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Review

Cytokines and Growth Hormones 
Activate STAT5A and STAT5B

Seven STATs, STAT1, 2, 3, 4, 5A, 5B, and 6, have been found 
in mammalian cells.1-3 STAT5A and STAT5B are expressed from 
two different genes. These are located in tandem on human chro-
mosome 17q11.2, and probably arose from gene duplication. The 
two proteins have approximately 90 kDa and share 94% amino 
acid sequence identity, with STAT5A being seven amino acids 
longer than STAT5B.4,5 STAT5A and STAT5B regulate erythro-
poiesis, lymphopoiesis, and the maintenance of the hematopoi-
etic stem cell population.2,6-8

The mechanism of STAT activation has been well elabo-
rated. Binding of ligands (cytokines or growth factors) to cog-
nate receptors activates the associated Janus kinases, JAK1–3 and 
TYK2 (Fig.  1A). These phosphorylate tyrosine residues of the 
cytosolic receptor subunit.3,9 Via their Src homology-2 (SH2) 
domains cytosolic STAT5 molecules bind to the phospho-tyro-
sine residues in the receptors and also become phosphorylated 
by Janus kinases. Phosphorylation occurs at Y694 (STAT5A) or 
Y699 (STAT5B) and is crucial for the stable association of STAT5 
dimers through their SH2 domains binding phosphorylated 

tyrosine residues. Activated STAT5 dimers translocate into the 
nucleus and bind mainly to palindromic interferon gamma acti-
vated sequences (GAS) with the consensus TTCNNNGAA.10,11 
N-terminal interactions between STAT5 molecules on DNA 
permit tetramerization,11,12 being critically relevant for cytokine 
and immune responses.13 Disturbances in the signaling cascades 
induced through STAT5 are often associated with leukemogen-
esis and other cancers.5,14,15

STAT5A and STAT5B have overlapping and redundant func-
tions. While both STAT5 isoforms can be activated by the same 
set of cytokines, some cytokines preferentially activate either 
STAT5A or STAT5B. For example, prolactin (PRL; stimulates 
milk production by mammary glands, lactation) predomi-
nantly activates STAT5A and growth hormone rather induces 
STAT5B.16 Moreover, distinct roles of the STAT5 isoforms 
increasingly become appreciated.17

Acetylation Determines Gene 
Expression and Signaling

Eukaryotic gene expression is a highly ordered and rapidly 
adapting process. Dysregulation of genes can lead to cell death 
or cell cycle disturbances, loss of growth control, and hence 
ultimately to diseases such as cancer and autoimmunity.18,19 
Posttranslational modifications of proteins belonging to the 
chromatin (the complex consisting of DNA and mostly posi-
tively charged histones) and of proteins targeted to other cellular 
loci affect cellular transcriptomes and proteomes. Acetylation of 
histones, representing ~20% of the cellular protein mass, and of 
non-histone proteins is appreciated as an outstanding rheostat for 
balanced gene expression ensuring homeostasis.20-23 Lysine resi-
dues are acetylated by histone acetyltransferases (HATs) using 
acetyl-CoA as donor for the acetyl group bound as a thioester. 
Histone deacetylases (HDACs) and Sirtuins catalyze the removal 
of acetylation marks.19-25

Tumors often have dysregulated acetylation levels. Therefore, 
histone deacetylase inhibitors (HDACi), small molecules that 
can regulate acetylation in vivo, are promising candidates for 
cancer therapy. HDACi fall into structurally diverse classes and 
block the activity of HDACs by different mechanisms.26 While 
derivatives of hydroxamic acids attack a Zinc ion (Zn2+) in the 
catalytic center of HDACs, the fatty acids and benzamides bind 
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The cytokine-inducible transcription factors signal trans-
ducer and activator of transcription 5A and 5B (STAT5A and 
STAT5B) are important for the proper development of multicel-
lular eukaryotes. Disturbed signaling cascades evoking uncon-
trolled expression of STAT5 target genes are associated with 
cancer and immunological failure. Here, we summarize how 
STAT5 acetylation is integrated into posttranslational modi-
fication networks within cells. Moreover, we focus on how 
inhibitors of deacetylases and tyrosine kinases can correct leu-
kemogenic signaling nodes involving STAT5. Such small mol-
ecules can be exploited in the fight against neoplastic diseases 
and immunological disorders.
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near the foot pocket of the catalytic site.27,28 These HDACi do 
not affect the activity of class III HDACs (Sirtuins), which use 
a different mechanism of catalysis involving NAD+ instead of 
Zn2+.25 HDACi are epigenetic drugs considered as candidates for 
the treatment of cancer, autoimmunity, and neurodegenerative 
diseases.19-25 Most ongoing clinical studies use HDACi inactivat-
ing class I, II, and IV HDACs.20-22

Target genes of STAT5 and STAT5 itself are also regulated 
by acetylation/deacetylation, and this is one focus of our article. 
Furthermore, we review how HDACi correct leukemogenic sig-
natures associated with STAT5 activity.

