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Abstract

Adipose-derived stem cells (ADSC), which exist near adipocytes in adipose tissue, have

been used as a potential tool of regenerative medicine. Lipid chaperones, fatty acid-bind-

ing protein 4 (FABP4) and 5 (FABP5), are abundantly expressed in adipocytes. FABP4

has recently been shown to be secreted from adipocytes during lipolysis in a non-classical

pathway and may act as an adipokine. Here, we investigated the role of exogenous

FABP4 and FABP5 in transcriptional and metabolic regulation in ADSC. FABP4 and

FABP5 were little expressed in ADSC. However, both FABP4 and FABP5 were signifi-

cantly induced after adipocyte differentiation of ADSC and were secreted from the differ-

entiated adipocytes. Analysis of microarray data, including gene ontology enrichment

analysis and cascade analysis of the protein-protein interaction network using a transcrip-

tion factor binding site search, demonstrated that treatment of ADSC with FABP4 or

FABP5 affected several kinds of genes related to inflammatory and metabolic responses

and the process of cell differentiation. Notably, myogenic factors, including myocyte

enhancer factors, myogenic differentiation 1 and myogenin, were modulated by treatment

of ADSC with FABP4, indicating that exogenous FABP4 treatment is partially associated

with myogenesis in ADSC. Metabolome analysis showed that treatment of ADSC with

FABP4 and with FABP5 similarly, but differently in extent, promoted hydrolysis and/or

uptake of lipids, consequentially together with enhancement of β oxidation, inhibition of

downstream of the glycolysis pathway, accumulation of amino acids, reduction of nucleic

acid components and increase in the ratio of reduced and oxidized nicotinamide adenine

dinucleotide phosphates (NADPH/NADP+), an indicator of reducing power, and the ratio of

adenosine triphosphate and adenosine monophosphate (ATP/AMP), an indicator of the

energy state, in ADSC. In conclusion, secreted FABP4 and FABP5 from adipocytes as adi-

pokines differentially affect transcriptional and metabolic regulation in ADSC near
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adipocytes. The adiposity condition in the host of regenerative medicine may affect char-

acteristics of ADSC by exposure of the balance of FABP4 and FABP5.

Introduction

Mesenchymal stem cells are multipotent somatic stem cells that can differentiate into a variety

of cell types such as adipocytes, osteoblasts, chondrocytes and myocytes [1]. Mesenchymal

stem cells were originally isolated from bone marrow, but they have also been isolated from

other connective tissues such as adipose tissue, periosteum, synovium and deciduous teeth. A

merit of regenerative medicine using autologous mesenchymal stem cells is that immunosup-

pression is not required. Furthermore, a large number of adipose-derived stem cells (ADSC),

which exist near adipocytes in adipose tissue, can be easily obtained by liposuction, making

them more clinically applicable. ADSC have therefore been used clinically as a highly potential

tool of regenerative medicine.

Fatty acid-binding proteins (FABPs) are approximately 14-15-kDa predominantly cytosolic

proteins that can reversibly bind saturated and unsaturated long-chain fatty acids with high

affinity [2–4]. It has been proposed that intracellular FABPs facilitate the transport of lipids to

specific compartments in the cell. Fatty acid-binding protein 4 (FABP4), known as adipocyte

FABP (A-FABP) or aP2, and FABP5, known as epidermal FABP (E-FABP) or mal1, are

expressed in both adipocytes and macrophages and play an important role in the development

of insulin resistance and atherosclerosis [5–11]. We previously showed that inhibition of

FABP4 in the cell would be a novel therapeutic strategy against insulin resistance, diabetes

mellitus and atherosclerosis [12].

It has recently been demonstrated that FABP4 is secreted from adipocytes in association

with lipolysis via a non-classical secretion pathway [13–18], though there are no typical secre-

tory signal peptides in the sequence of FABP4 [2]. FABP4 has been demonstrated to act as an

adipokine for the development of insulin resistance in the liver [14], suppression of cardio-

myocyte contraction [19] and the development of atherosclerosis [20], supporting inhibition

of endothelial nitric oxide synthase activity in endothelial cells [21], and proliferation and

migration of vascular smooth muscle cells [22]. It has also been reported that elevated serum

FABP4 concentration is associated with obesity, insulin resistance, type 2 diabetes mellitus,

hypertension, cardiac dysfunction, renal dysfunction, dyslipidemia, atherosclerosis and car-

diovascular events [13, 23–34]. Furthermore, a recent study demonstrated the possibility of a

new strategy to treat metabolic disease by targeting serum FABP4 with a monoclonal antibody

to FABP4 [35]. On the other hand, secretion of FABP5 remains to be elucidated. However, cir-

culating FABP5, similar to FABP4, has been reported to be detected at levels of about one

tenth or less of FABP4 concentrations, and FABP5 level has been shown to be associated with

components of metabolic syndrome, though the correlation is not as strong as that of FABP4

[25, 36, 37].

