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Background: Lumbar spine disorders are one of the common causes of low back pain (LBP). Objective 
and reliable measurement of anatomical parameters of the lumbar spine is essential in the clinical diagnosis 
and evaluation of lumbar disorders. However, manual measurements are time-consuming and laborious, 
with poor consistency and repeatability. Here, we aim to develop and evaluate an automatic measurement 
model for measuring the anatomical parameters of the vertebral body and intervertebral disc based on lateral 
lumbar radiographs and deep learning (DL). 
Methods: A model based on DL was developed with a dataset consisting of 1,318 lateral lumbar 
radiographs for the prediction of anatomical parameters, including vertebral body heights (VBH), 
intervertebral disc heights (IDH), and intervertebral disc angles (IDA). The mean of the values obtained by 3 
radiologists was used as a reference standard. Statistical analysis was performed in terms of standard deviation 
(SD), mean absolute error (MAE), Percentage of correct keypoints (PCK), intraclass correlation coefficient 
(ICC), regression analysis, and Bland-Altman plot to evaluate the performance of the model compared with 
the reference standard.
Results: The percentage of intra-observer landmark distance within the 3 mm threshold was 96%. The 
percentage of inter-observer landmark distance within the 3 mm threshold was 94% (R1 and R2), 92% (R1 
and R3), and 93% (R2 and R3), respectively. The PCK of the model within the 3 mm distance threshold was 
94–99%. The model-predicted values were 30.22±3.01 mm, 10.40±3.91 mm, and 10.63°±4.74° for VBH, 
IDH, and IDA, respectively. There were good correlation and consistency in anatomical parameters of the 
lumbar vertebral body and disc between the model and the reference standard in most cases (R2=0.89–0.95, 
ICC =0.93–0.98, MAE =0.61–1.15, and SD =0.89–1.64).
Conclusions: The newly proposed model based on a DL algorithm can accurately measure various 
anatomical parameters on lateral lumbar radiographs. This could provide an accurate and efficient 
measurement tool for the quantitative evaluation of spinal disorders.
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Introduction

Low back pain (LBP), a typical symptom of the bone and 
muscle system in clinic, is a serious public health problem 
globally. About 84% of individuals experience LBP at 
least once in their life (1), and its high prevalence and 
disability rate impose an enormous economic burden on 
patients and society (2,3). Studies have shown that diseases 
affecting lumbar muscles, lumbar vertebrae, and lumbar 
intervertebral disc could lead to LBP (4,5), among which 
lumbar disc degeneration is the leading cause of LBP (6), 
accounting for about 39% (7,8). The intervertebral disc 
height (IDH) is an index of intervertebral disc degeneration 
and regeneration (9,10), and a decrease or loss of the 
standard height is associated with lumbar disc degeneration 
and LBP (5,11,12). In addition, an accurate measurement 
of anatomical parameters of the vertebral body and 
intervertebral disc as well as biomechanical parameters of 
sagittal alignment of the lumbar spine is crucial for the 
diagnosis and treatment of spinal disorders, for example, 
in the design of spinal implant (13-15), vertebral deformity 
and fracture (16-19), and prognosis evaluation (20,21). 

At present, many studies have measured and analyzed 
anatomical parameters such as the shape and angles of 
the vertebral body and intervertebral disc on lumbar 
X-ray (22-24), computed tomography (CT) (25,26), and 
magnetic resonance imaging (MRI) (27) images. Results 
have shown that understanding such data may help explain 
the biomechanical mechanisms of spinal diseases, with 
potential clinical significance (25). However, these data 
directly depend on the size of the examined sample as well 
as the accuracy of manual measurement. Furthermore, 
the measurement process is vulnerable to a non-negligible 
degree of intra- and inter-observer variability, and requires 
substantial time. Therefore, a user-independent, automated 
method for characterizing spinal anatomy is urgently 
needed to evaluate lumbar disorders quantitatively.

