatory nature of aged microglia [42].
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Figure 2. mRNA expression changes of: (A) BMAL1, (B) PER1, (C) CLOCK, and (D) PER2 in flow-
sorted microglia in the prefrontal cortices of 2- and 22-month-old male Wistar rats (both n = 6).
Samples were collected at ZT7. Microglia were sorted from the prefrontal cortex as we described
previously [26]. RNA extraction and reverse transcription for quantitative polymerase chain reaction
(qPCR) were conducted using a SuperPrep™ II Cell Lysis & RT Kit (Toyobo, Osaka, Japan). qPCR was
performed as described previously [26]. The expression of clock genes was suppressed in senescent
microglial cells. Data are expressed as mean ± standard deviation (SD). * p < 0.05, with unpaired
two-tailed t-test.
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13. Sleep Characteristics in Aged Rodents

In humans, impairments in REM sleep occur more frequently with aging, especially
at the age of ≥80 years [81,82]. Aged mice share several common sleep pattern features
with elderly humans, but with a single major difference: there is an increase in the delta
power in the frontal cortex of aged mice, whereas it is decreased in elderly humans [83].
Several studies have shown that the amplitude, timing of circadian rhythms, sleep quality,
and waking performance are affected in aged mice [73,84–87]. Moreover, aged mice show
increased sleep fragmentation and propensity in the active phase with less prominent
diurnal rhythm in the sleep–wake cycle [73,87]. In addition, aged mice exhibit increased
NREM sleep and decreased waking, especially in the dark period [83,88].

In aged rats, sleep quality was moderately compromised with a decrease in the
percentage of total sleep time spent in paradoxical (REM) sleep, a decrease in the length of
sleep bouts, an increase in the number of sleep bouts, and a decrease in the amplitude of
the diurnal rhythm of sleep [89]. However, only reduced sleep time and shortened sleep
bouts were found in aged rats later in this study [90]. A previous study showed reductions
in high-voltage NREM sleep, the mean length of sleep bouts, and the duration of REM
onset in aged rats [91]. Similarly, we also found excessive sleep at the active phase of aged
rats and a significant reduction in REM sleep (Figure 3).
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Figure 3. Effects of age on sleep, as investigated by electroencephalography/electromyography
recordings on 2- and 22-month-old male Wistar rats (blue and orange column, respectively). In aged
rats, there was a markedly increased sleep period and reduced wakefulness in both light (resting
phase) and dark (active phase) periods. Recordings were performed over: (A) full-day period (ZT1–
ZT23), (B) light phase (ZT1–ZT11), and (C) dark phase (ZT12–23). Data are expressed as mean ± SD
(n = 5). * p < 0.05, ** p < 0.01, and *** p < 0.0001, with unpaired two-tailed t-test. The recording
procedure was described in our previous study [26].
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14. Senescent Microglia and Their Impact on Sleep

On the basis of the findings from an antemortem study on sleep fragmentation and a
postmortem immunohistochemical study on neocortical microglial morphology, a strong
association was found between the activation of senescent microglia and sleep fragmen-
tation in elderly people, as a greater proportion of morphologically activated microglia
was associated with greater sleep fragmentation [92]. First, in the aged brain, there is a
massive decline of microglial cells (Figure 1), and a study using a CX3CR1-DTR transgenic
Wistar rat model for microglial cell depletion showed pronounced disruption in diurnal
temperature, metabolism, and activity measures [13]. Second, the expression of TNF-α and
IL-1β in sorted microglia from hippocampal tissues was diurnally regulated in young rats
but not in aged rats, and the expression of these cytokines was high in aged rats [42]. In rats,
the expression of TNF-α and IL-1β followed a circadian oscillation in the brain, with higher
concentrations associating with greater sleep need [93–96]. Moreover, TNF-α and IL-1β
expression was high, concomitant with increased NREM sleep, in the condition of sleep
loss in rats and rabbits [97–99]. The administration of TNF-α and IL-1β increased sleep
need, which was characterized by an increase in EEG delta power during NREM sleep,
and also increased NREM sleep duration [33,100–104]. Furthermore, the increased release
of inflammatory cytokines, such as IL-1β, IL-6, and TNF-α, was shown to induce sleep
in mice [105,106]. These findings highlight the key role of the high levels of cytokines in
aged microglia toward greater sleep needs in the aged population. Finally, as noted before,
the reduced expression of molecular clock genes, mainly BMAL1, in aged microglia may
also be associated with the microglial proinflammatory release of cytokines and induce
excessive sleep [107].