STAT5 is Controlled by Acetylation

Direct effects
A physiological situation causing STAT5 acetylation was iden-

tified by Ma and colleagues in 2010. They treated breast can-
cer-derived cells with the peptide hormone PRL and found an 
acetylation-dependent PRL receptor (PRLR) dimerization. The 
HAT CREB-binding protein (CBP) acetylates multiple lysine 
sites randomly distributed along the cytoplasmic loop of PRLR.29 
CBP mainly resides in the nucleus and a redirection of CBP from 
the nucleus to the cytoplasm has been found in cells treated with 

Figure 1. (A) STAT5 acetylation-sumoylation-phosphorylation switch. Binding of cytokines to receptors leads to the phosphorylation of STAT5 (P) at 
tyrosine and serine residues. For example, the interleukins IL-2 and IL-7 induce Janus tyrosine kinases phosphorylating STAT5 at tyrosine residues. The 
related HATs CBP and p300 catalyze acetylation of STAT5. Phosphorylated STAT5 dimers enter the nucleus and induce STAT5 gene expression promot-
ing cell survival and proliferation. Acetylation (A) of STAT5 rivals sumoylation (S) and thereby allows STAT5 signaling. We postulate that the sumoylation 
of STAT5 occurs subsequent to a state in which STAT5 is phosphorylated and acetylated, in order to allow gene expression. HDAC9 has been shown to 
deacetylate STAT5; PTP, phosphatase catalyzing dephosphorylation of STAT5. UBCH9 and PIAS3 belong to the cellular sumoylation machinery (E2/E3 
SUMO conjugase/ligase) and transfer SUMO2 to STAT5. SENP1 removes the sumoylation mark and subsequently allows a re-entry of STAT5 into signaling 
emanating from ligated receptors. The model is based on the works by Ma and colleagues, Van Nguyen and colleagues, and Beier and colleagues (see 
text for further details). (B) Tyrosine and lysine residues of STAT5 undergoing synergistic and antagonistic posttranslational modifications. The figure 
shows tyrosine and lysine moieties in STAT5A and STAT5B regulated by phosphorylation, acetylation, and sumoylation. Acetylation and sumoylation of 
one lysine moiety are mutually exclusive.
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PRL, interferons (IFNs), and HDACi.30,31 These mechanisms 
need further investigation. It is e.g., unclear if posttranslational 
modifications of CBP are required for its cytosolic accumula-
tion. Furthermore, cytokines may redirect existing CBP from the 
nucleus to the cytoplasm or the newly synthesized CBP may stop 
entering the nuclear compartment to accumulate in the cytosol.

PRL-activated PRLR signals to STAT5B, which also becomes 
acetylated by CBP and undergoes enhanced PRL-induced dimer-
ization dependent on the acetylation of lysine residue K694.29 
Furthermore, IL-7 signaling leads to STAT5A acetylation at 
lysine 696, indicating that acetylation-dependent STAT5 dimer-
ization is also observed in other cytokine signaling pathways.32 
Whether STAT5 acetylation is a general mechanism for STAT5 
function has to be determined by future studies.

Unphosphorylated STAT5 (U-STAT5) can also form 
dimers,33,34 and this is also found for other STATs in resting 
cells (e.g., STAT1–STAT1, STAT1–STAT2, STAT1–STAT3, 
and STAT1–STAT5 dimers).30,31,35-38 It remains to be clarified 
if acetylation also determines such interactions between STAT 
proteins.

Indirect effects
Transcriptional regulation is orchestrated by transcription 

factor complexes bound to the promoter or enhancer regions on 
DNA. These complexes recruit histone-modifying enzymes that 
can either activate or repress transcription by chromatin remod-
eling.39 In recent years it became clear that both, HATs and 
HDACs are associated with repression as well as with transcrip-
tional activation.1,21,24,25,40

STAT5 is integrated into the cellular acetylation/deacetylation 
equilibrium. It was reported that recruitment of the corepressor 
silencing mediator of retinoid and thyroid transcription (SMRT) 
to STAT5 target promoter regions can repress gene expression in 
response to interleukin-3 (IL-3) in murine 32D cells. SMRT was 
found to interact with both, STAT5A and STAT5B, as well as 
with STAT3. Repressive effects of this interaction were found for 
STAT5A, STAT5B, and STAT4, but not for STAT1 and STAT6 
in transient transfection reporter assays.41 Binding of SMRT to 
STAT5 occurs via the STAT5 coiled coil domain and the hyper-
active STAT5 point mutant H299R,42 fails to recruit SMRT.41 
Due to the fact that the HDACi TSA can activate target gene 
transcription again, it was concluded that HDACs confer this 
process inhibiting STAT5-dependent transcription.41

Several studies though report that HDACs promote STAT5’s 
transcriptional activity. Rascle and colleagues treated IL-2 and 
IL-3 stimulated murine T and pro-B cell lines with the HDACi 
TSA.43 Surprisingly, most of the STAT5 target genes were 
repressed by TSA, indicating that histone deacetylase activity is 
required for STAT5 dependent gene activation. This study fur-
ther shows that the DNA binding of STAT5 is not perturbed by 
TSA treatment, indicating that STAT5 dimerization, phosphory-
lation and activation remain intact after HDACi treatment.43

Similarly, Sebastián and colleagues found that in macrophages 
TSA does not abrogate tyrosine phosphorylation of STAT5A/
STAT5B on Y694/699 induced by the cytokine granulocyte-
monocyte colony stimulating factor (GM-CSF).44 Both, studies 
showed that 20–200 nM TSA disturbs the recruitment of the 

basal transcription machinery including mRNA polymerase II to 
STAT5 target genes.43,44 A study assessing the effects of IFN-β on 
STAT1/STAT2/IRF9 (ISGF3) also found that TSA blocks the 
interaction of polymerase II with ISGF3 target genes in human 
kidney-derived 293T cells.45

Interestingly, the STAT5/HDAC1 interaction seems to be cell 
type-specific, since it cannot be detected in macrophages.44 This 
might explain the different findings for the function of HDACs 
in STAT5 target gene expression induced by IL-3, since differ-
ent cell lines were used in these studies.41,43 Likewise, different 
cytokines could variably induce processes that are positively or 
negatively controlled by HDACs and HDACi. Furthermore, one 
should consider that most cytokines act very rapidly, HDACi 
require far longer to alter the cellular transcriptome. This could 
well explain different data on whether HDAC inhibition alters 
STAT phosphorylation or not.1,40 It is plausible that the effects of 
HDACi on STAT phosphorylation, which were measured, after 
hours, cannot be directly related to the effects on STAT phos-
phorylation measured after minutes.