With the substantial progress of imaging equipment 
and the rise of big data, artificial intelligence (AI), which 
efficiently performs high-throughput data calculation 
and analysis, has attracted extensive attention recently. In 
particular, the emergence of popular deep learning (DL) 
algorithms makes it possible to mine potentially quantifiable 

information in medical images. Researchers have extracted 
the anatomical parameters of the spine from images based 
on DL through automatic segmentation and detection for 
evaluating spinal deformity (28), compressive fracture (29), 
spondylolisthesis (30), surgical evaluation (31), and so on. 
However, the above models have failed to be productized and 
used in practical clinical applications. Our main objective is 
to develop an automatic measurement model based on lateral 
lumbar radiographs and DL to quantify the anatomical 
parameters of the vertebral body and intervertebral disc, 
and to evaluate its performance with the aim of providing 
an automatic lumbar spine measurement tool for clinical 
use. We present this article in accordance with the GRRAS 
reporting checklist (available at https://qims.amegroups.com/
article/view/10.21037/qims-23-1859/rc).

Methods

The study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013). This study was approved 
by the Ethics Committee of Gansu Provincial Hospital of 
Traditional Chinese Medicine (No. 2020-112-01). Since 
the data were retrieved from the Picture Archiving and 
Communication System (PACS), the requirement for 
informed consent of this retrospective analysis was waived. 

Dataset preparation

We retrospectively reviewed 1,460 standing lateral lumbar 
radiographs in the PACS of Department of Radiology, 
Gansu Provincial Hospital of Traditional Chinese Medicine 
from September 2019 to March 2021. Due to medical 
conditions that may affect the vertebral anatomy, we 
performed a quality check on images to ensure they were 
suitable for model building and testing. The exclusion 
criteria were as follows: (I) a history of spinal surgery 
with implant (screws, plates, or cement); (II) severe spinal 
deformity; (III) severe hyperosteogeny; (IV) poor image 
quality or other issues affecting the annotation. After 
selection, a total of 1,318 images were included in the study, 
which were annotated by 3 experienced radiologists [R1 
(P.W.), R2 (X.C.), and R3 (W.W.) with more than 5 years of 
work experience] with purposely developed software (all the 
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above personnel have received unified relevant training). 
The annotated images were randomly allocated into 3 
subsets of 722 (55%), 305 (23%), and 291 (22%) for model 
training, validation, and testing, respectively. To ensure an 
unbiased evaluation of performance, the training and testing 
datasets did not overlap. A month later, R1 reannotated the 
291 test set images to evaluate intra-observer consistency. 

Landmark annotation and parameter measurement 

The radiologists annotated each vertebra by the 6-point 
morphology method (31,32), including 2 anterior, 2 
posterior, and 2 middle points of the top and bottom 
vertebral plates from T12 to S1. In case the outer contour 
of the vertebral body did not entirely overlap, the midpoint 
was selected at the center between the upper and lower 
contours. This method ignores bone spurs and osteophytes, 
so we excluded images from patients with severe vertebral 
hyperosteogeny. The average of the values obtained by the 
3 radiologists was used as a reference standard compared 

with the model’s prediction. Landmarks on each vertebral 
body have specific names, which were used to calculate 
clinically relevant parameters: vertebral body height (VBH) 
from T12 to L5, including anterior height (VBHa), middle 
height (VBHm), and posterior height (VBHp); IDH from 
T12 to S1, including anterior height (IDHa), middle height 
(IDHm), and posterior height (IDHp); and intervertebral 
disc angle (IDA) from T12 to S1. The specific name of each 
landmark and the measurement methods for the parameters 
are shown in Figure 1.

Model construction 

In our previous study (33), the proposed model had a missed 
detection of the lumbar vertebral body. Specifically, the 
S1 vertebral body was detected separately, resulting in the 
separation of the S1 vertebral body and L5 vertebral body 
detection. In order to solve this problem, we added the global 
layer structure to High-Resolution Net (HRNet) (34).