Since FABP4 and possibly FABP5 are secreted from adipocytes near ADSC, they may play

significant roles in cell survival, proliferation, migration, and transcriptional and metabolic

regulation of ADSC. Depending on the condition of adiposity, such as an obese or lean condi-

tion, transcriptional and metabolic regulation and differentiation ability of ADSC would be

differently modulated. Since little is known about paracrine roles of FABP4 and FABP5

derived from adipocytes in ADSC, we investigated whether exogenous FABP4 and FABP5
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affect transcriptional and metabolic regulation in ADSC as well as 233A cells, another cell line

of stem cells, as a control.

Materials and Methods

Cell culture

All biochemical reagents were purchased from Sigma-Aldrich (St. Louis, MO) unless otherwise

indicated. Human ADSC were purchased from Lonza (Walkersville, MD). The 233A renal

tubular stem/progenitor cell line has been established from isolated renal stem/progenitor cells

isolated by primarily culturing cells exfoliated into the urine of a patient with renal disease,

and the patent was issued as WO2009019758. ADSC and 233A cells were grown in Mesen-

PRO-RS (Invitrogen, Carlsbad, CA) and Dulbecco’s Modified Eagle’s Medium (DMEM)/

Ham’s F-12 (Invitrogen) supplemented with ITS (insulin, transferrin and selenite) mix and

nicotinamide, respectively. The cells were stimulated with phosphate buffered saline as a con-

trol, 1 μM recombinant FABP4 or 1 μM recombinant FABP5 for 24 h.

Production and purification of recombinant FABP4 and FABP5

Recombinant human FABP4 and FABP5 were produced using Corynebacterium glutamicum,

which can extracellularly release target proteins, in a jar fermentor at 30˚C for 72 h [38]. Cell-

free broth was obtained by centrifugation and filtration with a 0.22-μm filter. Recombinant

proteins were purified by ethanol precipitation and anion exchange chromatography. Purity of

the recombinant proteins was confirmed by analyses of silver staining and Western blotting

(S1 Fig).

Western blotting and silver staining

Recombinant proteins of FABP4 (0.5 μg/lane) and FABP5 (0.3 μg/lane) and known molecular

weight markers were subjected to SDS–polyacrylamide gel electrophoresis (SDS-PAGE). Pro-

teins were electrophoretically transferred onto PVDF membranes and incubated for 1 h at

room temperature with a blocking solution (3% bovine serum albumin) in Tris-buffered saline

buffer containing 0.1% Tween 20 (TBST). The blocked membranes were incubated with pri-

mary antibodies for FABP4 (Abcam, Cambridge, UK) or FABP5 (Hycult, Uden, Netherlands)

overnight at 4˚C and washed three times with TBST. The membranes were incubated with a

secondary antibody conjugated with horseradish peroxidase (Cell Signaling, Danvers, MA) for

1 h at room temperature and washed. Immunodetection analyses were performed using a BM

Chemiluminescence Blotting Substrate (POD) Kit (Roche Diagnostics, Mannheim, Germany).

Silver staining of gels was also performed using a SilverQuest Silver Staining kit (Thermo

Fisher Scientific, Yokohama, Japan).

Secretion of FABP4 and FABP5 from ADSC after adipocyte

differentiation

Before inducing adipocyte differentiation, the conditioned medium incubated for 24 h was

collected as Day 0. Adipocyte differentiation of ADSC was induced using a StemPro Adipo-

genesis Differentiation Kit (Invitrogen). The differentiation medium was collected at 4 days

and 8 days as the conditioned media of Day 4 and Day 8, respectively. The number of samples

at each time point was four. Concentrations of FABP4 and FABP5 were measured using com-

mercially available enzyme-linked immunosorbent assay kits for FABP4 (Biovendor R&D,

Modrice, Czech Republic) and FABP5 (USCN Life Science, Houston, U.S.A.). The intra- and

inter-assay coefficients of variation in the kits were< 5%. According to the manufacturer’s
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protocol, no cross-reactivity of FABP4 or FABP5 with other FABP types was observed. Secre-

tion of FABP4 and FABP5 into the conditioned medium was normalized to total protein con-

centration of the cell lysate assessed by a microplate protein assay (Bio-Rad, Hercules, CA).