Data collected for the transcription factor inhibitory 
domain-1 (ID-1), being a main target of STATs, also argue in 
favor of HDACs being required for its expression.46 Analysis on 
the regulation of ID-1 revealed that STAT5 recruits HDAC1 to 
the ID-1 promoter. Here, the transcription factor C/EBPβ has 
to be deacetylated by HDAC1 to allow transcription of ID-1.47

Taken together these findings suggest that recruitment of 
HDACs by STAT5 can lead to different molecular modifica-
tions. HDACs can deacetylate histones in the promoter region 
of STAT5 target genes, co-factors like C/EBPβ, or STAT5 
itself.29,41,43,44,47,48

A study testing oncolytic viruses also shed light on the control 
of STAT5 signaling in cells with drug-induced hyperacetylation. 
Such viruses can be used for tumor therapy as they preferentially 
target and eliminate fast growing tumor cells. The host immune 
response restricts the efficacy of such tumor therapy via the 
induction of IFNs.49 The subsequent activation of STAT1 and 
STAT2 and their anti-viral target genes eliminate the oncolytic 
viruses and induce anti-viral resistance. HDACi evoke acetylation 
of STAT1 and chromatin and thereby block the activation of the 
anti-viral host response.1 The HDACi valproic acid (VPA),50 and 
other HDACi can inhibit STAT5 phosphorylation and expression 
of the transcription factor T-BET promoting IFNγ production.51 
Accordingly, efficacy of oncolytic herpes simplex virus (oHSV) 
infection in an orthotopic glioblastoma mouse model was aug-
mented without an enhanced risk for HSV encephalitis.51 At the 
cellular level, VPA attenuated the recruitment and activation of 
natural killer (NK) cells and macrophages into tumor-bearing 
brains post-oHSV infection. VPA also impairs the activation of 
pro-inflammatory gene expression of NK cells, e.g., of granzyme 
B and perforin. These data suggest that VPA antagonizes the ini-
tial phase of the inflammatory immune response against thera-
peutic approaches with oHSV efficacy.51

Data supporting that HDACs are required for STAT5 depen-
dent gene activation contrast findings demonstrating that STAT5 
dimerization is dependent on acetylation.29,32 It is unclear why 
the same target genes of STAT5 can be activated or repressed 
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upon TSA treatment. One possibility might be the recruitment 
of cell specific co-factors that mediate different outcomes after 
STAT5 activation and HDACi treatment.

STAT5 Acetylation and B and T Cell Development

STAT5A and STAT5B are key regulators of hematopoietic 
development.2,6-8 They are the downstream effectors of several 
cytokine receptors like EPO-R, IL-2R and IL-7R, and they mod-
ulate cell proliferation, apoptosis, and differentiation. STAT5 is 
expressed in several hematopoietic lineages and is indispensable 
for erythroid and lymphocyte development and maturation.6,52,53 
Mice lacking Stat5A/Stat5B are perinatal lethal, highly anemic, 
and show elevated levels of apoptosis in erythroid progenitor 
cells.54,55 Complete STAT5 inactivation impairs the development 
of T and B lymphocytes, while the myeloid cell population is not 
or barely effected. Interestingly, IL-7R−/− mice show a similar phe-
notype, which indicates a key role of STAT5 in IL-7 signaling and 
lymphocyte development. Furthermore, STAT5A and STAT5B 
regulate the quiescence of hematopoietic stem cells.7 STAT5 is 
regulated through IL-2 and IL-7 signaling during T and B cell 
development and plays an instructive and permissive role during 
lymphocyte maturation. On the one hand STAT5 regulates the 
expression of developmental genes like early B cell factor (EBF) 
and on the other hand activated STAT5 is critical for cell sur-
vival and proliferation.53,56,57 The proliferative and anti-apoptotic 
function of STAT5 during lymphocyte development, implicates 
STAT5 in the pathogenesis of human B cell precursor acute 
lymphoblastic leukemia (B-ALL).53 Hence, understanding how 
STAT5 shapes cellular development and maturation can provide 
important insights into the role of STAT5 in tumorigenesis.

The JAK-STAT response has to be tightly controlled to allow 
proper lymphocyte development. One well-described mechanism 
to regulate the strength of IL-7 signaling is the modulation by 
negative feedback mechanisms. IL-7R signaling has to be shut 
down during lymphocyte development in order to maintain 
homeostasis and to prevent hyperproliferation.58 One mediator 
of this downregulation is the suppressor of cytokine signaling 
(SOCS) family proteins mediate this by inhibiting phosphory-
lated JAKs, thus blocking the phosphorylation of STAT5.59 
Furthermore, Henriques and coworkers demonstrated that IL-7 
signaling is also regulated by receptor degradation. IL-7R is rap-
idly internalized and degraded upon IL-7 signaling.60