The method automatically detecting the landmark of the 

Figure 1 Annotations of landmarks and measurements of lumbar vertebral body and the intervertebral disc. Each landmark had a specific 
name. (A) Taking the T12 vertebra as an example: T12HA, the vertex of the anterior superior border of the T12 vertebra; T12HM, the 
midpoint of superior vertebral endplate of the T12 vertebra; T12HP, the vertex of the superior posterior border of the T12 vertebra; T12FA, 
the vertex of the anterior lower border of the T12 vertebra; T12FM, the midpoint of lower vertebral endplate of the T12 vertebra; T12FP, 
the vertex of the posterior lower border of the T12 vertebra. (B) Numbers corresponding to the specific names of vertebral landmarks. (C) 
Clinically relevant parameters related to the vertebral bodies: VBH from T12 to L5, including VBHa, VBHm, and VBHp; IDH from T12 
to S1, including IDHa, IDHm, and IDHp; and IDA from T12 to S1. VBHp, vertebral body posterior height; VBHm, vertebral body middle 
height; VBHa, vertebral body anterior height; IDHp, intervertebral disc posterior height; IDHm, intervertebral disc middle height; IDHa, 
intervertebral disc anterior height; IDA, intervertebral disc angle; VBH, vertebral body height; IDH, intervertebral disc height. 

A B C
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vertebrae on lateral lumbar radiographs in this paper mainly 
used the HRNet model as the primary backbone model, in 
combination with the Distribution-Aware coordinate (DAC) 
method (35). The overall method pipeline is shown in 
Figure 2. To address the situation of detecting a separation 
between vertebrae, we incorporated the positional 
relationship between lumbar vertebrae in the model by 
adding a global layer structure to the vertebrae detection 
phase. At the first stage, the landmarks of the lumbar spine 
were detected by HRNet and DAC methods, which were 
mainly used for the positioning of each vertebral body. 
Then, each vertebral body was cut according to the spinal 
thermal diagram and sent to the second stage to obtain 
the landmark localization of each vertebral body needed. 
Next, the HRNet model and DAC method are described, 
respectively.

The HRNet model can maintain high resolution from 
beginning to end through parallel branches with multiple 
resolutions to achieve the purpose of solid semantics and 
accurate location. Preserving the details of lumbar spine 
images is helpful for analysis and diagnosis, so we used 
HRNet as the training model.

Specifically for the global layer, we used 1 feature 
channel to predict all landmarks of the lumbar spine. In 
other words, we add a positional constraint to the vertebral 
body detection part of the lumbar spine, which allows the 
model to focus more on learning the vertebral body and 
the intervertebral body positions. It can be described by the 
mathematical formula as follows:

[ ]global 0 1 i nC F C ,C , ,C , ,C= ∗  
 [1]

where F denotes the convolution kernel, which is 1x1 in 
size, * denotes the convolution operation, and Ci denotes 
the feature channel for the ith critical point.

More specifically, the feature channels of each landmark 
are concatenated. Then, the convolution operation is 

performed to produce a characteristic channel with global 
feature information, which can better enhance the position 
information between vertebrae.

Generally, HRNet was used as a first stage model to 
locate each vertebra on the spine and as a second stage 
model to detect landmarks on the vertebrae. Specially, we 
designed the group layer for the lumbar feature at stage 
1. We used 7-channel numbers to indicate group layers 
according to the number of vertebrae. Each channel 
including 5 landmarks could easily describe the vertebrae. 
The advantage of this operation is enhanced ability of 
vertebrae location. The output of stage 1 is a heatmap of all 
vertebrae. At the second stage, the output layer of HRNet 
has 6 channels to detect the landmarks of the vertebrae.

