
ORIGINAL RESEARCH
published: 08 May 2018

doi: 10.3389/fphys.2018.00475

Frontiers in Physiology | www.frontiersin.org 1 May 2018 | Volume 9 | Article 475

Edited by:

Quanxin Zhu,

Nanjing Normal University, China

Reviewed by:

Hiroaki Wagatsuma,

Kyushu Institute of Technology, Japan

Guanjun Wang,

Southeast University, China

*Correspondence:

Xia-an Bi

bixiaan@hnu.edu.cn

Specialty section:

This article was submitted to

Systems Biology,

a section of the journal

Frontiers in Physiology

Received: 29 August 2017

Accepted: 16 April 2018

Published: 08 May 2018

Citation:

Bi X, Zhao J, Xu Q, Sun Q and

Wang Z (2018) Abnormal Functional

Connectivity of Resting State Network

Detection Based on Linear ICA

Analysis in Autism Spectrum Disorder.

Front. Physiol. 9:475.

doi: 10.3389/fphys.2018.00475

Abnormal Functional Connectivity of
Resting State Network Detection
Based on Linear ICA Analysis in
Autism Spectrum Disorder
Xia-an Bi*, Junxia Zhao, Qian Xu, Qi Sun and Zhigang Wang

College of Mathematics and Computer Science, Hunan Normal University, Changsha, China

Some functional magnetic resonance imaging (fMRI) researches in autism spectrum

disorder (ASD) patients have shown that ASD patients have significant impairment in

brain response. However, few researchers have studied the functional structure changes

of the eight resting state networks (RSNs) in ASD patients. Therefore, research on

statistical differences of RSNs between 42 healthy controls (HC) and 50 ASD patients

has been studied using linear independent component analysis (ICA) in this paper. Our

researches showed that there was abnormal functional connectivity (FC) of RSNs in

ASD patients. The RSNs with the decreased FC and increased FC in ASD patients

included default mode network (DMN), central executive network (CEN), core network

(CN), visual network (VN), self-referential network (SRN) compared to HC. The RSNs with

the increased FC in ASD patients included auditory network (AN), somato-motor network

(SMN). The dorsal attention network (DAN) in ASD patients showed the decreased FC.

Our findings indicate that the abnormal FC in RSNs extensively exists in ASD patients.

Our results have important contribution for the study of neuro-pathophysiological

mechanisms in ASD patients.

Keywords: linear independent component analysis, functional connectivity, autism spectrum disorder, neuro-

pathophysiological mechanisms, resting state networks

INTRODUCTION

Autism spectrum disorder (ASD) is a developmental disorder. The symptoms of ASD are mainly
manifested in social interaction and communication abnormalities, unusually repetitive patterns of
behavior (Weng et al., 2010; von dem Hagen et al., 2013; Bos et al., 2014). ASD usually emerges in
the early life, but sometimes accompanies the patient’s life (Bookheimer et al., 2008; Allely, 2013).
According to data released by the United States Centers for Disease Control in 2014, the probability
of children being diagnosed with ASD is 1/68 in the United States, and the probability of a boy
being diagnosed with ASD is 1/42 (Nevison, 2014; Alotaibi and Almalki, 2016). In contrast, the
prevalence of autism children in the early 1970s was 1 in 2,500 (McDonald and Paul, 2010). The
dramatic increase in ASD prevalence has led to an increasing number of scholars focusing on ASD
(Hertzpicciotto and Delwiche, 2009; Neggers, 2014).