Of note, SOCS1 also integrates STAT5A, the tumor suppres-
sor p53, and responses regulated by the DNA damage induced 
kinases ataxia telangiectasia mutated/ataxia telangiectasia 
mutated related (ATM/ATR).61 Via such mechanisms, SOCS1 
may act as a tumor suppressor maintaining genomic stability.62 
Truly, posttranslational modifications of STAT5 are likely to 
fine-tune such elaborated regulatory circuits. Furthermore, the 
expression of SOCS1 and SOCS3 is suppressed by HDAC8 
in leukemic cells carrying the oncogenic kinases BCR-ABL or 
JAK2VF. The HDACi TSA and sodium butyrate can augment 
the levels of these SOCS proteins and suppress phosphorylation of 
JAK2 and STAT5.63 An HDAC-dependent repression of SOCS1 
and SOCS3 has also been reported in colon cancer-derived cells.64 

It is plausible that such mechanism, in addition to the activation 
of phosphatases in HDACi-treated cells,30 are responsible for the 
frequently observed inhibition of STAT phosphorylation in cells 
incubated with HDACi.1,40,65

A recent study revealed dynamic post-translational modifica-
tions of STAT5 as a highly specific mechanism to adjust transcrip-
tional activity of STAT5. Van Nguyen and colleagues presented 
a model in which sumoylation and acetylation antagonistically 
regulate STAT5 phosphorylation and transcriptional activity 
(Fig. 1A). Sumoylation is mediated through an activating enzyme 
(E1), a SUMO-conjugase UBC9 (E2), and SUMO-ligases (E3), 
and this process can be reverted through SUMO-specific pro-
teases (SENPs). This dynamic modification can alter the local-
ization, interaction and activity of proteins.66 Van Nguyen and 
colleagues showed that sumoylation of STAT5 in lymphoid cells 
leads to an inactivation of STAT5 and a block in early T and B 
cell development similar to the defect observed in STAT5 defi-
cient lymphocytes.6,52,53 In the absence of SENP1 sumoylated 
STAT5 accumulates in the cells and leads to an inactivation of 
STAT5 activity during lymphocyte development. Sumoylation of 
STAT5A occurs mainly on Lysine 696, which is also the major 
target for acetylation (Fig. 1B; K701 in STAT5B). Interestingly, 
sumoylation of STAT5 prevents subsequent acetylation;32 acety-
lation is essential for STAT5 dimerization and transcriptional 
activity.29 This effect of SENP1 is specific for lymphocytes and 
cannot be observed in myeloid or erythroid cells.32 The reason for 
this is still unknown. Interestingly, SENP1−/− mice have defective 
erythropoiesis caused by decreased levels of hypoxia-inducible 
factor-1α (HIF-1α) and a subsequent downregulation of erythro-
poietin (EPO) production. The EPO/STAT5 signaling pathway 
itself though appears unaffected by SENP1 deficiency,67 again 
indicating specificity. One possible explanation for these obser-
vations relies on the fact that STAT5 has different functions in 
various cell types. STAT5 can have instructive and permissive 
roles. For example, STAT5 has been show to regulate cell sur-
vival during early lymphopoiesis rather than inducing matura-
tion steps.53,68-70 Consistent with these findings, van Nguyen and 
colleagues observed a downregulation of the apoptosis inhibitor 
BCL2 in SENP1−/− lymphocytes.32

The regulation of other STAT5 target genes is also depen-
dent on STAT5 acetylation. Beier and colleagues,71 demonstrated 
that HDAC9 deficiency, but not a lack of HDAC6 or situin-1 
(SIRT1), leads to the stabilization of acetylated STAT5 and the 
activation of its target genes in regulatory T cells (Fig. 1A). Taken 
together these data clearly indicate an important role of STAT5 
acetylation during lymphocyte development and maturation.

Modulation of STAT5 Signaling 
with Epigenetic Drugs

Chronic myeloid, acute myeloid, and lymphatic leukemia
Constitutively phosphorylated STAT5 can be found in 

leukemia-derived cell lines and in primary samples of acute 
myeloid leukemia (AML), chronic myeloid leukemia (CML), 
and acute lymphoid leukemia (ALL).72 Inhibition of STAT5 
appears as a potent strategy to target leukemia,73,74 warranting 
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further investigations on the molecular mechanisms of oncogenic 
STAT5 activation.

Leukemic cells frequently express a mutant of the class III 
receptor tyrosine kinase (RTK) FMS-like tyrosine kinase 3 
(FLT3-ITD), carrying an internal tandem duplication muta-
tion in the juxtamembrane region,75 or the leukemia fusion 
protein BCR-ABL (translocation t[9;22][q34;q11]).76 FLT3-
ITD is mainly found in AML and BCR-ABL typically occurs 
in CML. As both leukemogenic proteins accelerate proliferation 
and suppress apoptosis as well as differentiation, they represent 
promising therapeutic targets.77-79 Expression of BCR-ABL or 
FLT3-ITD stimulates STAT5 phosphorylation and its trans-
location into the nuclear compartment (Fig. 2A). Remarkably, 
FLT3-ITD activates STAT5 mainly at the endoplasmic reticu-
lum (ER) and specifically FLT3-ITD anchored at the ER is a 
transforming oncogene.80,81 Remarkably, activation of STAT5 by 
these two oncogenes has overlapping and distinct features. For 
example, the nuclear translocation of phosphorylated STAT5 
activated by BCR-ABL, but not of STAT5 activated by FLT3-
ITD, is controlled by SRC family kinases.82