However, the decoding progress from heatmap to 
original image space may lead to quantization error. The 
coordinates of the landmark from the heatmap translate 
into the original coordinates. This process can minimize the 
error. Thus, on inference, we adopted the DAC method as 
a post-technique to improve accuracy.

Expressly, to obtain the accurate location at the sub-
pixel level, we assumed the predicted heatmap follows a 
2-dimensional (2D) Gaussian distribution, same as the 
ground-truth heatmap. Therefore, the predicted heatmap 
can be represented as:

( )
( )

( ) ( )1
1/2

1 1; , exp
22 |

TG x x xµ µ µ
π

− Φ = − − Φ − 
 Φ  [2]

where x  denotes the coordinate position on the predicted 
heatmap, µ  is the target landmark location, and Φ  is 
a set constant which controls the range of the Gaussian 
distribution. In order to fit the above-mentioned Gaussian 
distribution and ultimately obtain the predicted landmark 
locations, we need to compute first and second order 
derivatives as in the following steps. We log transformed G 
to facilitate inference while keeping the original location of 

Figure 2 Training pipeline combined by stage 1 and stage 2. Blue, yellow, and green blank stand for the HRNet model. Grey blank stands 
for the group layer. The red dots indicate the predicted position of the lumbar landmarks. HRNet, High-Resolution Net.
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the maximum activation as:

( ) ( ) ( ) ( ) ( )11 1; , ln 2 ln
2 2

Tx xP xµ π µ µ−Φ = − − Φ − − Φ −  [3]

The landmark P in the thermodynamic diagram is 
expanded by the Taylor formula. The first-order partial 
derivative of formula P was determined as:

( ) ( )1 0
T

x x x
D x x

xµ µ µ
µ−

= = =

∂Ρ
= = −Φ − =

∂
′  [4]

The second-order partial derivative of formula P was 
determined as: 

[5]( ) 1
x m x mD x −
= =′′ = −Φ

The landmark P in x µ=  place in the thermodynamic 
diagram is expanded by the Taylor formula:

( ) ( ) ( )( ) ( ) ( )( )1
2

TP P m D m m m D m mµ µ µ µ= + − ′−′ ′+ −  [6]

to obtain more accurate prediction point coordinates. 
The calculation method of clinical anatomical parameters 

applied in this study was as follows (Figure 1):
(I) VBH
We measured VBH expressed as:

ik ilVBH dist p p= −  [7]

where i indicates a given vertebra; k represents the 
3 landmarks on the top vertebrae, l  represents the 
corresponding 3 landmarks on the bottom vertebrae, and 
dist  indicates the distance of the vertebra corresponding 
to the landmark and the landmark. 

(II) IDH

We measured the IDH between neighbor vertebrae, 
which is obtained as:

( )1  iti bIDH dist p p−= −  [8]

where p  is the number defining the gap between neighbor 
vertebrae; b  is the 3 landmarks on bottom location for the 
( )1 thi −  vertebra, t represents the 3 landmarks on top location 
for the thi  vertebra, and dist  indicates the distance of the 
disc corresponding to the landmark and the landmark.

(III) IDA
We measured the angle between neighbor vertebrae, 

which is obtained as:

1

1

i i

i i

v vIDA arccos
v v

−

−
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=   

 
 [9]

where iv  is the vector on top edge for the thi  vertebra, 1iv −  
is the vector on bottom edge for the 1iv −  vertebra, and ⋅  is a 
dot product.