Although the etiology and pathogenesis of ASD are unclear (Careaga et al., 2013),
the connectivity theory of ASD has been paid extensive attention in recent years
(Geschwind and Levitt, 2007). Functional magnetic resonance imaging (fMRI) has played
an important role in studying the abnormal neurobiological function in ASD (Iidaka, 2015).
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The advantage of fMRI is high time resolution and high spatial
resolution (Goense et al., 2016). In addition, compared with
other magnetic resonance imaging technology, such as positron
emission tomography (PET) (Dichter, 2012), fMRI is non-
invasive and does not rely on radiotracers. By employing fMRI
into ASD, Rausch et al. (2016) studied the functional connectivity
(FC) of amygdala in 20 ASD and 25 controls, and found
that the FC was abnormal (Rausch et al., 2016). Olivito et al.
(2017) found out the FC changes in the dentate nucleus and
cerebral cortex in ASD patients (Olivito et al., 2017). Shen et al.
(2016) concluded that the FC between amygdala and the brain
regions responsible for social interaction had been destroyed in
preschool-age children with ASD (Shen et al., 2016).

The above studies focus on the FC between the brain regions,
but they do not provide the evaluation from the network
connectivity level. Thus, Yerys et al. (2015) concluded that ASD
patients displayed decreased and increased FC in default mode
and non-default mode regions, respectively (Yerys et al., 2015).
Padmanabhan et al. (2017) found the neurobiological features of
ASD patients are the altered structure and function of default
mode network (DMN), and the atypical developmental trajectory
(Padmanabhan et al., 2017). Abbott et al. (2016) found that
DMN and the right executive control network (ECN) in ASD
patients were predominant over-connectivity, salience network
and the left ECN in ASD patients were predominant under-
connectivity (Abbott et al., 2016). In conclusion, the FC of these
three networks in ASD patients is abnormal.

Many researchers focus on the FC of ASD patients in a single
area, an interesting network or global connectivity features. But
the eight resting state networks (RSNs) of ASD have not yet
been studied. The neural mechanism of ASD could be better
understood from the network connectivity and the resting state
level. As one of the important network patterns, the eight
RSNs have been used in social anxiety disorder (SAD) (Liao
et al., 2010) and frontal lobe epilepsy (FLE) (Cao et al., 2014).
Our paper focused on the eight RSNs of ASD and HC by
employing the linear independent component analysis (ICA)
which is introduced in the Appendix, and hypothesized that there
were abnormalities in the FC of RSNs. We analyzed statistical
differences of RSNs between 42 healthy controls (HC) and 50
ASD patients, and found that the RSNs with the decreased and
increased FC in ASD patients included DMN, central executive
network (CEN), core network (CN), visual network (VN), self-
referential network (SRN). The RSNs with the increased FC
in ASD patients included auditory network (AN), somato-
motor network (SMN). The dorsal attention network (DAN)
in ASD patients showed the decreased FC. The results of this
study may provide significant contribution to study neuro-
pathophysiological mechanisms in ASD patients.

MATERIALS AND METHODS

Subjects
The experimental data of this study were obtained from the open
database Autism Brain Imaging Data Exchange (ABIDE) (http://
fcon_1000.projects.nitrc.org/indi/abide/) (Di Martino et al.,
2014). One hundred and seven subjects including 61 ASD

patients and 46 HC were obtained. The ASD patients include 7
females and 54 males, whose ages are from 8 to 18 years old.
The HC group includes 6 females and 40 males, whose ages are
from 9 to 18 years old. The subject was excluded if the translation
exceeded ±2.5 mm and rotation exceeded ±2.5. Finally, the
remaining 92 subjects were involved in this study, including 50
ASD patients (age: 13.34± 2.41; 45 m/5 f) and 42 HC (age: 13.05
± 1.82; 36 m/6 f).

We conducted chi-square test on the gender of the ASD
patients and HC, and found no difference (P = 0.528). There
was no difference (P = 0.520) in age between the two groups
by two-sample t-tests. Clinical diagnosis of ASD was confirmed
with the autism diagnostic interview-revised (ADI-R), the autism
diagnostic observation schedule (ADOS) and the ADOS using
Gotham algorithm. The demographic information for the ASD
and HC groups is listed in Table 1 and Figure 1 shows the
distribution of scale values in ASD patients.

