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Abstract: In this paper, we propose a new system for a sequential secret key agreement based
on 6 performance metrics derived from asynchronously recorded EEG signals using an EMOTIV
EPOC+ wireless EEG headset. Based on an extensive experiment in which 76 participants were
engaged in one chosen mental task, the system was optimized and rigorously evaluated. The system
was shown to reach a key agreement rate of 100%, a key extraction rate of 9%, with a leakage rate
of 0.0003, and a mean block entropy per key bit of 0.9994. All generated keys passed the NIST
randomness test. The system performance was almost independent of the EEG signals available to
the eavesdropper who had full access to the public channel.

Keywords: key distillation; advantage distillation; information reconciliation; CASCADE; EEG;
Wisconsin Card Sorting Test

1. Introduction

The information-theoretic approach to information security has received renewed at-
tention due to recent advances in quantum computing. The central principle of this ap-
proach is simple to formulate: a cryptographic system provides absolute secrecy (information-
theoretical secrecy) of messages, if, and only if, the uncertainty (entropy) of its secret key is
not less than the uncertainty of messages [1]. Systems designed in this way are known to
be resistant to the unlimited computing resources of adversaries, and thus to cryptanalysis
based on the use of quantum computers [2].

Therefore, it can be said that we have entered an age in which the “harvest” of the
uncertainty of every possible type, origin, and place of collection, becomes a priority task
for generating and distributing cryptographic keys with maximum entropy.

In this context, the fundamental results of Ahlsvede and Csiszar [3], Maurer [4], and
Csiszar and Narayan [5] deserve special attention. The basic idea of this approach consists
in extracting mutually correlated signals of sufficiently large entropies.

The following two approaches can be distinguished, based on the location of the
source of uncertainty, ref. [4]:

(i) extraction of signals from sources that are independent of communication channels
(the source model), and

(if) extraction of signals from used communication channels (the channel model).

In this study, we explore the possibility of extracting cryptographic keys from elec-
troencephalography (EEG) signals, applying a source-model-based approach. In our case,
the EEG signals were recorded using the 14-channel EMOTIV EPOC+ wireless EEG head-
set [6,7]. The choice of EEG as a source of randomness was motivated by two factors.

First, the role of the secret-key agreement (SKA) is to ensure the establishment of
symmetric encryption keys for participants who do not possess previously distributed
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identical secret keys. This is typical in some military applications, in which keys cannot be
established through physical distribution, or in scenarios of secret and special operations, in
which participants do not have pre-generated and distributed secret keys. The separation
of functional blocks is a basic principle in the design of professional information security
systems because it minimizes the risk of compromising the entire system by compromising
one part of it. Accordingly, an SKA system should be independent of cryptographic and
telecommunications modules, which excludes the use of the SKA channel model. With
only the SKA source model remaining, using the participant’s biometric signal would be of
great advantage, eliminating the need for an additional random source, as well as the risks
and costs associated with it (development, production, quality control, safe storage, etc.).

Secondly, when choosing the biometric signal, it is necessary to consider the commer-
cial availability, robustness, and functionality of the corresponding sensor system. Among
the candidate biometric signals, which include gait, motion, electromyography (EMG),
electrocardiogram (ECG), and EEG (see review [8]), EEG stands out for its high entropy
content, as well as for the commercial availability of EEG sensors of the required quality
and robustness. The availability of EEG sensors and processing systems is primarily driven
by their main role in modern human-computer-interface systems (see review [9]). In this
regard, the EMOTIV EPOC+ system meets all our criteria.

In Section 2, we provide arguments as to why a set of subjects exposed to a certain
mental task can be considered an example of a single discrete memoryless source (DMS).
Our research was conducted on the EEG signals of 76 participants recorded asynchronously
while solving the Wisconsin Card Sorting Test (WCST) [10,11]. The WCST test has been
chosen arbitrarily and can be replaced by any other task, such as reading a selected text or
viewing a selected image [12].

In Section 3, we analyze the statistical and information-theoretic characteristics of
this information source and identify the most important parameters of each phase of the
proposed SKA, namely: advantage distillation (AD), information reconciliation (IR), and
privacy amplification (PA).

Section 4 presents the results of an extensive experiment to obtain secret keys for all
pairs of participants (76 x 75/2 =2 = 2850 keys), for three types of an eavesdropper (referred
to as Eve): Super evil Eve, Medium evil Eve, and Uninformed Eve. These types cover
the entire range of prior information available to Eve. Section 5 continues by comparing
the obtained results with the performance of related systems described in the available
literature. Section 6 presents the security aspects of the proposed SKA, and the scenarios of
practical application. Finally, in Section 7, we analyze possible approaches for increasing
the secret key rate.

