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Abstract: Blood-based proteomic analysis is a routine practice for detecting the biomarkers of
human disease. The results obtained from blood alone cannot fully reflect the alterations of nerve
cells, including neurons and glia cells, in Alzheimer’s disease (AD) brains. Therefore, the present
study aimed to investigate novel potential AD biomarker candidates, through an integrated multi-
omics approach in AD. We propose a comprehensive strategy to identify high-confidence candidate
biomarkers by integrating multi-omics data from AD, including single-nuclei RNA sequencing
(snRNA-seq) datasets of the prefrontal and entorhinal cortices, as wells as serum proteomic datasets.
We first quantified a total of 124,658 nuclei, 8 cell types, and 3701 differentially expressed genes (DEGs)
from snRNA-seq dataset of 30 human cortices, as well as 1291 differentially expressed proteins (DEPs)
from serum proteomic dataset of 11 individuals. Then, ten DEGs/DEPs (NEBL, CHSY3, STMN2,
MARCKS, VIM, FGD4, EPB41L2, PLEKHG1, PTPRZ1, and PPP1R14A) were identified by integration
analysis of snRNA-seq and proteomics data. Finally, four novel candidate biomarkers (NEBL,
EPB41L2, FGD4, and MARCKS) for AD further stood out, according to bioinformatics analysis, and
they were verified by enzyme-linked immunosorbent assay (ELISA) verification. These candidate
biomarkers are related to the regulation process of the actin cytoskeleton, which is involved in
the regulation of synaptic loss in the AD brain tissue. Collectively, this study identified novel cell
type-related biomarkers for AD by integrating multi-omics datasets from brains and serum. Our
findings provided new targets for the clinical treatment and prognosis of AD.

Keywords: Alzheimer’s disease; single-nuclei transcriptome sequencing; biomarkers; cortex; serum;
proteomics

1. Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by
senile amyloid plaques and tau fibrillary tangles, representing the main cause of demen-
tia [1–3]. Currently, the incidence of dementia is estimated to have exceeded 45 million
all around the world. With the development of science and technology, improved living
conditions, and an increase in life expectancy, the number of people with dementia is
expected to triple by 2050 [4]. The clinical symptoms of AD individuals often start with
mild memory loss and eventually evolve into severe impairment of extensive executive
and cognitive functions [5]. Symptoms such as cognitive dysfunction caused by AD not
only have a huge impact on the daily life of patients themselves, but also cause a heavy
burden on the patients’ family and even the whole of society [6]. Patients with AD have
traditionally been diagnosed, referring to symptoms and behavioral tests, and confirmed by
post-mortem brain pathology [7]. However, there is still no accurate and effective diagnosis
method. At the same time, the pathological mechanism of AD remains obscure, and seldom
effective therapy has been found [8]. Therefore, it is urgent to screen out biomarkers that

Brain Sci. 2022, 12, 1022. https://doi.org/10.3390/brainsci12081022 https://www.mdpi.com/journal/brainsci

https://doi.org/10.3390/brainsci12081022
https://doi.org/10.3390/brainsci12081022
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com
https://doi.org/10.3390/brainsci12081022
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com/article/10.3390/brainsci12081022?type=check_update&version=2


Brain Sci. 2022, 12, 1022 2 of 16

can systematically reflect the pathogenesis of AD, thus intervening as early as possible
for patients.

Single-cell RNA sequencing (scRNA-seq) is the amplification and sequencing of the
transcriptome at the single-cell level [9], which provides an effective method for studying
the cellular heterogeneity of the brain and illuminates the complex mechanisms of the
normal physiological or pathological development process [10]. At present, scRNA-seq
is widely used in the research of neurological diseases, such as AD [11], brain aging [12],
and glioma [13]. At the same time, the cellular and biochemical components of blood
play a central role in human physiology, and their dynamic levels are thought to correlate
with the individual’s health and disease states [14]. Human serum contains a variety
of proteins secreted from cells and tissues to achieve normal physiological functions,
along with proteins from damaged cells and tissues under disease conditions. Proteomic
analysis of serum can further discover important markers, thus revealing the occurrence and
development of diseases and providing crucial guidance on the diagnosis and treatment of
the disease [15,16].