Image Acquisition
Functional MRI data for all subjects were obtained from a
3.0T scanner of the Simens. The subjects were told to keep
quiet, lie flat in the scanner, and try to stay still and not think
about any problem. The sequence parameters corresponding to
the functional images of all subjects were described as follows:
TR = 3,000ms, TE = 28ms, flip angle = 90, matrix = 64 × 64,
Pixel Spacing = 3.0× 3.0, 0mm thickness, without gap, number
of volumes= 120, 34 slices.

Data Preprocessing
DPARSF software has helped us complete the data
preprocessing (http://d.rnet.co/DPABI/DPABI_V2.3_170105.

TABLE 1 | Demographic information of all subjects.

Project ASD (n = 50) HC (n = 42) P-value

Gender (Male/Female) 45/5 36/6 0.528a

Age 13.34 ± 2.41 13.05 ± 1.82 0.520b

Full IQc 99.73 ± 14.40 107.21 ± 10.94 0.007b

ADI-R-Social 20.88 ± 4.68 − -

ADI-R-Communication 16.88 ± 4.40 − -

ADI-R-RRB 7.26 ± 2.41 − -

ADOS-Total 11.48 ± 3.84 − -

ADOS-Communication 3.42 ± 1.43 − -

ADOS-Social 8.06 ± 2.71 − -

ADOS-GOTHAM-Social-Affectd 9.43 ± 3.47 − -

ADOS-GOTHAM-RRBe 2.43 ± 1.47 − -

ADOS-GOTHAM-Severityf 6.83 ± 2.24 − -

aThe P-value is obtained through the chi-square test.
bThe P-value is obtained by the two-sample t-tests, and the data in the table is

represented by the mean ± standard deviation.
cScore missing for one participant.
dScore missing for four participants.
eScore missing for four participants.
fScore missing for four participants.

ADR-R, autism diagnostic interview-revised; ADOS, autism diagnostic observation

schedule; RRB, restricted and repetitive behaviors; ADOS-GOTHAM, standardized scores

of ADOS using Gotham algorithm which has improved prediction capacity for ASD.
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FIGURE 1 | Distribution of scale values in ASD patients. ARS, ADI-R-Social; ARC, ADI-R-Communication; ARR, ADI-R-RRB; AT, ADOS-Total; AC,

ADOS-Communication; AS, ADOS-Social; AGSA, ADOS-GOTHAM-Social-Affect; AGR, ADOS-GOTHAM-RRB; AGS, ADOS-GOTHAM-Severity.

zip). The preprocessing platform is MATLAB (R2014a). Data
preprocessing steps are as follows:

(1) Format conversion: The original data collected from the
database was in DICOM format which could not be
recognized by the preprocessing software DPARSF. Thus, we
converted the DICOM format of the original data to the NIFTI
format.

(2) Removing time points: As the scanner needs a certain amount
of time to achieve a stable state, the first 10 volumes of fMRI
data were discarded to make the scanner stable. Finally each
subject had the 110 volumes.

(3) Slice timing: As the data was not acquired from the same

point in time, the remaining 110 volumes of each subject were
corrected for the temporal difference in order to ensure that
the data were collected at the same point in time.

(4) Realigning: As the subjects have a slight translation or rotation
in the scanning which produces image artifacts or errors, the
headmovement correction is needed to eliminate these errors.

As a result, the head motion correction excluded 4 of the 46

healthy controls and 11 of the 61 ASD patients, because the
translation exceeded±2.5 mm and rotation exceeded±2.5.

(5) Normalization: Because the brain structure of each subject is
different, the brains of each subject could not be compared.
Therefore, the spatial normalization is conducted by using EPI
templates to eliminate differences in individual brains.

(6) Smoothing: Smoothing could reduce spatial noise and the
difference between anatomical structures of the subjects. The
data was smoothed by Gaussian kernel (FWHM = 6 mm).