In the Conclusion, we discuss a number of open issues and point out a class of
algorithms for generating and distributing secret keys based on the so-called data exchange
problem [13,14]. Combining this approach with the SKA system presented in this paper
will be the subject of our future research.

2. Virtual DMS Channel Based on a Chosen Mental Task
2.1. Sequential Key-Distillation Strategy

Figure 1 shows a source model for SKA within a scenario in which three parties,
Alice, Bob, and Eve, observe realizations of a DMS. Each of them receives their own set
of observations. Let X, Y, and Z, be Alice’s, Bob’s, and Eve’s observations, respectively.
It is assumed that DMS is beyond the three parties” control, though its statistics may be
known to all of them. Alice’s and Bob’s goals are to agree on a secret key K, based on
their observations X and Y, so that Eve has no information about it. In the SKA scenario, a
public communication channel, through which Alice and Bob can exchange information, is
fully available to all parties, including Eve. It is an underlying assumption that this public
channel is authenticated so that no impersonation is possible.
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Figure 1. Secret-key agreement by public discussion from common information [4].

The rules, under which Alice and Bob calculate the messages exchanged over a public
channel and finally agree on the secret key, define a four-stage sequential key-distillation
(SKD) strategy [4]:

Randomness sharing. Alice, Bob, and Eve observe n realizations of DMS (XYZ, Pxyz),
where Pxyz denotes the joint probability measure of the random variables X, Y, and Z.

Advantage distillation. If necessary, Alice and Bob exchange messages over a public
channel to process their observations and to “distill” the observation parts on which they
have an advantage over Eve.

Information reconciliation. Alice and Bob exchange messages over the public channel to
process their observations and agree on a common binary string.

Privacy amplification. Alice and Bob publicly agree on a deterministic function that
they would apply to their common sequence to generate the secret key.

The secrecy capacity of a public channel is the maximum rate at which information
can be reliably exchanged between legitimate parties such that the rate at which an eaves-
dropper obtains this information is arbitrarily small. The secret key capacity is thus the
maximum length of a secret key that can be sent in the presence of an eavesdropper and
can be defined by

Cy = min{I(X;Y), I(X:Y | Z)}, 1

where I(X;Y) denotes the mutual information between X and Y, while I(X;Y | Z) denotes
this mutual information conditioned by Z. In the special case, when Eve is independent of
Alice and Bob, i.e., when Z is independent of X and Y, the secret key capacity is equal to

Ck max = I(XY). )

The advantage of the SKD strategy is the proven achievement of all secret key rates
lower than the secrecy capacity Cy, as well as its explicit practical implementation [4].

Based on this strong theoretical result, we propose the application of an SKD strategy
to generate random sequences from DMS (XY, Pxy), where observations X and Y represent
six-dimensional performance metrics signals obtained from the EMOTIV EPOC+ EEG
headsets, worn by two subjects, asynchronously engaged in the same mental task (see
Figure 2); Pxy denotes the joint probability measure of random variables X and Y.
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Figure 2. Secret-key agreement by public discussion from EEG signals asynchronously obtained

during the same mental task.

By comparing Figures 1 and 2, it can be seen that the “common random source” in
Figure 1 is replaced by the engagement in the same mental task. Unlike the classical setting
of Figure 1, in which the correlation of the observed data is caused by the underlying
physical phenomena, the observations (X, Y, Z) in Figure 2 are correlated due to the similar
thought processes of the test participants. This correlation structure is invariant to:

e the time and place of the test, and
e the tested subjects,

allowing for the asynchronous acquisition of EEG signals. This property is of particular
importance in practical situations where synchronization is difficult to achieve or would
require additional SKD system complexity and/or resources.

2.2. An Experimental Environment for Recording EEG Signals of the Test Participants

For this work, the data were collected during sessions where participants were using
different computer applications, including the Wisconsin Card Sorting Test. The sensors
used during the sessions included electroencephalography and eye-tracking devices. The
mouse movements and keyboard strokes were also recorded. The human-computer inter-
action monitoring and analytics platform (HCI-MAP) [15], whose architecture is presented
in Figure 3, was used for the collection and synchronization of data (signals, application
events, screenshots, etc.).
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Figure 3. HCI monitoring and analytics platform (HCIL.MAP), ref. [15].
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The electroencephalography signals were collected by the EMOTIV EPOC+ device,
a wireless EEG headset with 14 channels designed for measuring the brain’s cortical
activity [16]. The device uses A/D conversion with sequential sampling at a 128 Hz
sampling rate. Its output frequency band was flat from 0.2 to 45 Hz and was digitally
notched at 50 Hz and 60 Hz to remove interference from the electrical power supply. The
device was connected to the HCLMAP platform using a standard 2.4 GHz Wi-Fi connection.