There is an intensive search for factors responsible for the 
oncogenic nature of FLT3-ITD. A pro-tumorigenic role of reac-
tive oxygen species (ROS) in AML and CML has been reported. 
In FLT3-ITD-positive AMLs, ROS inactivate the tyrosine 
phosphatase DEP1 to promote FLT3-ITD phosphorylation,83 
and in CML ROS promote chemoresistant tumor reservoirs.84 
Activation of STAT5 by FLT3-ITD at the ER is linked to H2O2 
production mediated by the flavocytochrome b558 subunit 
p22phox/CYBA.85

Interestingly, HDACi are able to impair the pro-tumorigenic 
activation of STAT5 by leukemogenic factors such as FLT3-
ITD or BCR-ABL. For example, HDACi can increase the in 
vitro and in vivo activities of combinations between HDACi 
(SAHA, MS-275) and the dual BCR-ABL/Aurora kinase inhibi-
tor KW-2449 against BCR-ABL expressing human CML and 
ALL cells. This even applies to cells sensitive or resistant to ima-
tinib (BCR-ABL T315I and E255K mutants).86 Furthermore, 
this study included the analysis of mice bearing IM-resistant 
ALL xenografts (BV173 cells carrying BCR-ABL with an E255K 
mutation), in which a prolonged survival of double treated mice 
was observed. At the molecular level, such treatment inactivated 
BCR-ABL and its downstream signaling to STAT5 and other 
signaling molecules. Damage to leukemic cells was also evoked 
by the generation of ROS and DNA damage evidenced by 
γH2AX staining;86 γH2AX is a stress-induced serine phosphor-
ylated form of histone H2AX.87 Of note, increased lethality of 
KW-2449 plus HDACi was specific for primary CD34-positive 
leukemic stem cells from patients with CML and spared normal 
CD34-positive stem cells from healthy donors.86 While this work 
clearly demonstrates that attenuating BCR-ABL by various strat-
egies induces leukemia cell apoptosis linked to the inactivation 
of STAT5 phosphorylation, remaining questions are whether 
STAT5 became acetylated by HDACi under the conditions cho-
sen. Likewise, BCR-ABL may become acetylated and inactivated 
by HDACi. Moreover, it remains to be shown, e.g., by RNAi 
or precise chemical inhibition, whether inactivation of STAT5 is 

causally linked to pro-apoptotic effects caused by HDACi. Such 
knowledge can be of high clinical value as STAT5 mediates the 
maintenance of BCR-ABL-positive leukemic cells,88 and pro-
motes their chemoresistance.89,90

HDACi also reduce the activity of oncoproteins through mod-
ulating their interaction with the chaperone HSP90 (Fig. 2B). 
This heat shock protein supports the proper folding and stabil-
ity of proteins including FLT3-ITD and BCR-ABL.78,91 Since 
acetylation/deacetylation cycles control the functions of HSP90, 
its inhibition offers a strategy for pharmacological intervention 
strategies including HDACi.92,93 Indeed, it was reported that 
both, pan-HDACi as well as the specific elimination of HDAC6 
by RNAi propelled hyperacetylation to inhibit the ATP binding 
necessary for chaperoning functions of HSP90.94 The possibil-
ity to modulate acetylation of cancer-relevant proteins by inac-
tivation of HDAC6 has prompted an intensive search on such 
agents.95 Using a compound library screen agents with a central 
naphthoquinone structure were identified as selective inhibitors 
of HDAC6. In FLT3-ITD-positive MV4-11 cells such com-
pounds diminish mutant FLT3, activation of its downstream 
target STAT5, and phosphorylation of the mitogen activated 
protein (MAP) kinases extracellular signal-regulated kinase-1/-2 
(ERK1 and ERK2).96

Based on the findings that HDACi deplete oncoproteins via 
inhibition of HDAC6 and the subsequent acetylation of HSP90, 
combinations between drugs targeting HDACs and HSP90 were 
tested against leukemic cells. The acetylated HSP90 showed 
increased binding to the HSP90 inhibitor 17-allylamino-demo-
thoxy geldanamycin (17-AAG, a drug blocking HSP90s ATP-
binding pocket). Moreover, HDAC6 became degraded by the 
proteasome in 17-AAG treated cells and this in turn enhanced 
HSP90 hyperacetylation. Cotreatment with 17-AAG and siRNA 
to HDAC6 or applying the HDACi tubacin had a superior effect 
on BCR-ABL positive cells than treatment with the single agents. 
This drug combination also attenuated the viability of primary 
AML and CML samples.94 Beneficial effects of 17-AAG plus the 
HDACi SAHA and butyrate were also found in another study.97 
This work shows that such combinations are active against BCR-
ABL-positive primary and permanent leukemic cells, indepen-
dent of whether BCR-ABL is sensitive or resistant to its specific 
inhibitor imatinib mesylate (K562 or LAMA84 cells, respec-
tively). It was found that 17-AAG/HDACi cotreatment evoked 
a BCL2 and caspase dependent cell death linked to mitochon-
drial injury, an increased binding of BCR-ABL to HSP70, and 
inactivation of ERK1 and ERK2. Apoptosis seen in K562 cells 
exposed to 17-AAG and SAHA was correspondingly associated 
with reduced DNA binding of STAT5 and attenuated expres-
sion of MCL1 and BCL-XL, which are positively regulated target 
genes of STAT5.97