15. Effect of Sleep Loss on Microglial Senescence

Due to the work patterns and workload of modern society, people are accustomed
to prolonged wakefulness and sleep insufficiency; however, this habituation is now rec-
ognized as a serious public health issue [108,109]. Increasing evidence from animal and
human studies indicates that sleep is essential for proper cognitive performance in vari-
ous domains, such as focus, executive function, learning, and memory development, by
restoring energy balance and optimizing synaptic plasticity and homeostasis [110–115].
In the elderly, there is an increased incidence of poor sleep, where the total sleep time
decreases and the number of awakenings after sleep onset increases [6]. Furthermore,
previous studies have associated degenerative neurological diseases with exaggerated
neuroinflammatory response [84,116–118]. In fact, a recent review showed that sleep loss
induced profound microglial activation and increased a cytokine/chemokine surge in
cortical and hippocampal tissues in adolescent, adult, and aged mice/rats [119]. Regarding
microglial genes associated with phagocytosis, increased expression of CD11b, NG2, and
CD68 was common in the microglia of aged brain [14,67]; similar findings were obtained
in the hippocampal microglia of adult rats after 5 days [120] and 12 h [121,122] of sleep
deprivation. Sleep loss may induce or accelerate microglial senescence.

16. Effects of Commonly Used Drugs for Sleep Disorders on Microglial Performances

Classically, sedatives are thought to affect neural functions; however, care should be
taken, as they can also regulate microglial activations and phenotypic alterations [123].
Among the clinically approved drugs, benzodiazepines are the most extensively inves-
tigated and are widely used in the treatment of sleep disorders [124]. They exert hyp-
notic/sedative effects through the GABA receptor and also bind to translocator protein
(18 kDa; TSPO). TSPO, or peripheral benzodiazepine receptor, has been studied as a
biomarker of reactive gliosis [125]. TSPO expression is low in normal physiological con-
ditions, but it is significantly upregulated in inflammatory states, including age-related
neurodegenerative diseases (e.g., AD and PD) [126]. A study with 11C-PK11195-PET
showed increased TSPO expression in microglia [127]. TSPO ligands decreased microglial
neuroinflammation in vitro and in vivo, demonstrating that TSPO negatively regulates
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inflammation in microglia [127,128]. Anti-inflammatory effect of TSPO is at least partly
mediated by NF-kB deactivation [128]. Z-drug (i.e., zolpidem, zopiclone, and zaleplon)
is another type of GABArgic drug. These drugs activate GABA signals without bind-
ing to benzodiazepine-binding sites of GABAA receptor. Although effects of z-drugs on
microglial cell lines have not been investigated thoroughly, they might also act as TSPO
ligands [129]. However, those GABAergic reagents, especially benzodiazepines, are not
recommended for elderly people because of the greater risk of adverse effects such as
fractures, cognitive decline, and dependence. Thus, the clinical use of non-GABAergic
reagents is increasing [130]. Among them, melatonin receptor agonist ramelteon and orexin
receptor antagonist suvorexant show safety profiles in the elderly [129]. Ramelteon inhib-
ited the activation of astrocytes and microglia in a mouse model of traumatic brain injury.
Furthermore, it exerts anti-inflammatory and antioxidative properties by accumulation of
nuclear factor erythroid 2-related factor 2 [131]. To our knowledge, no studies have been
conducted describing the relevance of suvorexant and microglial activity.

Collectively, some hypnotics/sedatives show anti-inflammatory properties in mi-
croglia and have therapeutic implications in neuroinflammatory disorders. Although these
neuroinflammatory diseases have higher incidence in the elderly, how the drugs alter
microglial activity and physiological functions when administrated to healthy young/aged
brains needs further investigation. Other than acting as a sedative, L-serine as a precur-
sor of other amino acids, such as glycine, was found to potentiate microglial functions
in vitro [132]; a clinical study has shown that the consecutive ingestion of L-serine is ef-
fective in the treatment of patients with poor sleep [133]. Considering the involvement
of microglia in the maintenance of sleep, identifying more agents such as L-serine for
nourishing and reprogramming microglial cells in aged brain demands further attention
for treating age-related poor sleep quality.

17. Conclusions

The mechanism narrating age-related impairments in sleep is now being revealed. On
the basis of a recent study on microglial phagocytosis of synapses during sleep in healthy
adult brain [12], we conducted this review study to answer whether senescent microglia
should be considered in understanding the cause of sleep abnormalities in the elderly
population. Our conclusion is that the evidence for such a role is overwhelming—microglia
play an important role in sleep regulation and the aged brain suffers a major loss of the
microglial population and its associated function. In this review, we provided robust
evidence on the intrinsic and extrinsic cellular factors affecting microglial rhythmicity, such
as corticosterone and noradrenaline (Figure 4). However, future studies are needed to
clarify the factors that play a critical role in microglial dysfunction in aging. Moreover,
further studies are warranted in the early stages of dysfunction, so that the manipulation
of microglia may improve the compromised circadian rhythms found in the aged brain
and ameliorate sleep abnormalities.
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The consequences of these three events in microglial cells ultimately affect sleep patterns by altering
cellular rhythmic function and increasing proinflammatory cytokine release in aging.
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