In this research, we integrated and analyzed snRNA-seq datasets of the prefrontal and
entorhinal cortex. The snRNA-seq datasets were selected after careful screening, mainly
considering the completeness of donor information (including the age, gender, AD stage,
pathological grading, etc., of AD patients) and sample quality (including the number
of cells, nuclear genes, and mitochondrial genes). A total of 30 samples were selected,
including 18 prefrontal cortex samples (8 from AD patients and 10 from normal elderly)
and 12 entorhinal cortex samples (6 from AD patients and 6 from normal elderly), from
3 different datasets (GSE141552, GSE157827, and GSE138852) [17–19]. A proteomic dataset
of serum (PXD011482) was also included [20] to reveal new key biomarkers for AD. This
study unveiled the potency of new targets for the diagnosis, treatment, and prognosis
of AD.

2. Materials and Methods
2.1. Datasets

All snRNA-seq data were obtained from Gene Expression Omnibus (GEO) (https://www.
ncbi.nlm.nih.gov/geo/ (accessed on 21 December, 2021)): GSE141552 (containing 4 prefrontal
cortex samples from 4 controls), GSE157827 (containing 14 prefrontal cortex samples from
6 controls and 8 AD patients), and GSE138852 (containing 12 entorhinal cortex samples from
6 controls and 6 AD patients). In GSE141552, data from alcoholics were excluded because
prolonged alcohol abuse caused individual mental loss, poor attention, and memory loss,
which did not meet the inclusion criteria for the AD study. In GSE157827, compared to other
samples, 3 controls and 3 AD were discarded, as a result of small number of cells and genes.
In the GSE138852 dataset, there was a total of 16 samples (containing 8 controls and 8 AD
patients). However, 2 AD and 2 controls were discarded because of abnormal high neuronal
enrichment. The first two datasets were obtained using the 10× Genomics platform and
NovaSeq 6000 sequencing platform, and the additional datasets using the 10× Genomics
and NextSeq 500 sequencing platforms [17–19]. The proteomic data was obtained from the
Proteome Xchange Consortium: PXD011482 (containing 6 AD and 5 controls).

2.2. Patients Informantion and Inclusion Criteria

Twenty healthy elderly people, in the age range of 60–80 years, were recruited at
Yunnan Provincial Psychiatric Hospital. All of them met the following inclusion criteria:
diagnosed with mild or severe AD; Mini-Mental State Examination (MMSE) score > 19;
aged 60–90 years; anti-inflammatory dementia or mood stabilization dosing stabilize
medication. They were all informed about the purpose of the study and signed an informed
consent form.

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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2.3. snRNA-seq Analysis
2.3.1. Preprocessing, Quality Control, and Data Integration

The gene barcode matrices for each sample were imported into R software using
the Read 10X function in the Seurat R package [21]. The Seurat object, corresponding
to each sample, was created using the CreateSeuratObject function, with the input gene
barcode matrix provided as the raw data. The datasets were integrated using the method
of Stuart et al. [22]. Data quality was controlled prior to integration. The number of genes
per sample, unique molecular identity counts, and percentage of mitochondrial genes were
controlled. To exclude potential dead cells and cell debris from the dataset, we filtered
out nuclei with ≤200 genes, ≥2500 unique molecular identifiers, or ≥5% mitochondrial
genes. In total, 124,658 high-quality nuclei were obtained for subsequent analyses. For the
integration analysis, the highly variable features of each sample were identified using the
FindVariableFeatures function. The parameter is selection.method = vst, nfeatures = 2000.
To integrate all samples, the features of the samples were anchored using the FindIntegra-
tionAnchors function, with the parameter dims = 1:20. All samples were integrated using
the IntegrateData function, with the parameter of dims = 1:20.