Determination of RSNs
This study used the linear ICA (Correa et al., 2007; Carnì
et al., 2016) to extract the independent components (ICs) of
ASD patients and HC by using GIFT software (http://icatb.
sourceforge.net/, version 1.3e) (Calhoun et al., 2001; Liao et al.,
2010). We first estimated the number of ICs of fMRI data
for ASD patients and HC using the “Minimum description
length (MDL)” criterion (Jafri et al., 2008). The MDL criterion
is provided by the GIFT software. The process of extracting
independent components is conducted by using Gift software.
On the software interface, there is a question “Do you want to
estimate the number of independent components,” and it should
be chosen with “Yes.” Then the software interface will appear
the sentence “the estimated independent components is found
to be 27 using the MDL criteria” or “the estimated independent
components is found to be 26 using the MDL criteria.” So,
the number of ICs estimated in ASD patients was 26, and
the number of ICs estimated in HC was 27.Secondly, principal
component analysis was performed, which could reduce the
temporal dimension of the fMRI data for ASD patients and
HC. Finally, the ICs of ASD patients and HC were estimated
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FIGURE 2 | The spatial distribution of DMN, CEN, SMN in ASD group and HC group.

by the fast ICA algorithm. The group spatial linear ICA was
respectively carried out in the ASD group and the HC group.
Then the 26 ICs in the ASD group and the 27 ICs in the HC
group were obtained. These ICs include time-courses and spatial
maps.

The time-courses and spatial maps of ICs reflect the waveform
and intensity of brain activity, respectively (Mantini et al., 2007).

It is generally believed that the Z-value is the most effective
measure of the FC of the intrinsic network (Damoiseaux et al.,
2006), thus we transformed the intensity value of the spatial
map into the Z-value. By using this method, we could found
out the voxels which have the greatest contribution to a specific
IC (Calhoun et al., 2001). After obtaining the ICs in the two
groups, we used the GIFT software to calculate the spatial
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FIGURE 3 | The spatial distribution of VN, AN, DAN in ASD group and HC group.

correlation coefficients between the specific eight RSNs templates
and ICs, and selected the IC of the largest spatial correlation
coefficient (Greicius et al., 2007). The selected IC represents its
corresponding RSN, and is retained for subsequent experiment.
The eight RSN templates are provided by Dante Mantini from
Leuven Medical School (Mantini et al., 2009) including DMN,
DAN, AN, CN, SRN, SMN, VN, CEN.

Two Analysis Methods for RSNs
After finding out the eight RSNs of ASD group and HC
group using the largest spatial correlation principle (Greicius
et al., 2007), the spatial maps corresponding to each RSNs
of the two groups were collected to perform one-sample t-
tests. The results of one-sample t-tests were presented at the
given threshold of T > 2. Activation brain regions of RSNs
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FIGURE 4 | The spatial distribution of CN and SRN in ASD group and HC group.

could be obtained by one-sample t-tests. However, one-sample
t-tests results only help to find out the activated brain regions,
but could not be used to study the differences between the
two groups. We further carried out two-sample t-tests, which
could help us find the differences of RSNs between the two
groups. The null hypothesis of the two-sample t-tests is that
there are differences of the FC of RSNs in ASD group and
HC group. Before the two-sample t-tests, we firstly clustered
one-sample t-tests results into a union. Then the union was
regarded as regions of interest (ROIs) which was utilized to
calculate FC based on the voxels of 92 subjects, and the
obtained FC was followed by the Z-transform. Finally, the
two-sample t-tests were carried out, and the results were
displayed at the given threshold of P < 0.05 (AlphaSim
correction).

RESULTS

Spatial Pattern of RSNs in Each Group
The spatial distribution patterns of RSNs are shown by one-
sample t-tests results (T > 2) in Figures 2–4. It can be seen from

these figures that all subjects have a typical spatial distribution
pattern of RSNs.

Abnormal RSNs in ASD Patients
From two-sample t-tests results, we found out abnormal RSNs
and brain regions between the ASD and HC groups as shown
in Figures 5, 6. The RSNs with the decreased and increased FC

(P < 0.05, AlphaSim corrected) in ASD patients included DMN,
CEN, CN, VN, SRN. The RSNs with the increased FC (P < 0.05,
AlphaSim corrected) in ASD patients included AN, SMN. The
DAN in ASD patients showed the decreased FC (P < 0.05,
AlphaSim corrected).