Microarray analysis of gene expression

Samples were pooled from triplicate experiments in each setup group. Total RNA from ADSC

or 233A cells was extracted using an RNeasy Mini kit (Qiagen, Hilden, Germany), and RNA

quality was assessed by an Agilent 2100 Bioanalyzer. Microarray analysis of gene expression

was conducted using a SurePrint G3 Human GE microarray kit 8x60K (Agilent Technologies)

following the Agilent 1-color microarray-based gene expression analysis protocol. Starting

with 50 ng of total RNA, Cy3-labeled cRNA was produced according to the manufacturer’s

protocol. For each sample, the Cy3-labeled cRNA was fragmented and hybridized at 65˚C for

17 h in a rotating hybridization oven. After washing, microarrays were scanned using an Agi-

lent microarray scanner (Agilent Technologies). Intensity values of each scanned feature were

quantified using Agilent Feature Extraction Software, which performs background subtrac-

tions such as error modeling and adjusting for additive and multiplicative noise. Normaliza-

tion was performed using Agilent GeneSpring GX (per chip normalization: 75 percentile shift;

per gene normalization: none). The microarray data have been deposited in the NCBI Gene

Expression Omnibus and are accessible through GEO series accession number GSE83587.

Gene ontology (GO) enrichment analysis was performed by Microarray Data Analysis Tool

(Filgen, Nagoya, Japan). Significantly (Z-score > 0, P < 0.05) upregulated and downregulated

GO terms of three GO categories, including cellular component, molecular function and bio-

logical process, were selected. A transcription factor binding site search was also carried out

using the TRANSFAC database (BIOBASE, Waltham, MA) [39], and cascade analysis of the

protein-protein interaction (PPI) network was performed using Genome Network Platform

(http://genomenetwork.nig.ac.jp/index_e.html).

Quantitative real-time PCR

Total RNA was isolated using Trizol Reagent (Invitrogen). One μg of total RNA was reverse-

transcribed by using the high capacity cDNA archive kit (Applied Biosystems, Foster City,

CA). Quantitative real-time PCR analysis was performed using SYBR Green in the real-time

PCR system (Applied Biosystems, Warrington, UK). The thermal cycling program was 10 min

at 95˚C for enzyme activation and 40 cycles of denaturation for 15 s at 95˚C, 30-s annealing at

58˚C and 30-s extension at 72˚C. Primers used in the present study are listed in S9 Table. To

normalize expression data, 18s rRNA was used as an internal control gene. Each experiment

was done in quadruplicate.

Metabolome analysis

Comprehensive metabolite analyses in ADSC treated with phosphate buffered saline as a con-

trol, 1 μM recombinant FABP4 or 1 μM FABP5 for 24 h (n = 3, each group) were performed

by capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS) and the positive

and negative modes of liquid chromatography time-of-flight mass spectrometry (LC-TOFMS)

as previously reported [40].

Statistical analysis

Numeric variables are expressed as means ± SEM. Comparison between two groups was done

with the Mann-Whitney U test. One-way repeated measures ANOVA was used for testing
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differences in time courses of parameters. One-way analysis of variance and Tukey-Kramer

post hoc test were used for detecting significant differences in data between multiple groups. A

p value of less than 0.05 was considered statistically significant. All data were analyzed by using

JMP 9 for Macintosh (SAS Institute, Cary, NC).

Results

Effects of exogenous FABP4 on gene expression in ADSC

FABP4 was not detected in the conditioned medium of ADSC at Day 0 and Day 4 after induc-

ing adipocyte differentiation, but a high concentration of FABP4 was detected at Day 8 (Fig

1A). To determine whether secreted FABP4 has paracrine effects on gene expression in ADSC

near adipocytes, DNA microarray chip analysis was performed in ADSC treated with 1 μM

recombinant FABP4 for 24 h (Fig 1B–1D). A total of 26,382 genes were analyzed after quality

control by removing low signal and flagged genes and control spots (Fig 1B). The numbers of

genes that were at least 2-fold upregulated and at least 2-fold downregulated were 1,735 and

791, respectively.

In GO enrichment analysis, significantly upregulated and downregulated GO terms of

three GO categories, including cellular component, molecular function and biological process,

are shown in Fig 1C. The cellular components of upregulated genes identified by GO enrich-

ment analysis included the extracellular region and extracellular space, while the cellular com-

ponents of downregulated genes included the nucleoplasm, proteinaceous extracellular

matrix, nucleus, chromosome, microtubule organizing center, extracellular region and nuclear

chromosome. The molecular functions of upregulated genes included oxidoreductase activity,

while the molecular functions of downregulated genes included DNA binding, histone bind-

ing, helicase activity, transcription factor binding and ATPase activity. The biological pro-

cesses of upregulated genes included cell differentiation, cell death and signal transduction,

while the biological processes of downregulated genes included mitosis, cell division, cell cycle,

chromosome segregation, cell proliferation, growth and DNA metabolic process. These results

indicated that treatment of ADSC with FABP4 affects redox, signal transduction and cell dif-

ferentiation rather than cell proliferation and growth.