Statistical analysis

All data analyses were performed with Python (Scipy, 
Statsmodels, and Pingouin). General patient data, including 
gender and age distribution, were represented by statistical 
description. The data of measured values were expressed 
as mean ± standard deviation (SD). The percentage within 
1, 1.5, 2, 2.5, and 3 mm landmark-to-landmark distance 
thresholds was used to assess the inter-observer and intra-
observer reliability of landmark annotation (36,37). The 
performance of the model measurement was evaluated in 

Table 1 Statistical methodology

Statistical methods Statistical significance

Median ± 95% CI (age); percentage (gender ratios) General patient data, including gender and age distribution

The percentages within 1, 1.5, 2, 2.5, and 3 mm landmark-to-landmark 
distance thresholds

Reliability of landmark annotations

PCK Landmark performance of the model

SD Model measurement performance

MAE

ICC (95% CI) 

Regression analysis and Bland-Altman plot

Paired t-test

PCK is defined as the percentage of prediction landmarks that fall within the r-radius neighborhood of reference standard landmark. CI, 
confidence interval; PCK, percentage of correct keypoints; SD, standard deviation; MAE, mean absolute error; ICC, intraclass correlation 
coefficient.
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terms of mean absolute error (MAE), percentage of correct 
keypoints (PCK), intraclass correlation coefficient (ICC), 
regression analysis, and Bland-Altman plot. The PCK is 
defined as the percentage of prediction landmarks that fall 
within the r-radius neighborhood of reference standard 
landmark (36,37). Paired t-test was performed to analyze 
the difference between the reference standard and the 
model in terms of prediction. Differences were considered 
statistically significant with P<0.05, and ICC >0.75 indicated 
good reliability. The specific statistical methodology is 
shown in Table 1.

Results

General patient data 

A total of 1,318 lateral lumbar radiographs were included 
in this study. The proportions of the training, validation, 
and test sets were 55%, 23%, and 22%, respectively. There 
were no significant differences among the included datasets 
in terms of gender composition and age. The general data 
of the included patients are shown in Table 2.

Reliability of landmark annotation 

The percentage of intra-observer landmark distance within 
the 3 mm threshold was 96%. The percentage of inter-
observer landmark distance within the 3 mm threshold was 
94% (R1 and R2), 92% (R1 and R3), and 93% (R2 and R3), 
respectively (Table 3).

Performance of the model 

For the landmark prediction, the total PCK of the model 
within the 3 mm distance threshold ranged from 69% to 
98% (Table 4, Figure 3). The model had relatively poor 
ability in predicting the anatomical landmarks of T12 and 
S1 vertebrae, especially for the PCK at the 1 mm distance 
threshold (64% and 44%, respectively). Representative 
examples of the model for landmark prediction are shown 
in Figure 4.

In addition, we conducted a comparison test with the 
previously proposed model (33) and other typical landmark 
localization models (Figure 5). The results show that 
the model proposed in this paper outperformed other 

Table 2 Patient characteristics in the training, validation, and test sets

Characteristic Training set Validation set Test set

Image number 722 (55) 305 (23) 291 (22)

Male 312 (43.2) 128 (42.0) 118 (40.5)

Female 410 (56.8) 177 (58.0) 173 (59.5)

Age (years) 42 (42–44) 42 (41–45) 45 (43–47)

Male 36 (38–42) 38 (38–43) 38 (38–43)

Female 47 (44–47) 47 (43–47) 48 (45–48)

Data are expressed as number (percentage) or median (95% CI). CI, confidence interval.

Table 3 Intra- and inter-observer reliability of landmark annotation (%)

Threshold (mm)

1 1.5 2 2.5 3

Intra-observer reliability 59 73 86 92 96

Inter-observer reliability

R1 vs. R2 40 63 79 89 94

R1 vs. R3 37 62 76 85 92

R2 vs. R3 38 59 75 86 93

R1, R2 and R3 represent the three radiologists of the annotated landmarks.
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Percentage of correct key points (PCK) curves for different vertebral bodies
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Figure 3 Ability of the developed model to detect landmarks of the T12–S1 vertebrae.

Figure 4 Predicted positions of landmarks for representative images from the test set. Red number, model’s prediction; blue number, 
reference standard.