Specifically, Table 2 shows the clusters with significant
differences of the FC in RSNs of ASD patients. Compared to
HC, the increased and decreased FC in ASD patients are all
the abnormal FC. The abnormal brain regions of the FC in
DMN are situated in the right hemisphere including triangular
part of inferior frontal gyrus (IFGtriang), middle frontal gyrus
(MFG), precentral gyrus (PreCG), postcentral gyrus (PoCG),
and left hemisphere including superior parietal gyrus (SPG) and
precuneus (PCUN).
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FIGURE 5 | Abnormal brain regions in AN, CEN, CN, DAN, DMN, SMN.

The abnormal brain regions of the FC in CEN are situated
in the right hemisphere including fusiform gyrus (FFG),
inferior temporal gyrus (ITG), MFG, middle occipital gyrus
(MOG), dorsolateral of superior frontal gyrus (SFGdor), superior
temporal gyrus (STG), insula (INS), and the bilateral anterior
cingulate and paracingulate gyri (ACG).

The abnormal brain regions of the FC in CN are situated in
the right hemisphere including IFGtriang, median cingulate and

paracingulate gyri (DCG), and left hemisphere including STG,
and the bilateral PreCG and PoCG.

The abnormal brain regions of the FC in VN are situated in
the right hemisphere including inferior occipital gyrus (IOG),
FFG, STG, ACG, and left hemisphere including superior occipital
gyrus (SOG), MOG, ACG, DCG.

The abnormal brain regions of the FC in DAN are situated
in the right hemisphere including ITG, parahippocampal gyrus
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FIGURE 6 | Abnormal brain regions in SRN and VN.

(PHG), lingual gyrus (LING), and the bilateral middle temporal
gyrus (MTG).

SRN includes the right PHG, the left STG and the bilateral
supplementary motor area (SMA). AN and SMN include the
right pallidum (PAL).

DISCUSSION

In this paper, we analyzed the fMRI data of ASD and HC groups
using linear ICA. We studied the difference of the eight RSNs
between ASD group and HC group. Our findings concluded
that the RSNs with the decreased and increased FC in ASD
patients include DMN, CEN, CN, VN, SRN, and the increased
FC includes AN, SMN, and the decreased FC includes DAN.

CEN is responsible for human cognitive control related to
emotional or non-emotional materials (Miller and Cohen, 2001;
Ochsner and Gross, 2005). The abnormal brain regions of the
FC in CEN include INS, ACG, MFG, and SFGdor. Firstly, the
frontal lobe locates in the front of the human brain. Its executive
function includes cognitive activity, emotional activity, the ability
to predict future results from current behavior (Alvarez and
Emory, 2006; Lau, 2013; Watanabe et al., 2015). Meanwhile, it is
related to human long-term memory in resting state (Neulinger
et al., 2016). Hitherto, there have been several studies focusing
on SFGdor of ASD (Assaf et al., 2010; Rudie et al., 2012). It
is suggested that the FC of SFGdor decreases in ASD patients
compared with HC (Assaf et al., 2010). We also found that
the FC of both MFG and SFGdor decreased in ASD patients,
which is associated with social and communication deficits in
ASD patients (Assaf et al., 2010). Secondly, the cingulate gyrus
is mainly concerned with self-instruction, self-awareness, and
self-control (Redcay, 2008). It is showed that the dysfunction of
ACG in ASD patients is related to the symptoms of behavioral

disorders (Thakkar et al., 2008). Our results also indicated that
the FC of ACG was abnormal, which is related to behavioral

disorders in ASD patients (Hoffmann et al., 2016). Thirdly, INS
is the source of social emotion (Pavuluri and May, 2015). It is

found that INS activation and connectivity were aberrant in ASD
(Odriozola et al., 2016). In this paper, it was also discovered that
the FC of INS was abnormal.