A transcription factor binding site search revealed that there were 64 key node proteins (Fig

1B and S1 Table). Results of cascade analysis of the PPI network are shown in Fig 1D. Key

node proteins regulated by treatment of ADSC with exogenous FABP4 consisted of several

kinases, including mitogen-activated protein (MAP) kinase 1 (MAPK1), also known as extra-

cellular signal-regulated kinase 2 (ERK2), MAP kinase 10 (MAPK10), also known as c-Jun N-

terminal kinase 3 (JNK3), MAP kinase-activated protein kinase 2 (MAPKAPK2), MAP

kinase-activated protein kinase 3 (MAPKAPK3), dual specificity mitogen-activated protein

kinase kinase 4 (MAP2K4) and ribosomal protein S6 kinase alpha 1 (RPS6KA1), and several

transcription factors, including caudal type homeobox 1 (CDX1), pancreatic and duodenal

homeobox 1 (PDX1), one cut homeobox 1 (ONECUT1), also known as hepatocyte nuclear

factor 6 (HNF6), high mobility group AT-hook 2 (HMGA2), Pit-Oct-Unc (POU) domain

class 5 homeobox 1 (POU5F1), also known as octamer-binding transcription factor 3/4

(Oct3/4), and sex-determining region Y (SRY)-box 3 (SOX3), indicating that exogenous

FABP4 affects the process of cell differentiation. Nuclear receptor transcription factors, includ-

ing nuclear receptor subfamily 3, group C, member 1 (NR3C1), also known as glucocorticoid

receptor, peroxisome proliferator-activated receptor alpha (PPARA) and retinoid X receptor

alpha (RXRA), were also involved, suggesting that treatment with FABP4 is related to meta-

bolic response in ADSC. Furthermore, several myogenic factors, including myocyte enhancer

factor 2A (MEF2A), myocyte enhancer factor 2C (MEF2C), myogenic differentiation 1
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Fig 1. Microarray analysis in ADSC treated with FABP4. A. Secretion of FABP4 from adipose-derived stem cells

(ADSC) after adipocyte differentiation at Day 0, Day 4 and Day 8 (n = 4 in each). Values were normalized to total

protein concentration of the cell lysate. *P < 0.05 vs. Day 0. B. Flowchart of microarray analysis in ADSC treated with

1 μM recombinant FABP4 for 24 h. C. Gene ontology (GO) enrichment analysis. Significantly (Z-score > 0, P < 0.05)

upregulated and downregulated GO terms of three GO categories, including cellular component, molecular function

and biological process, were selected and listed by a sort of lower P-value in each category. The ordinate of the bar plot

was the number of annotated genes within the GO category. D. Cascade of the protein-protein interaction (PPI)

network using a transcription factor binding site search data.

doi:10.1371/journal.pone.0167825.g001
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(MYOD1) and myogenin (MYOG), also known as myogenic factor 4, were modulated by

treatment of ADSC with FABP4, indicating that FABP4 treatment is partially associated with

myogenesis in ADSC. Gene expression of MYOD1 and MEF2A was confirmed by quantitative

real-time PCR S2A and S2B Fig).

Effects of exogenous FABP5 on gene expression in ADSC

FABP5 was detected in the conditioned medium of ADSC at Day 0, Day 4 and Day 8 after

inducing adipocyte differentiation (Fig 2A). However, the amount of FABP5 secreted at Day 8

was 14-fold smaller than that of FABP4. A total of 23,726 genes were analyzed after quality

control by removing low signal and flagged genes and control spots (Fig 2B). The numbers of

genes that were at least 2-fold upregulated and at least 2-fold downregulated were 584 and 513,

respectively.

In GO enrichment analysis, significantly upregulated and downregulated GO terms of

three GO categories, including cellular component, molecular function and biological process,

are shown in Fig 2C. The cellular components of upregulated genes identified by GO enrich-

ment analysis included the plasma membrane. The biological processes of upregulated genes

included carbohydrate metabolic process and cell adhesion, while the biological processes of

downregulated genes included cell differentiation, immune system process and cell adhesion.

These results indicated that treatment of ADSC with FABP5 affects carbohydrate metabolism,

immune response and reduced cell differentiation.

