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Abstract: The availability of nanoparticles (NPs) to deliver small interfering RNA (siRNA) has signif-
icantly expanded the specificity and range of ‘druggable’ targets for precision medicine in cancer.
This is especially important for cancers such as triple negative breast cancer (TNBC) for which there
are no targeted treatments. Our purpose here was to understand the role of tumor vasculature and
vascular endothelial growth factor (VEGF) overexpression in a TNBC xenograft in improving the
delivery and function of siRNA NPs using in vivo as well as ex vivo imaging. We used triple negative
MDA-MB-231 human breast cancer xenografts derived from cells engineered to overexpress VEGF to
understand the role of VEGF and vascularization in NP delivery and function. We used polyethylene
glycol (PEG) conjugated polyethylenimine (PEI) NPs to deliver siRNA that downregulates choline
kinase alpha (Chkα), an enzyme that is associated with malignant transformation and tumor pro-
gression. Because Chkα converts choline to phosphocholine, effective delivery of Chkα siRNA NPs
resulted in functional changes of a significant decrease in phosphocholine and total choline that was
detected with 1H magnetic resonance spectroscopy (MRS). We observed a significant increase in NP
delivery and a significant decrease in Chkα and phosphocholine in VEGF overexpressing xenografts.
Our results demonstrated the importance of tumor vascularization in achieving effective siRNA
delivery and downregulation of the target gene Chkα and its function.

Keywords: choline kinase; nanoparticles; siRNA delivery; triple negative breast cancer; vascularization

1. Introduction

There has been a major resurgence of interest in using small interfering RNA (siRNA)
to silence genes in the treatment of diseases [1]. Effective delivery and cellular uptake of
siRNA are major challenges in the applications of siRNA therapy [2] that become even
more challenging in cancer because of the abnormal vasculature of tumors. Theranostic
nanoparticles (NPs) that integrate siRNA delivery with imaging reporters provide excel-
lent opportunities for visualization of siRNA delivery and uptake. Tumor vasculature is
typically disorganized with immature capillaries that are leaky and tortuous and cannot
provide sufficient oxygen and nutrients to cells within the tumor, resulting in hypoxia,
acidic pH, and necrosis. Studies directly relating vascularization to the visualization of
siRNA NP delivery and functional outcome are required to understand how these NPs
navigate through the tumor microenvironment (TME), and to understand the impact of the
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TME on siRNA delivery and function [3]. Previous studies have shown the importance of
effective delivery in the downregulation of the target gene [4], but the functional outcome
of the downregulation of the target gene has not been verified. Our purpose here was to
evaluate the effect of increased vascularization on siRNA NP delivery and the functional
outcome of the target gene downregulation.

Breast cancer is one of the most commonly diagnosed cancers, and the second leading
cause of cancer-related deaths among women in the United States [5]. Triple negative
breast cancer (TNBC) is an aggressive subtype of breast cancer that lacks the expression
of human epidermal growth factor receptor 2 (HER2), progesterone receptor (PR), and
estrogen receptor (ER). TNBC accounts for 10~15% of all breast cancer cases [6,7] and is
associated with poor prognosis [8,9]. Because of the lack of conventional targets in TNBC,
siRNA therapy presents a novel opportunity for treating TNBC. Among potential targets
for TNBC, choline kinase α (Chkα) is an attractive candidate. As an enzyme that catalyzes
the conversion of choline to phosphocholine (PC), Chkα is associated with malignant
transformation and tumor progression [10,11]. Pharmacological inhibitors of Chkα have
shown some antitumor activity [12,13]. However, a novel potent and selective small-
molecule Chkα inhibitor, V-11-0711, which acts by significantly inhibiting the catalytic
activity of Chkα [14], reduced PC but did not cause cell death [14,15]. Downregulation
of the Chkα protein, on the other hand, consistently decreased cell survival [15]. These
studies highlighted the potential use of Chkα siRNA in TNBC treatment, underscoring
the need to identify factors that can improve the effectiveness of Chkα siRNA such as
vascular delivery.