2.3.2. Data Dimension Reduction and Clustering Analysis

Subsequently, we scaled the expression matrix and performed a linear dimension re-
duction using the RunPCA function with the parameter npcs = 50. The p-value distribution
of each major component was visualized using the JackStrawPlot function and selected to
perform graph-based clustering using the first 30 principal components. We performed
K-nearest neighbor (KNN) clustering using the FindClusters function with the parameter
resolution = 1 and UMAP clustering using the RunUMAP function with the parameter
dims = 1:30, which initially yielded 31 cell clusters. We identified the DEGs in each cell
cluster by the Wilcoxon rank sum test using the FindAllMarkers function with the parame-
ters logfc.threshold = 0.25 and test.use = wilcox. We then assigned a cell type identity to
each cell cluster, according to the expression of known cell type markers, and identified
additional cell type-specific marker genes by the Wilcoxon rank sum test using the FindAll-
Markers function with the parameters logfc.threshold = 0.25 and test.use = wilcox. For cell
type markers, the level of statistical significance was set at an adjusted p-value < 0.1.

2.3.3. Examination of Cell Type-Specific Transcriptomic Changes

To examine the cell type-specific transcriptomic changes in AD, we compared the tran-
scriptome profiles of individual cell types among AD and control samples by the Wilcoxon
rank sum test using the FindMarkers function with the parameters logfc.threshold = 0.25
and test.use = wilcox. The level of statistical significance for cell type-specific transcriptomic
changes was set at an adjusted p < 0.1 and log2 fold change ≥0.25 or ≤−0.25.

2.4. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Signaling
Pathway Enrichment Analysis

In this study, DEGs were all imported for analyzing GO terms in the GO database
(http://www.geneontology.org (accessed on 10 February, 2022)), and the number of genes
for each term was calculated. Pathway-based analysis was used to characterize the bio-
logical functions of the DEGs. Pathway enrichment analysis identified significant signal
transduction pathways in the KEGG database (http://www.genome.jp/kegg/ (accessed
on 15 February 2022)). In GO and KEGG enrichment analysis, R software version 3.8.1
(http://www.r-project.org (accessed on 22 February 2022)) and multiple R packages, such
as clusterProfiler, org.Hs.eg.db, enrichplot, and ggplot2, were used to generate the bars,
bubble maps, and signaling pathway maps.

2.5. PPI Network Analysis

The STRING database (https://www.string-db.org/ (accessed on 25 February 2022))
was used for DEG-associated protein interaction analysis and production of PPI network.

http://www.geneontology.org
http://www.genome.jp/kegg/
http://www.r-project.org
https://www.string-db.org/
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Cytoscape 3.8.0 was used (https://cytoscape.org/ (accessed on 25 February 2022)) to
construct the cell differential expression network.

2.6. ELISA Validation

Blood samples of 20 AD individuals and 20 healthy elderly controls were collected
(Supplementary Table S3). After coagulation and centrifugation, serum was collected and
stored in aliquots of Eppendorf tubes at −80 ◦C until use. We used the NEBL ELISA
(MM-60704h2, MEIMIAN, CN), EPB41L2 ELISA (MM-60714h2, MEIMIAN, CN), the FGD4
ELISA kit (MM-60715h2, MEIMIAN, CN), and MARCKS ELISA (MM-60720h2, MEIMIAN,
CN) kits to detect the levels of four proteins (NEBL, EPB41L2, FGD4, and MARCKS) in
serum samples. As previously described [23], briefly, the microtiter plates were coated with
purified antibodies. Then, blank, standard, and sample wells were set. We added 25 µL
sample dilution and 25 µL pending sample to the sample wells. A known concentration of
50 µL of the standard was added to the standard wells. Nothing was added to the blank
well. Then, 100 µL HRP-conjugated reagent was added to each well, except for the blank
wells, and then incubated in a 37 ◦C incubator for 60 min after gentle mixing. After rinsing,
50 µL substrate A and 50 µL substrate B were added to each well and gently mixed. After
15 min of incubation in the dark at 37 ◦C, the reaction was stopped, with 50 µL of the
stop solution. The absorbance (optical density (OD) value) was measured for each sample
within 15 min by using a spectrophotometer (Thermo Fisher Scientific, Vantaa, Finland)
at a wavelength of 450 nm. Finally, the linear regression equation of the standard curve
was calculated using the concentration and OD values of the standard product; then, the
concentration of each protein in the serum was calculated.

2.7. Statitical Analysis and Data Visualization

Differences between AD and controls were analysed using Student’s t-test (SPSS v26.0,
IBM, USA). p < 0.05 was considered statistically significant. We visualized the data using Seu-
rat’s DoHeatmap, DotPlot function, TBtools, and Cytoscape (version 3.8.0), where appropriate.