Table 4 Percentage of correct keypoints values of landmarks at the 1–3 mm threshold (%)

Threshold (mm) T12 L1 L2 L3 L4 L5 S1 Total

1 64 71 75 78 77 64 44 69

1.5 82 87 89 91 91 83 67 86

2 90 95 95 97 96 92 80 93

2.5 94 98 98 99 98 96 88 97

3 96 99 99 99 99 98 94 98

PCK is defined as the percentage of prediction landmarks that fall within the r-radius neighborhood of reference standard landmark. PCK, 
percentage of correct keypoints.
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models for vertebral detection and lumbar spine landmark 
localization. The final result showed that these 2-stage 
models achieved higher accuracy but slower inference. 
The better results of the 2-stage method are mainly 
due to the accurate detection of the vertebral body in 
the first stage, which allows the second stage to achieve 
landmark localization based on local blocks, allowing the 
convolutional neural network (CNN) to focus on a single 
vertebral body. 

As for the model measurement, compared with the 
reference standard, model-predicted values for VBH, 
IDH, and IDA were 30.22±3.01 mm, 10.40±3.91, mm and 
10.63°±4.74°, respectively, with ICCs from 0.93 to 0.98. 
There was no significant difference between the model and 
the reference standard (all P>0.05). However, the SDs of 
differences between model and reference standard were  
0.95 mm, 0.89 mm, and 1.64°, respectively, in terms of 
VBH, IDH, and IDA (with MAEs of 0.61 mm, 0.63 mm, 
and 1.15°, respectively), which were non-negligible (Table 5).

To further assess differences and correlations between 
model and reference standard in measuring VBH, IDH, 
and IDA, Bland-Altman plot and regression analyses were 
performed (Figure 6). The results showed that the parameters 
exhibited clear linear correlations, with coefficients of 
determination R2 ranging from 0.89 to 0.95. Bland-Altman 
plot analysis showed low mean differences between model 
and reference standard, specifically, 0.11 mm, 0.14 mm, 
and 0.04°, in VBH, IDH, and IDA, respectively, thus 
demonstrating no consistent bias between the 2 methods.

Discussion

Understanding the anatomical parameters of the lateral 
lumbar spine is of great significance for spinal anatomy 
and clinical research. This paper presented a new approach 
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Table 5 Comparison between the model and the reference standard for the measurement of the lumbar vertebra and the intervertebral disc

Parameters Radiologist Mean Model P value ICC (95% CI) SD MAE

VBH (mm) 30.09±2.98a 30.11±2.93 30.22±3.01 0.07 0.98 (0.97–0.98) 0.95 0.61

30.11±2.94b

30.14±2.94c

IDH (mm) 10.57±3.99a 10.55±3.96 10.40±3.91 0.06 0.94 (0.90–0.96) 0.89 0.63

10.56±3.98b

10.51±3.96c

IDA (°) 10.62±4.97a 10.67±4.96 10.63±4.74 0.81 0.93 (0.91–0.94) 1.64 1.15

10.70±4.96b

10.70±4.98c

Data are mean ± SD, P (paired t-test) <0.05 indicates statistical significance between the model and the reference standard. a, b, and 
c represent manual measurements performed by 3 different radiologists. For the sake of simplicity, the anterior, middle, and posterior 
vertebral heights (VBHa, VBHm, and VBHp respectively), as well as disc heights and angles (IDHa, IDHm, IDHp, and IDA, respectively) 
were all pooled together. ICC (95% CI), intra-class correlation coefficient (95% confidence interval); SD, standard deviation; MAE, mean 
absolute error; VBH, vertebral body height; IDH, intervertebral disc height; IDA, intervertebral disc angle; VBHa, vertebral body anterior 
height; VBHm, vertebral body middle height; VBHp, vertebral body posterior height; IDHa, intervertebral disc anterior height; IDHm, 
intervertebral disc middle height; IDHp, intervertebral disc posterior height. 