Here we used optically labeled polyethylene glycol (PEG)-polyethylenimine (PEI) NPs
to visualize the delivery of Chkα siRNA to TNBC MDA-MB-231 xenografts with or without
vascular endothelial growth factor (VEGF) overexpressed. VEGF is a potent angiogenic
and permeability factor that is expressed by cancer cells to establish angiogenesis [16]. It
is frequently upregulated in breast cancer tissue [17–19], and it is also transcriptionally
regulated by hypoxia [20]. We have previously detected significantly higher vascular
volume in MDA-MB-231 tumors derived from cells engineered to overexpress VEGF [21].
The use of TNBC xenografts with and without VEGF overexpression allowed us to evaluate
the role of vascular delivery in target gene downregulation. Because hypoxia occurs in
TNBC [22], we also evaluated the effects of hypoxia on the ability of siRNA to downregulate
the target gene. The use of Chkα siRNA provided the added advantage of evaluating
the functional outcome of Chkα downregulation through the reduction in PC and total
choline that can be detected with 1H magnetic resonance spectroscopy (MRS), allowing an
evaluation of the functional impact of the siRNA within the heterogeneous TME.

2. Materials and Methods
2.1. Cell Lines and Tumors

MDA-MB-231 human breast cancer cells (ATCC, Manassas, VA, USA) were engineered
to stably express VEGF as previously described [21]. Briefly, cDNA for VEGF165 (Genentech
Inc, South San Francisco, CA, USA) was cloned into the eukaryotic expression vector pCR3.1
under the control of a constitutive CMV promoter. MDA-MB-231 cells were cultured using
RPMI 1640 medium (Sigma®, Saint Louis, MO, USA) supplemented with 10% fetal bovine
Serum (FBS, Sigma®, Saint Louis, MO, USA). MDA-MB-231 VEGF cells were cultured
with the same medium with 400 µg/mL of G418 Sulfate (Corning™, Glendale, AZ, USA).
Expression of VEGF was routinely checked by RT-PCR.

Tumors were obtained by inoculating 106 MDA-MB-231 wild-type (231 WT) or MDA-
MB-231 VEGF (231 VEGF) cells, orthotopically, in female severe combined immunodeficient
(SCID) mice. Tumors reached volumes of 300–400 mm3 within 4–6 weeks after inoculation,
at which point the animals were used for study. All animal studies were done in compliance
with a protocol approved by the Animal Care and Use Committee of the Johns Hopkins
University School of Medicine.
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2.2. Preparation and Characterization of Chkα siRNA PEG-PEI NPs

Branched PEI (PEI, Aldrich®, Saint Louis, MO, USA; Mw 25,000) was used to form
noncovalent inter-polyelectrolyte NPs. Polyethylene glycol 2000 (PEG 2000) NHS ester
(NanoCS, Natick, MA, USA) was reacted with PEI 25k at a 15:1 molar ratio. Excess PEG
was removed by MilliporeSigma™ Amicon™ Ultra Centrifugal Filter Units (St. Louis,
MO, USA) with a molecular weight cutoff of 10,000 Da. 1H NMR spectroscopy (Bruker
Avance III 500 MHz NMR spectrometer, Bruker, Billerica, MA, USA) demonstrated that the
PEG reacted with PEI at an average molar ratio of 9:1 (Figure S1). Cy5.5 NHS ester (Click
Chemistry Tools, Scottsdale, AZ, USA) was reacted with PEGylated PEI at a 1:1 molar ratio
in phosphate buffered saline (PBS, pH = 7.4) to provide an optical imaging reporter for
imaging the PEG-PEI NPs.

Modified PEG-PEI was mixed and incubated at ambient temperature with Chkα
siRNA in reduced serum for cell studies, or in PBS for in vivo studies. The N/P ratio,
the ratio of the number of nitrogen atoms in one molecule of PEG-PEI to the number of
phosphor atoms in one molecule of Chkα siRNA, was 15. PEG-PEI NPs were prepared by
mixing modified PEI with Chkα siRNA approximately 30 min to one hour prior to each
experiment. The characterization of the PEG-PEI NPs was performed by transmission
electron microscopy (TEM, Hitachi 7600, Tokyo, Japan) and by dynamic light scattering
(DLS, Malvern Zetasizer Nano ZS90, Malvern, United Kingdom). A representative TEM
image is presented in Figure S2A, with the histogram of the NP size distribution presented
in Figure S2B. The mean diameter as estimated by TEM was 15.4 nm. The hydrodynamic
diameter of the PEG-PEI NPs was on average 108 nm with a polydisperse index (PdI) of
0.336 as shown in Figure S3. The zeta-potential of the PEG-PEI siRNA complex was approx-
imately 7.0 mV as previously estimated [23]. While we have not performed characterization
of PEG-PEI NP stability in this study, previous studies have demonstrated the stability of
PEG-PEI NPs in serum [24].