A transcription factor binding site search revealed that there were 72 key node proteins (Fig

2B and S2 Table). Results of cascade analysis of the PPI network are shown in Fig 2D. Key

node proteins regulated by treatment of ADSC with exogenous FABP5 consisted of several

kinases, including MAPK1, Janus kinase 3 (JAK3), tyrosine kinase 2 (TYK2) and nemo-like

kinase (NLK), and several transcription factors, including CDX1, ONECUT1, SRY-box 2

(SOX2), transcription factor 7 (TCF7), friend leukemia integration 1 transcription factor

(FLI1), forkhead box P3 (FOXP3), forkhead box O1 (FOXO1) and SMAD family member 4

(SMAD4), suggesting that FABP5 treatment is also associated with inflammatory response and

the process of cell differentiation in ADSC. Gene expression of ONECUT1 and JAK3 was con-

firmed by quantitative real-time PCR (S2C and S2D Fig). The effect of treatment of ADSC

with FABP4 or FABP5 was distinctly regulated in analyses of GO enrichment and the PPI net-

work (Figs 1 and 2).

Effects of exogenous FABP4 on gene expression in 233A cells

To determine paracrine effects of secreted FABP4 in another stem cell line, DNA microarray

chip analysis was performed in 233A renal tubular stem/progenitor cells treated with 1 μM

recombinant FABP4 for 24 h. A total of 26,444 genes were analyzed after quality control by

removing low signal and flagged genes and control spots (Fig 3A). The numbers of genes that

were at least 2-fold upregulated and at least 2-fold downregulated were 825 and 1,037,

respectively.

In GO enrichment analysis, significantly upregulated and downregulated GO terms of

three GO categories, including cellular component, molecular function and biological process,

are shown in Fig 3B. The cellular components of upregulated genes identified by GO enrich-

ment analysis included the plasma membrane, while the cellular components of downregu-

lated genes included the extracellular region, proteinaceous extracellular matrix and plasma

membrane. The molecular functions of upregulated genes included lipid binding, while the

molecular functions of downregulated genes included peptidase activity. The biological pro-

cesses of upregulated genes included anatomical structure development, lipid metabolic
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Fig 2. Microarray analysis in ADSC treated with FABP5. A. Secretion of FABP5 from adipose-derived stem cells

(ADSC) after adipocyte differentiation at Day 0, Day 4 and Day 8 (n = 4 in each). Values were normalized to total

protein concentration of the cell lysate. *P < 0.05 vs. Day 0. B. Flowchart of microarray analysis in ADSC treated with

1 μM recombinant FABP5 for 24 h. C. Gene ontology (GO) enrichment analysis. Significantly (Z-score > 0, P < 0.05)

upregulated and downregulated GO terms of three GO categories, including cellular component, molecular function

and biological process, were picked up and listed by a sort of lower P-value in each category. The abscissa of the bar

plot was the number of annotated genes within the GO category. D. Cascade of the protein-protein interaction (PPI)

network using a transcription factor binding site search data.

doi:10.1371/journal.pone.0167825.g002
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Fig 3. Microarray analysis in 233A cells treated with FABP4. A. Flowchart of microarray analysis in 233A renal

tubular stem/progenitor cells treated with 1 μM recombinant FABP4 for 24 h. B. Gene ontology (GO) enrichment

analysis. Significantly (Z-score > 0, P < 0.05) upregulated and downregulated GO terms of three GO categories,

including cellular component, molecular function and biological process, were picked up and listed by a sort of lower

P-value in each category. The abscissa of the bar plot was the number of annotated genes within the GO category.

C. Cascade of the protein-protein interaction (PPI) network using a transcription factor binding site search data.

doi:10.1371/journal.pone.0167825.g003
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process and homeostatic process. These results indicated that treatment of 233A cells with

FABP4 affects lipid binding, lipid metabolism, structure development and homeostasis.

A transcription factor binding site search revealed that there were 33 key node proteins (Fig

3A and S3 Table). Results of cascade analysis of the PPI network are shown in Fig 3C. Key

node proteins regulated by treatment of 233A cells with exogenous FABP4 consisted of several

kinases, including MAP kinase 8 (MAPK8), also known as c-Jun N-terminal kinase 1 (JNK1),

MAPKAPK3 and RPS6KA1, and several transcription factors, including PDX1, POU1F1, NK2

homeobox 2 (NKX2-2), forkhead box F1 (FOXF1), forkhead box A2 (FOXA2), homeobox B3

(HOXB3), v-fos FBJ murine osteosarcoma viral oncogene homolog (FOS) forming the activa-

tor protein 1 (AP-1), FOS-B (FOSB), FOS-like antigen 1 (FOSL1), neurogenic differentiation 1

(NEUROD1), jun oncogene (JUN), jun B proto-oncogene (JUNB), jun D proto-oncogene

(JUND), spleen focus forming virus (SFFV) proviral integration oncogene spi1 (SPI1), T-cell

acute lymphocytic leukemia 1 (TAL1), SMAD family member 3 (SMAD3), transcription factor

EC (TFEC), serum response factor (c-fos serum response element-binding transcription fac-

tor) (SRF), hypoxia-inducible factor 1 alpha subunit (HIF1A), CCAAT/enhancer binding pro-

tein (C/EBP) alpha (CEBPA), C/EBP beta (CEBPB), sirtuin (silent mating type information

regulation 2 homolog) 1 (SIRT1) and vitamin D (1,25- dihydroxyvitamin D3) receptor (VDR).