3. Results
3.1. Integrative Analysis of snRNA-seq Data from Prefrontal and Entorhinal Cortex

To investigate transcriptional and cellular differences in the prefrontal and entorhinal
cortex of AD individuals, we integrated three snRNA-seq datasets using the method of
Stuart et al. [22]. The three datasets contained snRNA-seq sequencing data from 8 AD
patient prefrontal cortex (PFC_AD, age 74.9± 12.0, n = 8) (Table 1, Supplementary Table S1)
and 10 age-matched normal human prefrontal cortex (PFC_Ctl, age 77.4 ± 13.9, n = 10)
(Table 1, Supplementary Table S1), the entorhinal cortex of 6 AD patients (EC_AD, age
78.9 ± 8.5, n = 6) (Table 1, Supplementary Table S1), and the entorhinal cortex of 6 age-
matched normal subjects (EC_Ctl, age 76.4 ± 6.0, n = 6) (Table 1, Supplementary Table S1).
After standardized integration and quality control, a total of 124,658 nuclei were obtained
for subsequent downstream processing (PFC_Ctl: 55717, PFC_AD: 55845, EC_Ctl: 6533,
EC_AD: 6563).

Table 1. Sample information. PFC: prefrontal cortex; EC: entorhinal cortex; Ctl: control.

Tissue Type Dataset Total Cases AD Ctl Reference

PFC GSE141552;
GSE157827 18 8 10 [17,18]

EC GSE138852 12 6 6 [19]
Serum PXD011482 11 6 5 [20]

3.2. Cell-Specific Transcriptional Profiles of the Human Brain Cortex

To construct taxonomic maps of cell populations, we integrated 30 subject-derived
snRNA-seq data and performed PCA and UMAP cluster analysis. This analysis yielded

https://cytoscape.org/
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31 unique clusters (c0–c30) (Figure 1B). By comparing the DEGs of all cell types, we know
the specific genes expressed by each cell type. Subsequently, we could identify the cell types
of the 31 cell clusters based on their respective transcriptome expression and previously
reported cell type markers. They were finally classified into the following eight cell types:
astrocytes (GLUL, SOX9, AQP4, GJA1, NDRG2, GFAP, ALDH1A1, and ALDH1L1; 13.6%)
(Figure 1C–F, Supplementary Figures S1A and S2), endothelial cells (CLDN5, FLT; 2.0%)
(Figure 1C–F, Supplementary Figures S1C and S2G), excitatory neurons (CAMK2A, NRGN,
SATB2, SLC17A7; 21.6%) (Figure 1C–F, Supplementary Figures S1F and S2B), inhibitory
neurons (GAD1, GAD2; 12.2%) (Figure 1C–F, Supplementary Figure S1F), microglia (C3,
CSF1R, CD74, CX3CR1; 6.2%) (Figure 1C–F, Supplementary Figures S1E and S2E), oligo-
dendrocytes (MBP, MOG, PLP1, MOBP, and MAG; 36.9%) (Figure 1C–F, Supplementary
Figures S1D and S2A), CAN oligodendrocyte precursor cells (OLIG1, OLIG2, PCDH15,
andPDGFRA; 8.1%) (Figure 1C–F, Supplementary Figures S1B and S2C), and unknown
cells (0.6%). Among them, oligodendrocyte subsets include c0, c1, c2, c9, and c21; astrocyte
subsets include c3, c4, c26, and c28; c8, c10, c11, c12, c14, c16, c19, c22, and c27 are subsets
of excitatory neurons; c7, c20, and c29 are subsets of microglia; c5, c15, and c30 are subsets
of oligodendrocyte progenitors; c6, c13, c17, c18, and c23 are a subset of inhibitory neurons;
c24 are endothelial cells, and c25 are unknown cells.