2.3. In Vitro RNA Interference

The in vitro efficiency of RNA interference by Chkα siRNA PEG-PEI NPs was eval-
uated in 231 WT and 231 VEGF cells. All siRNA used in the study were obtained from
Dharmacon™ (Lafayette, CO, USA). A previously validated Chkα siRNA sequence [25],
5′-CAUGCUGUUCCAGUGCUCC-3′, was designed using the Thermo Scientific siRNA
Design Center (Thermo Scientific, Rockford, IL, USA). Approximately 0.4 × 106 cells were
seeded in 60 mm culture dishes and cultured overnight. The following day, 0.2 nmol of
Chkα siRNA was mixed with PEG-PEI at an N/P ratio of 15 in 50 µL of Opti-MEMTM

reduced serum medium for 30 min before being added to the petri dish. The siRNA con-
centration was 100 nM. Untreated cells served as a negative control. Cells treated with an
identical amount of Chkα siRNA mixed with DharmaFECT 4 as the transfection reagent
were used as a positive control. After 24 h of incubation, cells were collected and the Chkα
mRNA level of each group evaluated by RT-PCR.

2.4. Immunohistochemistry Staining

CD31 immunohistochemistry (IHC) staining was used to identify vasculature in tumor
sections. Both 231 WT and 231 VEGF tumors were harvested, fixed in formalin, and em-
bedded with paraffin. Tumor tissue slides were sectioned at 5 µm thickness, then dewaxed
and rehydrated. Antigen retrieval was achieved by boiling the slides in pre-warmed citrate
buffer, pH 6.0 solution for 20 min. Peroxidase blocking and serum free protein blocking
were performed on slides prior to overnight incubation at 4 ◦C with a rat monoclonal CD31
antibody (platelet endothelial cell adhesion molecule-1, PECAM-1 DIA 310, clone SZ31,
Rat IgG2A, Dianova, Hamburg, Germany, 1:30 dilution). Horseradish peroxidase (HPR)
conjugated secondary antibody (Vector Laboratories, Burlingame, CA, USA) was used to
recognize the primary antibody. After incubation with secondary antibody for 1 h, DAB
(3,3′-diaminobenzidine) chromogen was used to develop color, following which slides
were counter stained with hematoxylin (Vector Laboratories, Burlingame, CA, USA).
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Stained tissue slides were scanned with an Aperio ScanScope XT slide scanner (Aperio
Technologies, Vista, CA, USA) and analyzed by Aperio Imagescope. The number of
strongly positive pixels normalized to the total number of pixels was obtained. Analyses
were performed using the entire histological section.

2.5. Optical Imaging

PEG-PEI NPs labeled with Cy5.5 dye were imaged with a Pearl® Trilogy Small Animal
Imaging System (LI-COR, Lincoln, NE, USA). PEG-PEI NPs delivering Chkα siRNA were
administered intravenously with two doses of 3 nmol of Chkα siRNA, N/P ratio 15 (0.1 mg
of NP per dose), each given 24 h apart, once tumors were ~300–400 mm3. In vivo and
ex vivo optical imaging were used to track NP delivery and distribution in mice with
231 WT tumors and 231 VEGF tumors at 24 h following injection of the second dose.

2.6. In Vivo 1H MR Spectroscopic Imaging and Ex Vivo High-Resolution 1H MRS

MR studies were performed on a 4.7 T Bruker scanner with a solenoidal coil placed
around the tumor. Total choline was detected with 1H magnetic resonance spectroscopic
imaging (MRSI) using a 2D chemical shift imaging (CSI) sequence before and after treating
with 2 doses of Chkα siRNA NPs. Water-suppressed 1H MRSI was performed with the
following parameters: slice thickness, 4 mm; water suppression, VAPOR; TR, 1059 ms; TE,
272 ms; number of scans, 4; and FOV, 1.6 cm × 1.6 cm as previously described [26].