Regulated GO terms and the PPI network were greatly different for FABP4-treated ADSC and

FABP4-treated 233A cells (Figs 1 and 3).

Effects of exogenous FABP5 on gene expression in 233A cells

In 233A cells treated with 1 μM recombinant FABP5 for 24 h, a total of 26,800 genes were ana-

lyzed after quality control by removing low signal and flagged genes and control spots (Fig

4A). The numbers of genes that were at least 2-fold upregulated and at least 2-fold downregu-

lated were 820 and 1,064, respectively.

In GO enrichment analysis, significantly upregulated and downregulated GO terms of

three GO categories, including cellular component, molecular function and biological process,

are shown in Fig 4B. The cellular components of downregulated genes included the extracellu-

lar region, plasma membrane and proteinaceous extracellular matrix. The molecular functions

of upregulated genes included lipid binding and transmembrane transporter activity, while the

molecular functions of downregulated genes included peptidase activity. The biological pro-

cesses of upregulated genes included cell-cell signaling and transport. These results indicated

that treatment of 233A cells with FABP5 affects lipid binding and transport.

A transcription factor binding site search revealed that there were 45 key node proteins (Fig

4A and S4 Table). Results of cascade analysis of the PPI network are shown in Fig 4C. Key

node proteins regulated by treatment of 233A cells with exogenous FABP5 consisted of several

kinases, including pyruvate dehydrogenase kinase isozyme 1 (PDK1) and serum/glucocorti-

coid regulated kinase 1 (SGK1), and several transcription factors, including GATA binding

protein 2 (GATA2), GATA binding protein 6 (GATA6), FOXA2, retinoic acid receptor alpha

(RARA), YY1 transcription factor (YY1), FOXF1, NR3C1, POU5F1 and SMAD3. Regulated

GO terms and the PPI network were greatly different for FABP5-treated ADSC and FABP5--

treated 233A cells (Figs 2 and 4). Furthermore, the effect of treatment of 233A cells with

FABP4 or FABP5 was distinctly regulated in GO terms and the PPI network (Figs 3 and 4).

Metabolome analysis in the treatment of ADSC with FABP4 or FABP5

In principal component (PC) analysis of metabolites, the score plot of the top two principal

components, PC1 and PC2, showed that groups of ADSC treated with the control, FABP4 and

FABP5 were greatly diverse (Fig 5A). A heatmap display showed that several metabolites,
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Fig 4. Microarray analysis in 233A cells treated with FABP5. A. Flowchart of microarray analysis in 233A renal

tubular stem/progenitor cells treated with 1 μM recombinant FABP5 for 24 h. B. Gene ontology (GO) enrichment

analysis. Significantly (Z-score > 0, P < 0.05) upregulated and downregulated GO terms of three GO categories,

including cellular component, molecular function and biological process, were picked up and listed by a sort of

lower P-value in each category. The abscissa of the bar plot was the number of annotated genes within the GO

category. C. Cascade of the protein-protein interaction (PPI) network using a transcription factor binding site

search data.

doi:10.1371/journal.pone.0167825.g004
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Fig 5. Metabolome analysis in ADSC treated with FABP4 or FABP5. A. Display of principal component (PC)

analysis in adipose-derived stem cells (ADSC) treated with control, FABP4 and FABP5 (n = 3, each group). B.

Heatmap display, the colors of which correspond to differences in relative abundance (low: green—high: red),

demonstrates all significant alterations among treatment with control, FABP4 and FABP5. C. Summary scheme of

regulated metabolites in ADSC treated with FABP4 or FABP5. The colors of arrows (FABP4: orange, FABP5: green)

correspond to differences (dark: P < 0.05 vs. Control, light: P < 0.1). D-F. Relative values of metabolites including the

ratio of reduced and oxidized nicotinamide adenine dinucleotide phosphates (NADPH/NADP+) (D), ratio of adenosine

triphosphate and adenosine monophosphate (ATP/AMP) (E) and ratio of reduced and oxidized glutathione (GSH/

GSSG) (F). *P < 0.05 vs. Control. aP < 0.1 vs. Control. ADP, adenosine diphosphate; Arg, arginine; Asn, asparagine;
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including nucleic acid components, glycolytic metabolites and amino acids, are distinctly regu-

lated by treatment with FABP4 or FABP5 (Fig 5B, S5–S8 Tables). An overview map of all

metabolites is shown in S3 Fig. Results for metabolites regulated by treatment with FABP4 and

treatment with FABP5 are shown in S4 and S5 Figs. A summary of the effects of exogenous

FABP4 and FABP5 derived from adipocytes on metabolic regulation is shown in Fig 5C.