To determine the major functions of the above eight cell types, we further performed
gene set enrichment analysis (GSEA) on DEGs from these eight cell types (Figure 1G).
The results showed that the biological functions of astrocytes were mainly concentrated
in vascular transport, amino acid transmembrane transport, trans-blood-brain barrier
transport, organic anion transmembrane transport activity, amino acid import, carboxylic
acid transmembrane transport, organic acid transmembrane transport, L-amino acid trans-
port, L-α-amino acid transmembrane transport, and cellular responses to DNA damage
stimuli (Figure 1G). The biological functions of excitatory neurons are mainly enriched in
neurotransmitter secretion, synaptic signal release, regulation of synaptic structure or activ-
ity, regulation of synaptic organization, regulation of signaling receptor activity, positive
regulation of synaptic assembly, anterograde transsynaptic signaling, chemical synaptic
transmission, modulation of neurotransmitter receptor activity, and the synaptic vesicle
cycle (Figure 1G).

The biological functions of inhibitory neurons are mainly enriched in regulating
postsynaptic membrane potential, cation channel activity, ion transmembrane transporter
activity, neurotransmitter receptor activity, neurotransmitter secretion, synaptic signal
release, synapse assembly, synaptic plasticity, protein localization to cell junctions, and
transmembrane transporter activity (Figure 1G). The biological functions of microglia are
mainly enriched in immune system processes, leukocyte activation, immune response, im-
mune response regulation, cell activation, positive regulation of immune system processes,
regulation of immune system processes, leukocyte-mediated immunity, lymphocyte activa-
tion, and positive regulation of the immune response (Figure 1G). The biological functions
of oligodendrocytes are mainly enriched in axon wrapping, neuron wrapping, myelina-
tion, oligodendrocyte differentiation, oligodendrocyte development, glial cell develop-
ment, membrane lipid metabolism, plasma cell differentiation, and gliogenesis (Figure 1G).
The biological functions of OPC are mainly enriched in chondroitin sulfate proteoglycan
biosynthesis, chondroitin sulfate proteoglycan metabolism, embryonic skeletal system
development, mucopolysaccharide metabolism, and aminoglycan biosynthesis, as well
as the glycosamine glycan biosynthesis, glycosaminoglycan catabolism, and chondroitin
sulfate biosynthesis, and chondroitin sulfate metabolism processes (Figure 1G). The bio-
logical functions of endothelial cells are mainly enriched in the innate immune response,
response to cytokine, regulation of immune effector process, response to interferon-gamma,
cellular response to cytokine stimulus, immune system process, defense response to other
organism, positive regulation of immune effector process, and cytokine-mediated signaling
pathway response to biotic stimulus (Figure 1G). In addition, the biological functions of
unknown cells are mainly enriched in actin filament bundle assembly, actin filament bundle
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organization, Rho protein signal transduction, small GTPase-mediated signal transduction
regulation, vascular morphogenesis, cell motility negative regulation, negative regulation
of cellular components movement, cell-matrix adhesion, and regulation of stress fiber
assembly (Figure 1G).
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Figure 1. SnRNA-seq analysis of prefrontal and entorhinal cortex of AD patients. (A–C) Unbiased
identification of cell type heterogeneity in human prefrontal and entorhinal cortex. PFC: prefrontal
cortex; EC: entorhinal cortex; AD: Alzheimer’s disease; Ctl: Control. A, UMAP plot showing data
integration of 3 datasets, 4 groups. B, UMAP plot showing 31 cell clusters obtained after data
ensemble cluster analysis. C, UMAP map of seven cell types. (D) Number of individual cell types
in 124,658 nuclei. (E) Cell percentage of the seven cell types in different groups. (F) Heatmap of
top 10 DEGs in 8 cell types. (G) GSEA of cell type-specific DEGs. Oligos: oligodendrocytes; Ex:
excitatory neurons; OPC: oligodendrocyte precursor cells; Astros: astrocytes; Micro: microglia; Inhibi:
inhibitory neurons; Endo: endothelial cells; GSEA, gene set enrichment analysis.

3.3. Integration Analysis of Brain DEGs and Serum DEPs in AD

In order to obtain the differential molecules between the brain and serum of AD
patients, we extracted the DEGs from two different brain regions and DEPs from serum of
AD individuals (Supplementary Table S2), respectively. Then, a differential comparison
was carried out between the above brain DEGs and serum DEPs, which uncovered a total
of 10 DEGs/DEPs in the endothelial cells, excitatory neurons, microglia, and unknown cells
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(Figure 2), including NEBL, CHSY3, STMN2, MARCKS, VIM, FGD4, EPB41L2, PLEKHG1,
PTPRZ1, and PPP1R14A (Table 2).
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Table 2. DEGs/DEPs in AD. Endo: endothelial cells; Ex: excitatory neurons. The “down” represents a
down-regulation of this gene expression in AD individuals compared to controls. The “up” represents
a up-regulation of this gene expression in AD individuals compared to controls.