High resolution 1H MRS was performed on tumor extracts obtained with dual phase
extraction as previously described [27], with the following modification. Dual phase extrac-
tion was used on snap-frozen tumor tissue with methanol/chloroform/water (1.5/3/1)
individually added and sonicated before separation of the aqueous and lipid phases. High-
resolution 1H MR spectra were acquired on a Bruker Biospin Avance-III 750 MHz MR
spectrometer (Bruker Biospin Billerica, MA, USA) using a 5 mm broadband inverse (BBI)
probe. 600 µL of 1× phosphate buffered deuterated water (D2O) (90% D2O, 10% H2O)
containing 3-(trimethylsilyl) propionic 2,2,3,3-d4 acid sodium salt (TSP), as an internal
standard, was used to resuspend the dried aqueous phase extract for MRS analysis. Spectra
of the aqueous phase with water suppression were acquired with pre-saturation using
a single pulse sequence with the following parameters: spectral width of 15,495.87 Hz,
data points of 64 K, 90◦ flip angle, relaxation delay of 10 s, acquisition time of 2.11 s, 64
scans with 8 dummy scans, receiver gain 256. MR spectra were processed using Bruker
Topspin 4.1.3. Integrals of metabolite signals including PC, glycerophosphocholine (GPC),
and choline (Cho) were measured and normalized to the weight of tissue and compared to
the TSP standard to obtain relative concentrations in arbitrary units (A.U.).

2.7. RT-PCR and Immunoblotting

RNA from cells and snap-frozen tumor tissue was extracted by QIAshredder and
RNeasy Mini kit (Qiagen, Valencia, CA, USA) following the manufacturer’s protocol. cDNA
was synthesized by iScript cDNA synthesis kit (Bio-Rad, Hercules, CA, USA). A 10× dilu-
tion of cDNA sample and Chkα specific primers were used for quantitative real-time PCR
analysis with an iCycler real-time PCR detection system (Bio-Rad). The relative Chkα gene
expression to an endogenous control hypoxanthine phosphoribosyltransferase 1 (HPRT1)
was calculated based on the delta delta Ct method, where relative gene expression was
presented as 2−∆∆Ct.

Total protein from tumor tissue was extracted with a RIPA (Radio-immunoprecipitation
assay) buffer with various protease and phosphatase inhibitors to prevent degradation
of the protein [28]. For protein electrophoresis and immunoblotting analysis, 7.5% SDS-
PAGE gel was used. A customized rabbit polyclonal primary antibody against Chkα, and
an anti-GAPDH antibody (mouse monoclonal, Sigma, St. Louis, MO, USA) were used.
Immunoblots were developed by a SuperSignal™ West Pico PLUS Chemiluminescent Sub-
strate kit (ThermoFisher Scientific, Waltham, MA, USA) following the
manufacturer’s instructions.
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2.8. Statistics Analysis

Values represent mean ± SEM from three or more experiments, with experimental
numbers provided in the corresponding figure legend. Statistical differences between
different groups were evaluated by a two-tailed unpaired t-test using GraphPad Prism 5.
A p value ≤ 0.05 was considered statistically significant.

3. Results
3.1. VEGF Overexpression Promotes Vascularization

The VEGF expression by 231 WT and 231 VEGF cells was evaluated by RT-PCR.
231 VEGF cells demonstrated a significantly higher level of VEGF mRNA expression
compared to 231 WT cells (Figure 1A).
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Representative immunostained tumor sections of the endothelial cell marker CD31
presented in Figure 1B show increased CD31 density in the 231 VEGF tumor. A summary
of CD31 IHC data analysis presented in Figure 1C demonstrated that the strongly positive
pixel fraction significantly increased from 1.27 ± 0.38 in 231 WT tumors to 4.60 ± 0.41 in
231 VEGF tumors. This significant increase in CD31 confirmed the increased angiogenesis
induced by VEGF in these tumors.
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3.2. Downregulation of Chkα in Cells Following Treatment with Chkα siRNA PEG-PEI NPs