Treatment of ADSC with FABP4 significantly increased choline, ethanolamine and glycerol

3-phosphate (S4A–S4C Fig), which are resolved from lipid components in the cell, phosphati-

dylcholine (PC), phosphatidylethanolamine (PE) and triglyceride, respectively. Fatty acids,

palmitic acid (C16:0), stearic acid (C18:0) and oleic acid (C18:1), which are derived from

hydrolysis and/or uptake of lipids, were increased by treatment with FABP4 (S4D–S4F Fig).

Treatment of ADSC with FABP4 increased β oxidation-related metabolites, including carni-

tine, acetylcarnitine, lauric acid (C12:0), decanoic acid (C10:0) and octanoic acid (C8:0) (S4G–

S4K Fig), as well as the ratio of reduced (S4L Fig) and oxidized (S4M Fig) nicotinamide ade-

nine dinucleotide phosphates (NADPH/NADP+), an indicator of reducing power (Fig 5D).

Intermediate products of the glycolysis pathway, including glucose 6-phosphate (G-6-P), fruc-

tose 6-phosphate (F-6-P), fructose 1,6 diphosphate (F-1,6-P) and dihydroxyacetone phosphate

(DHAP), were significantly increased by treatment with FABP4 (S4N–S4Q Fig), indicating

that these metabolites are induced by hydrolysis of lipids and inhibition of downstream of the

glycolysis pathway rather than by uptake of glucose. Supportably, NADPH/NADP+, which is

increased during the pentose phosphate pathway, was activated by FABP4 treatment (Fig 5D).

Treatment of ADSC with FABP4 increased several essential amino acids, including isoleu-

cine (Ile), leucine (Leu), histidine (His), threonine (Thr) and valine (Val) (S5A–S5E Fig), sug-

gesting an increase in uptake of these amino acids. Conditionally essential amino acids,

including arginine (Arg), tyrosine (Tyr) and glutamine (Glu), and non-essential fatty acids,

including asparagine (Asn) and aspartic acid (Asp), were also increased by FABP4 treatment

(S5F–S5J Fig). On the other hand, nucleic acid components, including cytidine diphosphate

(CDP), uridine diphosphate (UDP) and adenosine, were decreased by treatment with FABP4

(S5K–S5M Fig).

Similar results were obtained for ADSC treated with FABP5, though the extent of regulation

was different (Fig 5, S4 and S5 Figs). The ratio of adenosine triphosphate and adenosine mono-

phosphate (ATP/AMP), an indicator of the energy state, was increased in ADSC treated with

FABP4 and FABP5 (Fig 5E). The ratio of reduced and oxidized glutathione (GSH/GSSG), an

antioxidant indicator, was increased by treatment of ADSC with FABP5 but not with FABP4

(Fig 5F).

Discussion

The present study demonstrated for the first time that FABP4 and FABP5 secreted from differ-

entiated adipocytes had distinct actions of transcriptional and metabolic regulation in ADSC.

Microarray analysis showed that treatment of ADSC with FABP4 or FABP5 affected several

kinds of genes in relation to inflammatory and metabolic responses and the process of cell dif-

ferentiation. Notably, treatment of ADSC with exogenous FABP4 was partially associated with

myogenesis, suggesting that FABP4 treatment potentially has an enhancing effect on myogen-

esis in regenerative medicine. Furthermore, metabolome analysis showed that FABP4 and

Asp, aspartic acid; CDP, cytidine diphosphate; DHAP, dihydroxyacetone phosphate; F-1,6-P, fructose 1,6

diphosphate; F-6-P, fructose 6-phosphate; G-6-P, glucose 6-phosphate; Glu, glutamine; His, histidine; Ile, isoleucine;

Leu, leucine; PC, phosphatidylcholine; PE, phosphatidylethanolamine; Thr, threonine; Tyr, tyrosine; UDP, uridine

diphosphate; Val, valine.

doi:10.1371/journal.pone.0167825.g005
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FABP5 similarly, but differently in extent, promoted hydrolysis and/or uptake of lipids, conse-

quentially together with enhancement of β oxidation, inhibition of downstream of the glycoly-

sis pathway, accumulation of amino acids, reduction of nucleic acid components and increase

in reducing power shown by NADPH/NADP+ and energy state shown by ATP/AMP in

ADSC.