Source Gene Name Protein Name Gene Expression in AD

Endo VIM Vimentin Down
Endo FGD4 FYVE, RhoGEF, and PH domain containing 4 Down
Endo EPB41L2 Erythrocyte membrane protein band 4.1 like 2 Down
Endo PLEKHG1 Pleckstrin homology and RhoGEF domain containing G1 Down
Endo PTPRZ1 Protein tyrosine phosphatase receptor type Z1 Up
Endo PPP1R14A Protein phosphatase 1 regulatory inhibitor subunit 14A Up

Ex STMN2 Stathmin 2 Down
Ex MARCKS Myristoylated alanine rich protein kinase C substrate Down

Microglia CHSY3 Chondroitin sulfate synthase 3 Up
Unknown NEBL Nebulette Down
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3.4. GO Functional Enrichment Analysis of DEGs

We performed GO enrichment analysis for 10 DEGs to elucidate their biological func-
tions. GO terms, including biological process (yellow), molecular function (blue), and cellu-
lar component (green), are shown in Figure 3. Among these terms, the biological process of
10 DEGs is mainly enriched in actin filament-based process, cytoskeleton organization actin,
cytoskeleton organization, supramolecular fiber organization, cardiac muscle thin filament
assembly, positive regulation of microtubule depolymerization, negative regulation of
neuron projection development, positive regulation of protein localization to the cell cortex,
oligodendrocyte progenitor proliferation, and regulation of oligodendrocyte progenitor
proliferation. The molecular function is mainly enriched in actin binding, cytoskeletal
protein binding, PH domain binding, N—acetylgalactosaminyl—proteoglycan, 3—beta—
glucuronosyltransferase activity, glucuronosyl—N—acetylgalactosaminyl—proteoglycan,
4—beta—N—acetylgalactosaminyltransferase activity, keratin filament binding, protein-
containing complex binding, actin filament binding, guanyl-nucleotide exchange factor
activity, and structural molecule activity. The cell component is mainly enriched in actin
filament bundle, perineuronal net, focal adhesion, cell-substrate adherens junction, cell
leading edge, cell-substrate junction, germinal vesicle, perisynaptic extracellular matrix,
synapse-associated extracellular matrix, and actin cytoskeleton. These results help to
elucidate the biological function changes in the AD brain.
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3.5. KEGG Pathway Analysis of DEGs and PPI Network Construction

KEGG pathway enrichment analysis was conducted on those 10 DEGs to further
elucidate their potential function, in which 8 pathways were screened out (Figure 4), includ-
ing microRNAs in cancer, glycosaminoglycan biosynthesis, chondroitin sulfate/dermatan
sulfate, Epithelial cell signaling in helicobacter pylori infection, vascular smooth muscle
contraction, Fc gamma R-mediated phagocytosis, Salmonella infection, Epstein–Barr virus
infection, and metabolic pathways. The PPI network with obvious interaction relationship
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for all DEPs included 30 nodes and 119 edges (Figure 5). Then, the top five proteins with
the max number of interactors were NEBL, STMN2, MARCKS, VIM, and FGD4.
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3.6. Expression Changes of Hub DEPs in AD and Control Serum

Because of the high number of interactors and AD-associated functional enrichment
of NEBL, EPB41L2, FGD4, and MARCKS in PPI Network and GO analysis, we think they
may play a vital role in AD. Therefore, expression levels of NEBL, EPB41L2, FGD4, and
MARCKS in serum of AD patients were verified by ELISA. As demonstrated, compared
with the control group, the concentrations of NEBL, EPB41L2, and FGD4 were significantly
decreased in the AD group (Figure 6A–C), while the concentration of MARCKS protein
showed a slight elevation in AD serum, without statistical difference (Figure 6D, p = 0.27).
Moreover, correlation analysis of age revealed that there are no age-related change trends
for these molecules in the control and AD groups (Figure 6E,F). Furthermore, the differential
expression analysis of these biomarkers between the female and male populations showed
no significant differences in the control and AD groups (Figure 6G,H).
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4. Discussion