The brain region with the abnormal FC in AN and SMN
is PAL. PAL is a part of the basal ganglia (Groenewegen,
2003; Nelson and Kreitzer, 2014). Lesions of the basal ganglia
are able to cause a variety of motor and cognitive disorders

(DeLong and Georgopoulos, 2011; Bekiesinska-Figatowska et al.,
2013). Furthermore, the structures of subcortical regions in ASD

patients were also studied, and it is found that the shape of PAL
changes with age in ASD, which is closely related to the abnormal
behavior (Schuetze et al., 2016). Our findings also showed that
the FC of PAL was abnormal, which is consistent with existing
studies (Schuetze et al., 2016; Turner et al., 2016).

DMN is closely related to human advanced cognitive activities,
including internal psychological activities, environmental
monitoring, and episodic memory retrieval (Vincent et al.,

2006). The abnormal brain regions of the FC in DMN are
mainly the right PreCG, PoCG, MFG and the left SPG, PCUN.
Specifically, PCUN, PoCG, and SPG belong to the parietal lobe
whose main role is to integrate sensory information, such as

processing tactile and visual space information (Gentile et al.,
2011). We found out the abnormalities of the FC in PCUN,

PoCG, and SPG caused by impaired information integration
in ASD patients. Other abnormal brain regions of the FC

in DMN include MFG and PreCG. Firstly, MFG is mainly
responsible for the coordination of different information

(Japee et al., 2015). Previous studies have suggested that
ASD patients are not complete in information processing
and cannot integrate and process information, thereby they
cannot communicate normally in public places (Skoyles,
2011; Mohd Roffeei et al., 2015). Our results revealed the

decreased FC in MFG, which is related to the communication
disorders in ASD patients. On the other hand, one of the

components of the primary motor cortex is PreCG (Yeo
et al., 2014). Our study found out the abnormal FC in PreCG,

which has made a significant contribution to the relationship
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TABLE 2 | Clusters with significant differences of functional connectivity in RSNs

of ASD.

Cluster Abnormal the

brain regions

The number

of voxel

Peak coordinates

DMN

Cluster1 IFGtriang.R 47 [51 21 21]

Cluster2 PreCG.R MFG.R 39 [54 9 42]

Cluster3 PoCG.R 105 [48 −21 57]

Cluster4 SPG.LPCUN.L 49 [−18 −60 69]

AN

Cluster1 PAL.R 46 [9 0 −6]

CEN

Cluster1 FFG.RITG.R 37 [42 −36 −21]

Cluster2 STG.RINS.R 118 [60 −12 3]

Cluster3 ACG.RACG.L 94 [0 12 18]

Cluster4 SPG.RSOG.RMOG.R 122 [24 −72 51]

Cluster5 MFG.R SFGdor.R 125 [33 3 57]

CN

Cluster1 STG.L 54 [−63 −45 24]

Cluster2 IFGtriang.R 38 [42 24 21]

Cluster3 DCG.R 32 [48 3 42]

Cluster4 PreCG.R 32 [3 −75 33]

Cluster5 PoCG.R 33 [51 −21 57]

Cluster6 PoCG.L PreCG.L 62 [−45 −27 66]

DAN

Cluster1 MTG.R ITG.R 129 [57 −66 3]

Cluster2 PHG.R LING.R 30 [15 −36 −9]

Cluster3 MTG.L 58 [−36 −66 12]

SMN

Cluster1 PAL.R 46 [9 0 −6]

SRN

Cluster1 PHG.R 47 [33 −24 −21]

Cluster2 STG.L 34 [−54 15 −6]

Cluster3 SMA.L SMA.R 72 [3 9 48]

VN

Cluster1 IOG.R FFG.R 48 [30 −84 −15]

Cluster2 STG.R HES.R 47 [45 −21 9]

Cluster3 ACG.L DCG.L

ACG.R

64 [−3 30 27]

Cluster4 SOG.L MOG.L 39 [−24 −81 36]

between ASD’s athletic and social abilities (Nebel et al.,
2014).