Treatment of 231 WT or 231 VEGF cells with Chkα siRNA NPs resulted in a significant
and comparable decrease in Chkα mRNA, as shown in Figure 2A,B. To directly determine
the effects of hypoxia on RNA interference, we examined the siRNA-mediated downreg-
ulation of Chkα in 231 WT cells under normoxia or hypoxia using the transfection agent
D-FECT 4 or the PEG-PEI NPs. As shown in Figure S4A,B, hypoxia did not affect RNA
interference, as the target gene was downregulated to the same extent under normoxia
or hypoxia when using D-FECT 4 or the PEG-PEI NPs. Although D-FECT 4 was more
effective at downregulation of Chkα than PEG-PEI NPs (0.25-fold or 75% reduction with
D-FECT vs. 0.5-fold or 50% reduction with PEG-PEI NPs as compared to control), D-FECT
cannot be used for in vivo siRNA delivery.
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Figure 2. Downregulation of Chkα mRNA in 231 WT and 231 VEGF cells. (A) Relative fold re-
duction in Chkα mRNA in 231 WT cells (0.46 ± 0.06) following treatment with Chkα siRNA NPs.
(B) Relative fold reduction in Chkα mRNA in 231 VEGF cells (0.49 ± 0.03) following treatment with
the Chkα siRNA NPs. Values represent mean + SEM; *** p < 0.001. Relative fold changes were
normalized to corresponding untreated cells used as controls; values are from 4 to 6 experiments;
siRNA concentration in the medium was 100 nM.

3.3. Chkα siRNA NP Biodistribution with In Vivo and Ex Vivo Optical Imaging

We performed in vivo and ex vivo optical imaging to determine the delivery and
biodistribution of the PEG-PEI NPs. In vivo and ex vivo imaging of mice with 231 WT and
231 VEGF tumors was performed 24 h after the Chkα siRNA treatment that consisted of
two doses of 3 nmol of Chkα siRNA delivered 24 h apart. Following in vivo imaging, mice
were euthanized to perform ex vivo imaging of excised tissues.

As shown in the representative in vivo images in Figure 3A, markedly higher fluo-
rescence intensity was observed in the 231 VEGF tumor (right) compared to the 231 WT
tumor (left). Representative ex vivo images in Figure 3B obtained from a 2 mm thick slice
of excised tumor (bottom row) and muscle tissue (top row) confirmed the high intensity in
the 231 VEGF tumor compared to the 231 WT tumor, reflecting increased delivery of the
NPs in tumors with VEGF overexpressed. Quantitative analysis of the tumor to muscle flu-
orescence intensity ratio summarized in Figure 3C confirmed the almost five-fold increase
in NPs in the 231 VEGF tumor group compared to the 231 WT group.

Representative images of the biodistribution of the NPs in the liver, kidney, lung,
heart, and spleen are presented in Figure 4A. Tumor VEGF overexpression did not alter the
uptake of NPs in these organs, as evident from the comparable organ intensities.
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Figure 3. In vivo delivery of Chkα siRNA PEG-PEI NPs. (A) Representative in vivo Cy5.5 NIR
fluorescence images of mice bearing 231 WT (left) and 231 VEGF (right) tumors 24 h after two doses
of Chkα siRNA NPs. The tumor region is outlined with a red circle. A higher signal intensity was
evident in the 231-VEGF tumor compared to the 231 WT tumor. (B) Corresponding representative ex
vivo images of 2 mm thick fresh tissue slices from tumor and muscle tissue. Muscle tissue from a
231 WT tumor-bearing mouse (top row, left) displayed similar signal intensity as muscle tissue from
a 231 VEGF tumor-bearing mouse (top row, right). In contrast, the 231 VEGF tumor slice (bottom
row, right) exhibited appreciably higher intensity compared to the 231 WT tumor slice (bottom
row, left). (C) Quantitative analysis of the ex vivo tumor/muscle intensity ratio from 231 WT and
231 VEGF tumors showed a significant increase in 231 VEGF tumors compared to 231 WT tumors.
Values represent mean + SEM, *** p < 0.001, n = 6 for each group. Each mouse received 3 nmol of
siRNA per injection.