In recent years, the in-depth of brain tissue research and continuous innovation of
sequencing methods have improved our understanding of the pathogenesis of AD. The
increasing number of pathways and molecules related to AD are being identified, suggest-
ing that the occurrence and development of AD is involved with multiple factors [24,25].
Currently, some studies have demonstrated that amyloid and tau still have their limitations
as biomarkers of AD [26]. Moreover, the biomarkers derived from blood or CSF failed to
reflect the functional changes of nerve cells. Many limitations indicate that it is necessary
to discover new AD biomarkers [27]. Nevertheless, studies on the proteomic changes in
the plasma or serum of AD patients are still very rare, due to the technical limitations and
complex proteomic changes in serum [28]. The advent of single-cell sequencing technol-
ogy provides an effective method for studying the cellular heterogeneity in the brain and
provides an approach to discover cell-specific biomarkers [29–31].

In this study, we innovatively combined the serum proteomic and brain single-cell
transcriptomic data to investigate potential biomarkers for the treatment of AD. Relative
to those studies, which only centered on single-cell transcriptomics [11] or serum pro-
teomics [19], our study narrowed down the screening range of candidate biomarkers. By
integrating snRNA data from brain tissues and proteomics data from serum, we identified
10 significantly differentially expressed molecules, which may be derived from endothe-
lial cells (VIM, FGD4, EPB41L2, PLEKHG1, PTPRZ1, and PPP1R14A), excitatory neurons
(STMN2 and MARCKS), microglia (CHSY3), and unknown cells (NEBL). Among these
molecules, we note that there are several candidate protein biomarkers that are closely
associated with neurodegenerative diseases. VIM proteins, as a type III intermediate fil-
ament protein, along with microtubules and actin microfilaments, form the cytoskeleton.
Studies have shown that VIM is associated with disease progression and memory decline
in AD [32–34]. Axonal growth-associated factor STMN2 is necessary for normal axonal
outgrowth and regeneration [35–37]. The improper splicing of the STMN2 has recently
been connected to a variety of neurodegenerative diseases [38–41]. Although some stud-
ies suggest that MARCKS is associated with Aβ production and synaptic plasticity, the
present findings are inconsistent [42–46]. Thus, the functions and potential mechanisms of
MARCKS in AD need to be further explored. FGD4 is a protein involved in the regulation
of the actin cytoskeleton and cell shape. FGD4 is widely involved in the myelination of
the vertebrate nervous system, and its deficiency can trigger the demyelination of the
peripheral nerves in patients [47,48]. As a protein tyrosine phosphatase, PTPRZ1 is seen
as a potential susceptibility gene for schizophrenia [49–51]. Study reports suggest that
NEBL is associated with small and medium-sized vasculitis in Kawasaki disease, which,
combined with GO analysis, suggests a possible association with neuronal projection
and recognition [52]. EPB41L2 and PPP1R14A are widely expressed in brain tissues and
evolutionarily conserved in rodents and primates, but their specific functions have not
been elucidated [53,54]. However, no studies have reported on the roles and functions of
PLEKHG1 and CHSY3 in the nervous system. These results suggest that the identifying 10
molecules are extremely promising as biomarkers of AD.

Functional enrichment analysis in this study showed that six proteins (VIM, NEBL,
EPB41L2, FGD4, MARCKS, and STMN2) were related to cytoskeleton regulation, and
four proteins (NEBL, EPB41L2, FGD4, and MARCKS) were associated with the actin
cytoskeleton. As we all know, the pathogenesis of AD is very complex, and there is still no
unified conclusion to fully describe the occurrence and development of AD. After decades
of unremitting efforts of countless researchers, hypotheses about the pathogenesis of AD
have been put forward, including β-amyloid (Aβ) deposition to form senile plaques [55],
neurofibrillary tangles (NFT) [56] synaptic loss [57] and so on. Based on this, scientists hope
to prevent and treat AD by inhibiting amyloid production, fibrosis, and deposition, but they
have not been as effective as expected. Existing drugs can only delay the aggravation of
pathological symptoms, but they cannot stop or reverse the disease process. Although Aβ