The abnormal brain regions of the FC in CN are mainly
located in STG, PoCG, PreCG. STG is not only involved
in auditory processing but also involved in social cognition
(Bigler et al., 2007). The activation of STG was significantly
reduced in ASD patients, which was discovered by the
researchers (Kana et al., 2016). Our results also showed
the abnormal FC of the left STG in ASD patients. This
finding suggests a possible failure of language function
in left hemisphere, which is related to STG in ASD
patients.

DAN is concerned with the regulation of goal-directed top-
down processing (Corbetta and Shulman, 2002). According to
our results, the abnormal brain regions of the FC in DAN include
MTG, ITG, and LING. The temporal lobe is divided into STG,
MTG, and ITG, and it is involved in social cognition. Specifically,
it is responsible for processing auditory information and also
related to memory and emotion (Amlerova et al., 2014). It is
concluded that the structure ofMTG is abnormal in ASD patients
(Salmond et al., 2005). Our study also found that the FC of
both ITG and MTG decreased in ASD patients, which provides
a functional explanation for the temporal lobe abnormalities in
ASD patients. The other abnormal brain region of the FC in DAN
is LING. LING is mainly responsible for visual processing (Yang
et al., 2015). We found that the FC of LING decreased in ASD
patients, and we infer that this may be related to social interaction
impairment of ASD patients.

The abnormal brain regions of the FC in SRN include PHG,
STG, and SMA. It is showed that the abnormal FC of PHG in
ASD patients is related to the restriction and repetitive behavior
(Monk et al., 2009). Our findings also suggested that the FC
of PHG in ASD patients was abnormal, which is consistent
with previous studies. The relationship between STG and the
symptoms of ASD patient has been described in the above.
However, the relationship between SMA and the symptoms of
ASD patients is not clear and needs further study.

The abnormal brain regions of the FC in VN include STG,
ACG, DCG, IOG, MOG, and SOG. The occipital lobe is the
center of visual information processing (Wandell et al., 2007;
Johnson et al., 2015). When the occipital lobe is damaged, it
causes not only visual impairment, but also memory impairment
and motion perception disorders (Larsson and Heeger, 2006;
Scahill et al., 2013). Previous studies have concluded that the
visual perception construction dysfunction in ASD patients may
be a clinical manifestation of “occipital-temporal” dysfunction
(Griffiths and Milne, 2007; Baum et al., 2015). Our results
also indicate that the FC of STG, IOG, MOG, and SOG
were abnormal. Thus, our findings provide an explanation for
the visual impairment in ASD patients from the neurological
function view.

In conclusion, there are two main reasons for the abnormal
FC in ASD patients. On the one hand, it is associated with the
clinical symptoms of ASD patients. The main clinical symptoms
of ASD include impairment in social interaction and difficulties
in communication, unusually repetitive patterns of behavior.
For example, the brain regions that play an important role
in social communication and interaction include MTG, FFG,
amygdala, medial prefrontal cortex, inferior frontal gyrus (IFG).
The abnormal FC of these regions is related to the impairment
in social interaction and difficulties in communication of ASD
patients (Philip et al., 2012; Kim et al., 2015). The abnormal
FC of IFG, STG is related to the defects in social language
processing and social attention of ASD patients (Redcay, 2008).
The frontal lobe, STG, parietal cortex, and amygdala might
mediate impairments of social behaviors (Adolphs, 2001; Kim
et al., 2010) and the orbitofrontal cortex (OFC) and caudate
nucleus have been associated with restricted and repetitive
behaviors of ASD (Atmaca et al., 2007).
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On the other hand, it is related to the brain structure of
ASD patients. Such as the FFG structure of ASD is asymmetrical
(Dougherty et al., 2016); Gray and white matter are abnormal in
ASD (Sungji et al., 2015); There are differences in the total brain
volume between ASD and HC (Lange et al., 2015). Brain volume
abnormalities include increased volume of frontal and temporal
lobes in early brain development in ASD patients (Nordahl et al.,
2011) and the brain volume increases with age in younger ASD
patients (Courchesne et al., 2011).
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