These data suggest that HDAC6-dependent deacetylation of 
HSP90 is a main target of HDACi. However, tubacin—a com-
pound initially believed to be specific for HDAC6—turned out 
to target other HDACs as well.26 Thus, additional HDACs may 
control the acetylation status of HSP90 and some existing data 
have to be reassessed. Moreover, it should also be noted that 
STAT5 itself can be a client protein of HSP90 and this may also 
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Figure 2. (A) Oncogenic STAT5 activation through FLT3-ITD. FLT3-ITD is a constitutively active, oncogenic driver mutant of FLT3. FLT3-ITD is frequently 
found in AML and ALL (acute myeloid/lymphoid leukemia). In contrast to FLT3, FLT3-ITD mainly locates to the endoplasmic reticulum (ER), from where it 
propels STAT5 signaling. Reactive oxygen species (ROS) are involved in the aberrant signaling of FLT3-ITD to STAT5. Resulting gene expression patterns 
linked to STAT5 promote uncontrolled cell proliferation and apoptosis resistance. It is unknown whether FLT3-ITD-dependent STAT5 activation is linked 
to the acetylation (A) or sumoylation (S) of STAT5. HSP90 stabilizes FLT3-ITD but is dispensable for the stability of FLT3. For (A) FLT3-ITD is provided as 
an example for an oncogenic kinase activating STAT5; similar findings were e.g., made for BCR-ABL. (B) HDACi antagonize STAT5 and FLT3-ITD. Histone 
deacetylase inhibitors (HDACi) eliminate FLT3-ITD and STAT5 via different, partially overlapping molecular mechanisms in AML cells. HDACi induce 
expression of the UBE2L6 gene encoding the E2 ubiquitin ligase UBCH8. In conjunction with SIAH1 and SIAH2 UBCH8 promotes the poly-ubiquitinylation 
and proteasomal degradation of FLT3-ITD. Acetylation events may play a role, e.g., HSP90 acetylation occurs in cells treated with HDACi that can block 
HDAC6. Acetylation of SIAH1, SIAH2, and UBCH8 has so far never been reported. Caspases are activated by HDACi in leukemic cells and these can cleave 
STAT5. The apoptotic cleavage of STAT5 impairs STAT5-dependent gene expression and this accelerates cellular demise.
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contribute to anti-neoplastic effects of HDACi. In human eryth-
roleukemia cells positive for the JAK2 V617F mutant, which is 
frequently found in myelofibrosis, exposure to 17-AAG depleted 
STAT5.98

Indeed, HSP90 acetylation has been observed with HDACi 
not affecting HDAC6. The HDACi MS-275 is active against 
the AML cell lines MOLM13 and MV4–11 cells carrying FLT3-
ITD hetero- and homozygously.99 In the micromolar range 
MS-275 promotes the ubiquitin dependent proteasomal degra-
dation of FLT3-ITD in leukemic cells (Fig.  2B). Accordingly, 
STAT5 was inactivated upon exposure to MS-275. Although 
acetylation of STAT5 was not tested in this work, acetylation 
of HSP90 was detected and appears correlated with the prote-
olysis of FLT3-ITD.99 Given that MS-275 specifically targets 
HDAC1, -2, and -3,26 the induction of HSP90 acetylation is in 
contrast to data showing that HSP90 is a bona fide substrate for 
HDAC6.94,100,101 Similar results were collected with other HDACi 
not targeting HDAC6. We characterized valproic acid (VPA) as 
an HDACi and we also found that this compound preferentially 
blocks the class I HDACs HDAC1–3.27,50,102,103 Further studies 
revealed that VPA selectively inhibits the four class I HDACs.26 
Although ineffective against HDAC6, VPA/imatinib combina-
tions significantly increased acetylation of HSP90 in imatinib 
resistant CML cells.104

Further lines of evidence argue that other HDACs control 
HSP90 and that mechanisms beyond HSP90 inhibition regu-
late oncoprotein levels. For example, effects seen with a genetic 
approach targeting HDAC6 achieved much weaker effects than 
application of HDACi.94,101 A further conundrum is the observa-
tion that on the one hand direct HSP90 inhibition with 17-AAG 
attenuates the stability of HDAC6 while on the other LBH-589 
potently causes the acetylation of HSP90 and though does not 
affect the levels of HDAC6.94

We recently found a mechanism by which HDACi/TKi com-
binations target aberrant FLT3-ITD and STAT5 hyperactivation. 
Targeting FLT3-ITD genetically by RNA interference (RNAi) 
or pharmacologically with three structurally different TKi 
(AC220/compound-102/PKC412), we noted that FLT3-ITD 
antagonized pro-apoptotic effects of panbinostat (LBH589).105 
Accordingly, application of the HDACi LBH589 with TKi syn-
ergistically induced cell death of FLT3-ITD-positive AML cell 
cultures. At the molecular level this tied in with a mainly protea-
somal degradation of FLT3-ITD and the processing of STAT5 
by caspase-3.105 Of note, FLT3-ITD-negative leukemic cells as 
well as normal peripheral blood mononuclear cells (PBMCs) 
were largely resistant to pro-apoptotic effects of such drug combi-
nations. TKi/HDACi combinations might hence be a promising 
strategy for the treatment of FLT3-ITD-positive AMLs.105

Further studies have to be conducted to decipher the exact 
molecular mechanism by which HDACi/TKi combinations kill 
ITD-positive leukemic cells. In cells exposed to HDACi there is 
an increased expression of enzymes of the ubiquitin-proteasome-
system (UPS).24,78,102,106-108 These increased levels of E2 ubiquitin 
conjugases and/or E3 ubiquitin ligases may accelerate proteasomal 
degradation independent of HSP90 (Fig. 2B). Additionally, it is 
possible that such drug regimen target the localization of ITD, 

the enzymes promoting its proteasomal degradation, unidenti-
fied negative regulators of ITD degradation, or other pathways. 
For example, SOCS2 has recently been shown to accelerate the 
proteasomal degradation of ligand stimulated FLT3 and of con-
stitutively phosphorylated FLT3-ITD in leukemic cells. Both, 
phosphorylation of STAT5 and ERK1/2 signaling decreased 
and the proliferation of FLT3-ITD-positive cells were slowed 
down upon overexpression of SOCS2.109 As the SOCS1/3 genes 
are induced in cancer cells plated with HDACi,63,64 an interest-
ing question is whether the SOCS2 gene is also suppressed by 
HDACs and how this may affect cell fate.