Results of the ex vivo organ imaging studies from all the mice are summarized in
Figure 4B. Although NP accumulation in the spleen appeared to be higher in the WT
compared to the VEGF tumor-bearing mouse in the representative image in Figure 4A,
when averaged across all the mice in each group, there was no significant difference
in spleen accumulation between the two groups. There were no significant differences
between NP uptake in any imaged organs of mice bearing tumors with or without VEGF
overexpression. In vivo and ex vivo Cy5.5 fluorescence images of NP uptake obtained in
all the tumors and organs are presented in Figure S5 for 231 WT tumor-bearing mice and in
Figure S6 for 231 VEGF tumor-bearing mice. A higher uptake of the NPs is evident in the
231 VEGF tumors compared to the 231 WT tumors.

3.4. Downregulation of Chkα and Decrease in Total Choline in MDA-MB-231-VEGF Tumors

We compared the fold decrease in Chkα mRNA with or without VEGF overexpression
following two doses of siRNA NP administration, normalized to untreated control tumors.
As shown in Figure 5A, Chkα mRNA levels were significantly lower in treated 231 VEGF
tumors compared to treated 231 WT tumors.
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Figure 4. Ex vivo organ biodistribution of Chkα siRNA NPs. (A) Representative ex vivo images of
fluorescence intensity in organs from a mouse bearing a 231 WT tumor (left) and a 231 VEGF tumor
(right), 24 h after two doses of Chkα siRNA NPs. (B) Quantitative image analysis of ex vivo organ
tissues from mice bearing 231 WT and 231 VEGF tumors. No significant difference in fluorescence
intensity was observed in the organs obtained from mice with 231 WT tumors compared to mice with
231 VEGF tumors. Values represent mean ± SEM, n = 6 for each group.

A correlation plot between tumor to muscle fluorescence intensity of the VEGF group
as an index of NP delivery, and mRNA fold change, showed the dependence of downreg-
ulation efficacy on NP delivery (Figure 5B). Immunoblots of tumor extracts (Figure 5C)
confirmed the decrease in Chkα protein in the 231 VEGF tumors following siRNA NP
treatment, whereas Chkα protein in treated 231 WT tumors remained comparable to protein
levels in untreated 231 WT and VEGF tumors.

An example of the functional reduction in total choline (tCho) detected noninvasively
in vivo with 1H MRSI following two doses of Chkα siRNA NPs in a 231 VEGF tumor is
shown in Figure 5D. An overall reduction in tCho was identified, although heterogeneity
of tCho reduction is evident in the post-treatment image.
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Figure 5. Improved downregulation of Chkα mRNA and protein in 231 VEGF tumors. (A) Fold
change of Chkα mRNA levels in 231 WT (n = 10) and 231 VEGF (n = 11) tumors; a significant reduction
in Chkα mRNA in 231 VEGF compared to 231 WT tumors was observed. Values normalized to
untreated tumors represent Mean ± SEM, ** p < 0.01. (B) Correlation between Chkα mRNA levels
in 231 VEGF tumor tissue and the tumor/muscle fluorescence intensity ratio following Chkα NP
administration. (C) Immunoblots of 231 WT and 231 VEGF tumors with and without Chkα siRNA
NP administration. Following Chkα siRNA NP administration, 231 VEGF tumors have lower Chkα
protein than 231 WT tumors. (D) Representative in vivo color-coded total choline intensity map of a
231 VEGF tumor overlaid with T1 weighted MR image, obtained before treatment and at 24 h after
the second dose of Chkα siRNA NPs.