deposition and neurofibrillary tangles are still regarded as the main pathological features
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of AD, the relationship between these lesions and cognitive impairment in patients remains
unclear [58]. Moreover, a recent study has overturned our traditional impression that
AD is “extracellular amyloid plaque formation comes first, followed by nerve cell death”,
suggesting that “neural cell death comes first, followed by extracellular amyloid plaque
appearance” [26]. With the deepening of research, numerous pieces of evidence suggested
that synaptic loss is an early event in AD development, and it is associated with cognitive
decline [47,48]. Dendritic spines, as tiny protrusions formed on the plasma membrane
of neuron dendrites, are the main receiving sites for excitatory synaptic signals, as well
as the main site for forming excitatory neuron synapses [59]. Therefore, in the process of
learning and memory, synaptic plasticity is closely related to the structure and function
of dendritic spines [60]. The actin cytoskeleton is an important structure that constitutes
dendritic spines [61], of which the dynamic manifestation is the driving force behind
dendritic spines and closely related to synaptic plasticity [62]. The proper functioning
of the actin cytoskeleton ensures the integrity of the synaptic structure and function in
excitatory neurons [63]. Therefore, the actin cytoskeleton is gradually recognized as one of
the important targets of AD [64].

Based on multiple lines of evidence, we believe that the actin cytoskeleton changes in
cortical neuron synapses are highly correlated with the development of AD, and can be
manifested by some specific markers [65]. Therefore, we further examined the expression
changes in serum of four molecules (NEBL, EPB41L2, MARCKS, and FGD4) that are
closely related to the actin cytoskeleton. ELISA experiment revealed that the expression
of NEBL, EPB41L2, and FGD4 were significantly decreased in AD, while the expression
of MARCKS exhibited no significant change in AD. We all know that the development of
AD is closely related to the age and gender of the patient [66]. However, our results show
that there is no significant correlation of the expression level of these four biomarkers with
the age or sex of the patients. This may be attributed to the sample size, disease subtype,
and ethnicity. Meanwhile, this also suggested that there is no sex or age bias for these
biomarkers in the diagnosis or prognosis of AD. In addition, in the future, researchers
should use more advanced technologies for multi-center and large-sample research to
discover more valuable biomarkers or therapeutic targets for AD. Interestingly, according
to cell origin, we found that FGD4 and EPB41L2 are derived from endothelial cells, and
NEBL is derived from unknown cells with similar functions to the endothelial cells. This
indicates that the endothelial cells play a considerable role in the synaptic changes caused
by AD, which is different from the previous understanding. In the past, it was generally
believed that endothelial cells are an important part of the neurovascular unit [67]. In AD,
the damage of endothelial cells can affect the normal metabolism of the brain and clearance
of amyloid, which, in turn, affects the brain normal function and leads to cognitive deficits
of AD patients [68]. However, endothelial cells can affect the plasticity and density of
neuronal synapses by secreting some pheromones and using intercellular communication,
thereby regulating cognitive function [69]. Thus, our findings suggested that the changes of
actin cytoskeleton are correlated with the regulation of synaptic plasticity in AD, suggesting
that alterations in these biomarkers may precede the loss of synapses.

Finally, our work revealed that the alterations of the actin cytoskeleton are the most
pronounced changes detected in the cerebral cortex and serum of AD patients, which not
only provides a strong theoretical basis for the development of AD-specific diagnostic
biomarkers, but also contributes to the early diagnosis and development of targeted thera-
peutic agents in patients with AD in the future. Due to the small sample size, the current
results cannot comprehensively explain the relationship of these biomarkers with different
age, disease stage, sex, or ethnicity. However, we believe that more samples being included
in the future will find more valuable biomarkers.

5. Conclusions

Taken together, in this study, we finally identified three protein biomarkers (NEBL,
EPB41L2, and FGD4) by integrating data of cortex snRNA-seq and serum proteomic
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datasets. Hence, the present study might unveil potential novel biomarkers for the diagno-
sis, treatment, and prognosis of AD.
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