Moreover, it is unknown which HDAC(s) are responsible for 
the synergistic effects of HDACi/TKi combinatorial treatment. 
Such knowledge may point to a very specific strategy against 
AMLs positive for ITD. For example, an increased proteasomal 
degradation of FLT3-ITD occurs in MV4–11 cells treated with 
LBH589,106 and also with LBH589/TKi regimen.105 The under-
lying mechanism is an induction of the E2 ubiquitin conjugase 
UBCH8 (UBE2L6) and the recognition of FLT3-ITD by the E3 
ubiquitin ligases SIAH1 and SIAH2.106 It is tempting to specu-
late that the reduction of FLT3-ITD phosphorylation which 
stabilizes the protein and leads to its translocation to the cell 
surface,105 is antagonized by the accelerated HDACi-mediated 
proteasomal degradation. Of note, the UBCH8-SIAH1/SIAH2 
module enhancing proteasomal degradation by poly-ubiquiti-
nylation targets many other oncologically relevant factors, too.78 
Examples are the leukemia fusion proteins AML1-ETO and 
PML-RARα.78,107 Precisely deciphering such mechanisms might 
be a critical step toward personalized therapy.

Chronic eosinophilic leukemia and mastocytosis
Additional leukemogenic proteins activate STAT5 and its tar-

get genes. Examples are the leukemia fusion proteins FIP1-like-1–
platelet-derived growth factor receptor α (FIP1L1-PDGFRA; 
mRNA processing factor-receptor tyrosine kinase (RTK)-fusion) 
and E-20 six (leukemia virus, E26; ETS) variant gene 6–plate-
let-derived growth factor receptor β (ETV6-PDGFRB aka 
TEL[translocation ets leukemia]-PDGFRB; transcription factor-
RTK fusion).110,111 In addition to STAT5, both fusion proteins 
also induce STAT1 and STAT3 as well as nuclear factor-kappa 
B (NFκB) in human CD34-positive hematopoietic progenitor 
and stem cells.110 ETV6-PDGFRB stems from the transloca-
tion t(5;12)(q33;p13),110,112 and FIP1L1-PDGFRA arises from 
an approximately 800 kb internal deletion in chromosome 
4q12.113-115 Expression of these fusion proteins is linked to chronic 
eosinophilic leukemia (CEL) characterized by transformation of 
eosinophilic precursors into leukemic cells and clonal hypereosin-
ophilia.113,114 FIP1L1-PDGFRA causes up to 60% of CEL cases 
and correlates with a more aggressive disease phenotype than 
that seen in patients with hypereosinophilia devoid of FIP1L1-
PDGFRA expression.111,113 In permanent and primary CEL cells, 
FIP1L1-PDGFRA activates STAT5 by a still unknown pathway. 
This mechanism seems not to involve JAK2,111 which classically 
phosphorylates STAT5.3,5,116 JAK2 though mediates the activa-
tion of STAT3 and NFκB, PI3/AKT kinases, and the expression 
c-MYC and survivin promoting the survival of CEL cells,111 and 
JAK1 is another important inducer of STAT5 signaling.117
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Similar to FLT3-ITD, FIP1L1-PDGFRA, but not its cor-
responding mRNA, is reduced in EOL-1 cells incubated with 
HDACi (apicidin or butyrate). These cells endogenously express 
FIP1L1-PDGFRA and undergo differentiation upon inhibi-
tion of HDACs.118 Also p-STAT5 became attenuated when the 
cells were exposed to apicidin or butyrate. Nevertheless, the 
pan-HDACi TSA,26 failed to antagonize FIP1L1-PDGFRA 
and p-STAT5.118 Although these variable findings for different 
HDACi seem unexpected, HDAC2 is a further protein, which 
becomes degraded when cells are exposed to the less potent 
HDACi VPA and butyrate (effective in the mM range), but not 
when they are treated with TSA (a pan-HDACi effective in the 
nanomaolar range).50,102,103 An explanation for these data is that 
in conjunction with the HDACi-inducible E2 ubiquitin con-
jugase UBCH8 the E3 ubiquitin ligase RLIM promotes poly-
ubiquitinylation of HDAC2 for its proteasomal degradation. 
However, TSA enhances the proteasomal degradation of RLIM 
and thereby antagonizes the effect caused by the induction of 
UBCH8.78,102 Further experiments need to be conducted to 
clarify how FIP1L1-PDGFRA is degraded in vivo. Interestingly, 
in murine model cell systems and in primary patient material 
FIP1L1-PDGFRA and ETV6-PDGFRB are less ubiquitinylated 
and more stable than their wild-type counterparts. The E3 ubiq-
uitin ligase CBL contributes to this process and accelerating the 
turnover of ETV6-PDGFRB reduced STAT5 activation and cell 
proliferation.119 It remains to be investigated if acetylation affects 
CBL and its interactions with other components of the ubiquiti-
nylation machinery.