3.5. Choline Metabolite Levels in Tumor Extracts

To further characterize the delivery-dependent functional effects of Chkα siRNA on
choline metabolites, we analyzed GPC, PC, Cho, and total choline (Cho + PC + GPC) levels
as detected in high-resolution 1H MR spectra of tumor extracts. Representative 1H MR
spectra obtained from the aqueous phase of extracts of untreated (left) and treated (right)
231 WT (Figure 6A) and 231 VEGF (Figure 6B) tumors show the decrease in PC in the
231 VEGF treated tumor. Data summarized for 231 WT tumors in Figure 6C show that PC
levels did not change significantly between the untreated and treated tumors (Figure 6C).
In contrast, effective delivery of the NPs resulted in a significant decrease in PC levels in
the treated 231 VEGF tumors compared to untreated 231 VEGF tumors (Figure 6D). GPC,
Cho, and total choline in the 231 WT and the 231 VEGF tumor groups did not change
significantly following siRNA NP treatment. Baseline levels of choline metabolites in
untreated 231 WT and untreated 231 VEGF tumors were also compared. Although there
was a trend towards lower Cho in untreated 231 VEGF tumors compared to untreated
231 WT tumors, no significant differences were identified in levels of GPC, PC, Cho, and
total choline between untreated 231 VEGF and 231 WT tumors, confirming that VEGF
overexpression did not alter the basal choline metabolites in these tumors (Figure S7).
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Figure 6. Representative 1H MR spectra expanded to display choline metabolite region obtained
from 231 WT (A) and 231 VEGF (B) tumor extracts with and without Chkα siRNA NP administration.
Quantitative analysis (arbitrary unit, au) of 1H MR spectra from 231 WT (C) and 231 VEGF (D) tumor
extracts. 231 WT tumors showed no significant difference in choline metabolites following siRNA
PEG-PEI NP administration. PC levels significantly decreased in 231 VEGF tumors following siRNA
PEG-PEI NP administration. Values represent mean ± SEM, * p ≤ 0.05, n = 8 each for treated 231 WT
or 231 VEGF tumors, n = 3 each for control 231 WT or 231 VEGF tumors. GPC: glycerophosphocholine,
PC: phosphocholine, Cho: choline, and total choline: Cho + PC + GPC.

4. Discussion

VEGF overexpressing MDA-MB-231 tumors clearly showed a significantly higher
delivery of the NPs compared to wild-type tumors, although organ uptake was comparable
in both groups. VEGF overexpression resulted in a significant increase in endothelial cells as
identified by CD31 IHC, confirming our earlier observations that VEGF increased vascular
volume in these tumors [21]. VEGF is also a potent permeability factor [29] that would
have facilitated the extravasation of the NPs from the vasculature, although prior MRI
characterization of permeability did not detect a significant increase in permeability [21].
The increased delivery of Chkα siRNA NPs in VEGF overexpressing tumors resulted in a
significant decrease in Chkα as identified through molecular characterization of mRNA and
protein. The functional impact of increased Chkα siRNA resulted in a significant decrease
in PC as detected by 1H MRS, confirming a direct relationship between increased delivery
and functional outcome in these tumors.

The ability to silence any gene of interest makes siRNA a powerful technology that
significantly expands the targets available for precision therapy [30]. In addition, siRNA
treatment does not result in genome modification, which is beneficial in terms of safety
considerations. However, instability in blood and limited intracellular delivery have been
barriers in the clinical applications of siRNA. As a result, there have been significant
efforts to develop siRNA delivery systems that increase siRNA stability and cell penetra-
tion [31–33]. Effective siRNA encapsulation [34–36] and protection [37,38] are two the main
strategies applied in developing delivery systems. Here we selected PEGylated PEI to
deliver siRNA based on its ability to form noncovalent interpolyelectrolyte complexes with
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siRNA [39] that allowed stability and cell penetration [33,40]. We previously evaluated
PEG-PEI cytotoxicity using an MTT assay in MDA-MB-231 cells treated for 4 days with
varying concentrations of PEG-PEI and found that PEG-PEI NP concentrations of 0.3 µM
or less did not reduce cell viability [23]. Based on the injection dose of 0.1 mg PEG-PEI
in a 25 g mouse, we anticipate that the in vivo concentration of PEG-PEI of ~0.1 µM did
not induce cytotoxicity over a 4-day period, by which time the complex would have been
excreted. NPs can also react differently based on the protein corona of cells [41]. In our
study, we used a pair of isogenic cancer cell lines with and without VEGF expression to
investigate the effects of increasing tumor vascularity on NP delivery and downregula-
tion of the target gene. Because we used isogenic cancer cells in SCID mice, we do not
anticipate that plasma proteins would have been altered, but this effect should also be
considered. Because of the size of the NPs used in this study, we anticipate that the NPs
were cleared by the reticuloendothelial system (RES). Several studies have investigated
the pharmacokinetics and clearance of PEG-PEI NPs [42]. These NPs are cleared by the
RES, with degradation products that undergo renal and hepatobiliary elimination [43].
Our imaging studies showed the highest uptake in the kidney, followed by the liver, 24 h
after two doses of the NPs. By 24 h, degradation of the NPs undergoes both renal and
hepatobiliary elimination. The images suggest that there was more renal clearance at 24 h.