Figure 5 Comparative tests of the different models for landmarks 
prediction of the T12–S1 vertebrae. PCK, percentage of correct 
keypoints.
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Figure 6 Bland-Altman plots and regression analysis between the model and the reference standard. Bland-Altman plots comparing 
VBH, IDH, and IDA between the model and the reference standard. Continuous line, mean value; dashed lines, 95% limits of agreement. 
Regression analysis showing the values predicted by the model and the reference standard. The 95% confidence interval of the predictions 
(red dashed lines) and 95% confidence limits of the regression line (rendered in solid light orange) as well as the line indicating a perfect 
correspondence between the model and the reference standard (in black) are shown. VBH, vertebral body height; IDH, intervertebral disc 
height; IDA, intervertebral disc angle; SD, standard deviation.

based on the HRNet and DAC methods to recognize 
vertebral landmarks and measure VBH, IDH, and IDA on 
lateral lumbar radiographs with different resolutions and 
fields of view. Compared with the reference standard, our 
findings revealed: (I) the model could automatically identify 
and locate the landmarks of lumbar vertebrae, and the 
total PCK of all landmarks at the 3 mm distance threshold 
was 98%; (II) the model demonstrated good accuracy and 
reliability in measuring VBH, IDH, and IDA with ICCs 
ranging from 0.93 to 0.98.

In our previous study (33), we proposed the method 
of EfficientDet combined with U-net for automatic 
lumbosacral anatomical parameters measurements from 

lateral lumbar radiographs. EfficientDet is responsible 
for vertebral frame detection, and U-net identifies the 
landmarks in each vertebral body; however, the occasional 
separation of detected vertebral bodies can occur. To solve 
the problem and improve the accuracy and detection 
range of vertebral landmark localization, we explored the 
detection capability of different models and conducted 
comparison tests. The landmark localization algorithm 
DarkPose was also used for vertebral detection, and 
the results of the comparison test (Figure 5) showed 
that DarkPose has a more robust landmark localization 
capability than U-net. From the comparison test, it is easy 
to see that the 2-stage approach of vertebral body detection 
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network cascaded with a landmark localization network is 
more accurate than the 1-stage approach. The vertebral 
position is detected first in the 2-stage method, reducing the 
target range and improving image resolution. In addition, 
based on the detected vertebral position, the landmarks 
contained in a single vertebral body are recognized, which 
reduces the task difficulty, unlike the 1-stage method that 
directly recognizes all landmarks. The end-to-end method 
of DarkPose + DarkPose proposed in this paper makes full 
use of the advantages of DarkPose and the 2-stage method 
to achieve the best results in vertebral body detection and 
landmark localization.

To date, studies based on the DL model have mostly 
analyzed spinal diseases, including adolescent idiopathic 
scoliosis  (38),  lumbar spondylolisthesis  (39),  and  
fractures (32). In this study, the proposed method can 
automatically identify landmarks and measure anatomical 
parameters of the vertebral body and intervertebral disc 
from T12 to S1 without affecting the diagnostic results 
of radiologists. Describing the geometric features of 
the lumbar spine may have a specific prompt, and a 
predictive effect in some lumbar diseases such as vertebral 
compression fractures and lumbar degenerative changes 
(including disc space narrowing and degenerative 
spondylolisthesis) that are missed or delayed while handling 
many X-ray images depending on visual assessment alone. 
Although our findings could not be directly quantitatively 
compared with previous studies due to the nature of 
reported results, the accuracy of landmark prediction seems 
to be similar to or even better than that shown in other 
reports (40,41).