The TKi imatinib is not only a highly appreciated drug 
against CML,77 but equally shows promising activity against 
CEL in cultured cells and in patients.113,120 Drug combinations 
consisting of PDGFR inhibitors and HDACi may be promising 
for the treatment of diseases caused by aberrant PDGF signal-
ing.121,122 Moreover, combining such epigenetic regulators with 
agents antagonizing Janus and TYK2 kinases,3,9 might block 
oncogenic signaling involving STAT5.

Expression of FIP1L1/PDGFRA is also linked to systemic 
mastocytosis (SM),120 which is not to be confused with the mas-
tocytosis driven by mutations in the cell surface receptor c-KIT 
(CD117).75,115 Mast cell hyperproliferation and accumulation in 
organs as well as allergic responses are tightly linked to dysregu-
lated JAK-STAT signaling pathways. Especially STAT5 caus-
ally mediates the proliferation, survival, and mediator release 
by mast cells activated through ligation of immunoglobulin E 
receptors, stem cell factor (SCF), and IL-3.123 The ligand for 
c-KIT is stem cell factor,124 and mutants of c-KIT and PDGFRA 
also drive the development of gastrointestinal stromal tumors 
(GIST).125,126 Remarkably, mutations occur almost exclusively 
at amino acid 816 within the kinase domain of c-KIT (KIT-
Asp816, KITD816V mutant), and this event causes transcriptional 
activation of STAT5.127 Studies in mice as well as the analysis of 
human mastocytosis samples thoroughly elaborated that particu-
larly KITD816V-driven STAT5 signaling is causally linked to the 
growth and survival of neoplastic mast cells.128

Several strategies have been suggested against tumors caused 
by mutant c-KIT. These are especially the TKi imatinib, 

sunitinib, dasatinib, and PKC412.125 Due to secondary muta-
tions that confer drug resistance co-targeting of transforming 
pathways is needed.125 An interruption of HDAC activity has also 
been suggested as a strategy against several myeloid neoplasms 
linked to inherent and acquired resistance of c-KIT and excessive 
STAT5 activation.129

A study analyzing murine and canine malignant mast cell 
lines with mutant c-KIT status, normal canine mast cells found 
that the broad-range HDACi AR-42 halts cancer cell prolifera-
tion and tumorigenic signaling involving STAT5 (in addition to 
STAT3 and the AKT kinase). An elegant feature of this work 
is the use of spontaneously occurring primary canine malignant 
mast cells. The results collected by Lin and colleagues argue in 
favor of HDACi-based therapeutic approaches against malignant 
mast cells.130 AR-42 caused biological effects typically seen with a 
pan-HDACi, hyperacetylation of histones H3, H4, of tubulin-α, 
and induction of the p21 gene. Furthermore, this HDACi abro-
gated transcription of the KIT gene and a loss of HSP90-KIT 
interactions independent of the HSP90 acetylation status.130 
Enhanced proteasomal degradation in HDACi-treated leukemic 
cells in the absence of HSP90 acetylation was also reported,107 
and HSP90 hyperacetylation in HDAC6 knockout mice does 
not impair survival.131

HDACi may as well be particularly effective against KIT-
driven GIST. Mühlenberg and colleagues found that a larger 
panel of pan- and class-specific HDACi (the hydroxamates TSA, 
SAHA, LBH-589, and the monocarboxylates VPA and sodium 
butyrate),26 attenuate oncogenic KIT and its downstream signal-
ing pathways preventing apoptotic cell death. It was again seen 
that HDACi reduced KIT mRNA expression and that HSP90 
functions stabilizing oncogenic KIT were lost. A further notable 
aspect of this study is the reported strong synergism of imatinib/
SAHA and LBH589 combinations.126 While Lin and colleagues 
found no evidence for HSP90 acetylation in mast cell tumors, 
Mühlenberg and colleagues detected an HDACi-induced HSP90 
acetylation in GIST cells. Therefore, we assume that while HSP90 
acetylation somehow marks the effective inhibition of HDACs in 
certain cell types, this acetylation event is not linked to anti-can-
cer effects or the loss of oncoprotein stability evoked by HDACi. 
The unexpected finding that HDACi resistant HL-60 AML cell 
clones and BCR-ABL-independent imatinib-resistant K562 cell 
clones show constitutive HSP90 hyperacetylation,132,133 may even 
suggest that acetylation of this chaperone is an adaption or a side 
effect antagonizing beneficial drug effects.

Conclusion

Both, pro- and anti-apoptotic functions of STAT5 might be 
controlled through acetylation. This may involve direct effects 
on STAT5 as well as the crosstalk of STAT5 with other tran-
scription factors. Whether negative regulators of the JAK-STAT 
pathway, phosphatases, SOCS proteins, and protein inhibitors 
of activated STATs can be modulated by TKi and HDACi is 
another open question. Whether the basal acetylation of various 
STATs is biologically relevant and whether this posttranslational 
modification depends on particular conditions equally remains 
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to be clarified. There may also be cell type- and tissue-depen-
dent effects and consequences. Although there are many reports 
now on how acetylation influences protein structure and func-
tion, it is enigmatic and speculative whether acetylation has to 
be a permanent modification to remain a certain protein activity. 
Alternatively, acetylation may drive protein complex formation 
and subsequent modifications, and then becomes biologically 
dispensable. Alternatively, acetylation of STATs may be a very 
dynamic process facilitated by the rather large number of HATs 
and HDACs. Future research should decipher whether STAT 
acetylation is altered in primary tumors at various stages. Such 
analyses will reveal putative associations of STAT acetylation of 
carcinogenesis. The fact that STAT5 acetylation is critical for 

distinct mechanisms and can be target by HDACi makes this a 
promising way to target elevated STAT5 signaling in malignant 
cells.
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