It has been shown that obesity activates the sympathetic nerve system and induces inflam-

matory cytokines in adipose tissue [41]. FABP4 has been reported to be secreted from adipo-

cytes under the condition of regulation by the lipolytic signal pathway, though FABP4 lacks an

N-terminal secretory signal sequence [4, 14, 17]. Since sympathetic nerve activation and sev-

eral inflammatory cytokines are known to increase lipolysis in adipocytes [42], local produc-

tion of FABP4 in adipose tissue can be regulated by the condition in adipose tissue of the host,

such as fat and overweight. Furthermore, expression of FABP4 and FABP5 is upregulated in a

condition of increased adiposity [2–4]. Therefore, an obese condition prior to in vivo implan-

tation in the host of regenerative medicine may affect the characteristics of ADSC. In addition,

several therapeutic drugs, including a statin [43], omega-3 fatty acid ethyl esters [44], a dipepti-

dyl peptidase-4 inhibitor [45], a thiazolidinedione [46], a sodium glucose cotransporter 2

inhibitor [47] and angiotensin II receptor blockers [48, 49], have been reported to modulate

circulating FABP4 level. Pretreatment with such drugs in the host before regenerative medi-

cine may influence the effects of FABP4 and FABP5 in ADSC.

The two proteins FABP4 and FABP5 have 52% amino acid similarity and bind to various

long-chain fatty acids with similar selectivity and affinity [50]. However, the expression of

FABP5 is only about one-hundredth of that of FABP4 in adipose tissue [51]. Furthermore, cir-

culating FABP5 level is detected at levels of about one tenth or less of FABP4 concentrations

[25, 36, 37]. Levels of FABP4 and FABP5 in the local area around ADSC should be much

higher than those in circulating blood, which are about 1 nM (15 ng/ml) for FABP4 and 0.1

nM (1.5 ng/ml) for FABP5 [25], and we therefore used recombinant FABP4 and FABP5 at the

dose of 1 μM in in vitro experiments in the present study. However, the effects of exogenous

FABP4 on ADSC might be stronger than the effects of FABP5. Exposure of the balance of

FABP4 and FABP5 in ADSC dependent of the adiposity condition may differentially affect

characteristics of ADSC.

We have recently been investigating whether periurethral injection of ADSC improves a

damaged sphincter in patients with stress urinary incontinence (SUI) as a clinical trial regis-

tered in UMIN-CTR (UMIN000017901) and ClinicalTrials.gov (NCT02529865). Preliminary

results demonstrated possible improvement of urine linkage in patients with SUI [52, 53], and

we also confirmed myogenic differentiation of ADSC by periuretral injection in an SUI rat

model [54]. In the present study, treatment of ADSC with exogenous FABP4, but not FABP5,

was partially associated with myogenesis. Exposure of the balance of FABP4 and FABP5 in

ADSC prior to in vivo implantation may affect muscle regeneration in patients with SUI.

FABPs have been proposed to actively facilitate the transport of lipids to specific com-

partments in the cell, such as the mitochondrion or peroxisome for oxidation, nucleus for

lipid-mediated transcriptional regulation and endoplasmic reticulum for signaling, traffick-

ing and membrane synthesis [2]. The present study demonstrated that not only intracellular

but also exogenous FABP4 and FABP5 induce metabolic and transcriptional regulation in

cells. However, regulated GO terms and the PPI network for FABP4/5-treated ADSC and

FABP4/5-treated 233A cells were greatly different. There would be differences between

ADSC and 233A cells in conditions that induce differentiation to a specific cell type or gen-

eral differentiation rates, and such differences will provide insights into functional mean-

ings of differences in genomic or metabolomic responses to FABPs between the two types of

stem cells. Furthermore, characterization of the source of mesenchymal stem cells used in
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regenerative medicine, such as bone marrow, adipose tissue, periosteum, synovium and

deciduous teeth, is critical.

Evidence indicating that FABP4 acts as a biological molecule is accumulating [14, 19–22,

35, 55], and serum FABP4 level has been reported to predict long-term cardiovascular events

[32–34]. However, the receptor for FABP4 or FABP5 remains obscure. Furthermore, it is not

known whether extracellular FABP4 and FABP5 are internalized into the cell or whether they

act by an intracellular signaling mechanism. A further mechanistic understanding of the

actions of FABP4 and FBAP5 may enable a promising approach of regenerative medicine

using ADSC for transforming undifferentiated cells into specific cells as well as the develop-

ment of new therapeutic strategies for cardiovascular and metabolic diseases, such as neutrali-

zation of FABP4 and/or blockade of the FABP4 receptor, if any.

In conclusion, secreted FABP4 and FABP5 from adipocytes as adipokines differentially

affect transcriptional and metabolic regulation in ADSC near adipocytes. The adiposity condi-

tion in the host of regenerative medicine may affect characteristics of ADSC by exposure of the

balance of FABP4 and FABP5.
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