In order to ensure the accuracy of the dataset used 
for model training, we computed the percentage within 
the 3 mm landmark to determine distance thresholds for 
evaluating the intra- and inter-observer reliabilities of the 
annotation. The results showed that the percentage of 
intra-observer landmark distance at the 3 mm threshold was 
96%, and inter-observer within 3 mm ranged from 92% to 
94% (Table 3). Chen et al. (42) reported that a mean distance 
for inter-observer landmarks falling within the range of  
3 mm was satisfactory for clinical analysis, suggesting our 
manual annotations are relatively reliable. However, intra- 
and inter-observer distances falling within 1 mm performed 
relatively poorly (37–40%). In terms of model prediction, 
qualitative analysis showed excellent visual performance of 
the method (Figure 4); however, quantitative comparison 
with the reference standard still showed some undeniable 
discrepancies (Table 5), especially for T12 and S1, which 

would have an impact on the clinical application of the 
method. Nevertheless, it is worth noting that this work not 
only provided a methodological contribution, but clearly 
highlighted the remarkable potential of the DL model in 
the quantitative evaluation of the lumbar spine.

Other studies have also proposed DL models based on 
locating landmarks (38-40,43,44). Nguyen et al. (39) proposed 
a DL system based on CNN to measure segmental motion 
angles and evaluate severity in the Meyerding classification. 
Bland-Altman analysis showed a mean difference of 0.079 
between the system and reference standard for IDA, whereas 
ours had a value of 0.04 (Figure 6). Galbusera et al. (44) 
proposed a method for automatically identifying vertebral 
landmarks (L3–L4) based on an artificial neural network. 
The average distance between the predicted anterior cranial 
corner of L4 and the correspondent manually identified 
point was 7.03±4.03 pixels (corresponding in average to 
8.63% of VBHL4). The vertebral body detection range 
(T12–S1) and corresponding landmark identification were 
further supplemented and improved in this study. Moreover, 
these identified prediction landmarks may allow the model 
to extract more clinical parameters related to lumbar spine 
diseases, including lumbar lordosis and sacral inclination.

We also analyzed the failure cases of the proposed 
method (Figure 7). Unsatisfactory prediction results were 
mainly attributed to failed identification of the landmarks 
of T12 and S1 vertebral bodies, but the positioning of 
vertebral bodies was highly accurate. This phenomenon is 
mainly due to overlapping other anatomical structures such 
as the lung and the pelvis with vertebrae, with the resulting 
lack of local contrast. The effectiveness and accuracy of the 
predictive model based on the neural network are mainly 
related to the size and quality of the training set rather 
than the learning algorithm itself. In order to accurately 
describe the geometric features of the vertebral body, high-
precision recognition of landmarks requires high image 
quality, which also explains and limits the availability of 
images. In the current model, we used data enhancement, 
for example, ±10° rotation, to ensure the variety of images 
and increase the detection accuracy in the training process. 
However, this was not enough to cover all cases in the 
clinical environment, which is one of the reasons for poor 
prediction by the model. 

As with other studies, there are some limitations. Firstly, 
as mentioned before, we evaluated the quality of the 
included images and excluded some images affecting the 
landmark annotation, limiting the size of the data set used 
for model training and its application in clinical practice. 
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Secondly, due to the retrospective nature of the study, we 
did not correlate the lumbar spine measurement parameters 
with the corresponding clinical diseases and scores. Thirdly, 
for the measurement results, statistical tests found no 
significant differences between model and radiologists, 
but the SD and ICC values indicate there is still room for 
improvement. We will further expand the data for training 
or improve the algorithm for refining the key points that are 
relatively poorly identified by the model, so as to improve 
the model accuracy. In the later stage, we focused on the 
application of the model in the clinic and the development 
of structured reports on the lumbar spine, and eventually 
productized the model into a web site interface that can be 
used by anyone.

Conclusions

The newly proposed model based on the HRNet and 
DAC methods can accurately identify landmarks and 
automatically measure various anatomical parameters of 
the vertebral body and intervertebral disc on lateral lumbar 
radiographs. It has a significant potential for assisting 
clinical workers in facilitating the measurement and 
improving the evaluation of lumbar disorders quantitatively 
after further training. Certainly, it is helpful for clinical 
research studies and the establishment of structured reports 
on the lumbar spine.
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