While several NPs that provide siRNA stability during circulation and cell penetration
are available [33,40], the delivery and distribution of these NPs within the tumor is the next
barrier regarding their translational use to downregulate target genes. For the PEG-PEI
NPs used in this study, the in vivo and ex vivo optical imaging studies clearly identified the
heterogeneity of NP distribution within the tumors, and the need for imaging to establish
effective siRNA delivery. The heterogeneity of NP distribution was also consistent with the
heterogeneity of tCho reduction as identified with in vivo 1H MRSI.

Cancer cells induce neovascularization by co-opting and remodeling existing vas-
culature [44], or by vasculogenesis, through the formation of de novo capillaries from
endothelial progenitor cells [45,46]. Tumor angiogenesis arises from stress responses to
low oxygen and nutrients resulting in the overproduction of pro-angiogenic cytokines,
such as VEGF, by cancer cells and by stromal cells present in the tumor [47,48]. Increased
concentrations of cytokines result in deregulation of the normal angiogenic cascade [49,50],
resulting in a disorganized and chaotic vasculature. Immature, highly permeable blood
vessels in tumors are leaky to macromolecules, have reduced blood flow, and are unable
to support tumor oxygen and nutrient requirements of cancer cells, resulting in hypoxia
and necrosis [51]. Because hypoxia is frequently observed in the TME of cancers, it was
important to establish the ability of siRNA to downregulate the target gene in the presence
of hypoxia. Our cell studies confirmed that hypoxia did not alter the effectiveness of siRNA
in downregulating the target gene. However, because tumor hypoxic areas are associated
with poor perfusion [52], siRNA NP delivery and consequently target gene downregulation
will be less effective in hypoxic tumor regions.

Previous studies have identified the importance of Chkα as a target in breast cancer
as well as in other cancer types [53]. As a result, pharmacological inhibitors of Chkα have
been developed [54] that have also been evaluated in a Phase I clinical trial (NCT01215864).
However, studies have also shown that Chkα acts as a chaperone protein [55,56] making it
important to destabilize or downregulate the protein itself rather than its catalytic activity,
a strategy where treatment with Chkα siRNA NPs is important. Studies with MDA-MB-
231 xenografts treated with repeated doses of a lentiviral vector delivered systemically to
transduce cancer cells in vivo with Chkα shRNA identified a significant reduction in cancer
cell proliferation in treated tumors [57]. Our purpose here was to identify the effects of
increased vascularization on Chkα siRNA delivery and the target-gene functional outcome.

In conclusion, the importance of vascularization in siRNA NP delivery and target-gene
downregulation was demonstrated from the significant increase in Chkα siRNA NPs in
231 VEGF tumors, the significant reduction in Chkα mRNA and protein, and the significant
reduction in PC in these tumors. Clearly, increased delivery resulted in greater downregu-
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lation of the target gene and its functional outcome. Even with increased vascularization,
heterogeneity of delivery and functional outcome was evident. Our data demonstrate the
feasibility using siRNA to downregulate target genes in vivo using NP delivery systems
for future translational applications. Our data also highlight the importance of imaging
to detect the delivery and the heterogeneity of siRNA NPs in tumors to predict the effec-
tiveness of such treatments. Within the complex TME, vascularization appears to be a
dominant factor in the outcome of treatment with siRNA NPs. Here we increased vascular-
ization by overexpressing VEGF. While the increased vascularization effects of VEGF are
well established, studies have also identified the role of VEGF in altering the extracellular
matrix [58]. Future studies should investigate the role of VEGF-mediated changes in the
extracellular matrix in contributing to the increased delivery and distribution of the Chkα
siRNA NPs in these tumors. Strategies to improve delivery of NPs in tumors are important
in the translational use of siRNA to achieve gene-specific downregulation.
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conditions. Figure S5: Summary of in vivo and ex vivo Cy5.5 fluorescence images of 231 tumor-
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