The sessions were recorded within a study that involved 76 participants, aged 15-25 years,
selected by a random sampling method, see Figure 4. The participants were aware of the
research procedure, including the application of the sensors, and had voluntarily agreed to
take the test. In addition, they were aware that the test would be conducted anonymously:
their records were mixed and stripped of identifying information. The only personal
data stored were gender, age, and educational level. The institutional ethics committee
approved this research following the principles of the Declaration of Helsinki. The subjects
were given a computerized version of the tests. The computer mouse and keyboard served
as additional sensors. The medical criterion for inclusion in the study was the absence of
neurological and psychiatric disorders, including addiction.

Figure 4. An experimental environment with EEG and eye-tracking sensors enabled, ref. [15].

2.3. Acquisition of EEG Signals

As a result of real-time EEG measurement, 6-dimensional time series were obtained
for each test participant, with each variable measuring a different so-called performance
metric [7,17].

It is very important to note that these 6 metrics for the proposed SKA system represent
a six-dimensional source of common randomness. It was derived based on 6 fixed trans-
formations, which were consistently applied in the same way to the 14th channel EEG of
each participant. Therefore, any neuropsychological or neurophysiological interpretation
of these metrics and the question of their reliable connection with the mental states of the
test participants are irrelevant for our system.

Figure 5 shows the recorded signals of Alice, Bob, and Eve, randomly selected among
all 76 test participants.
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among all 76 test participants.
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The signal acquisition was followed by the dimensionality transformation from 6 to
1 dimensions, resulting in a univariate time series for each participant. As it is important
to preserve the correlation structure between the participants, the applied transformation
consisted of simple serialization. Namely, at each sampling point, a buffer accepted a
6-dimensional measurement vector, and then sent its components out serially. The resulting
one-dimensional signals for Alice, Bob, and Eve from Figure 5 are shown in Figure 6.

KT

80 1
60

IRy

20

— Alice

CMA O O A s —

0

20 40 60 80 100

Figure 6. The one-dimensional signals resulting from the serialization of initially 6-dimensional signals of Alice, Bob, and

Eve shown in Figure 5.

From Figure 6, one can see that the pre-processing transformation described above
had indeed preserved the inherent correlation structure of the subjects” performance
metrics signals. Henceforth, this preprocessed signal will be referred to as the “primary
EEG source”.

The next preprocessing step involved quantization of the primary EEG source. This
problem has been frequently examined in the literature, but primarily concerning the
sequential key distillation strategies for the channel model [18-20]. A substantial difference
between the discrete and continuous sources was shown in [21,22] (see Remark 5 in [21]).
For discrete sources, when the data rate over a public channel is greater than H(X 1Y), the
upper limit of the secret key extraction rate can be achieved even without quantization,
by applying Slepian—Wolf coding and the privacy amplification (PA) procedure [23]. On
the other hand, for continuous Gaussian sources, the upper limit cannot be reached for
any finite data rate over a public channel. In [24] (Proposition 5.6), it was shown that
if Xq is a uniformly, finely-enough-quantized version of X, mutual information I(Xq;Y)
approaches the original I(X;Y) exponentially fast with the increase of data rate on a public
channel. Therefore, sophisticated quantization schemes, e.g., TCVQ (trellis coded vector
quantization scheme), make sense only in conditions of limited communication over a
public channel. Since the primary goal of this work was an experimental confirmation of
the proposed concept, without the public channel data rate limitation, we opted for the
simplest scalar uniform quantization.

The Shannon, or block entropy [25], is given by

H,= — Z P(al,az,...,an)logZP(al,az,...,an> (3)

ai1,a2,---,An
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where P(aq,ay,...,ay) is the probability of occurrence of the pattern aj, ay, ..., a, in the

output of an information source. This entropy is known as the n-block entropy. The

normalized block entropy refers to the quantity %, whose asymptotic value li_r>n % is
n—oo

known as the Shannon or block entropy rate. In practice, we are interested in the entropy of
finite sequence x of length N. If one regards finite sequence x as representative output from
some information source, one may estimate P(aj, ay, ..., a,) from the pattern frequencies
observed in x. If x is a binary sequence, the pattern frequencies are equal to the set of all
binary n-grams, while normalized block entropy is equal to normalization to one bit of x.

Figure 7 shows the change in normalized block entropy of the analyzed primary EEG
source, as a function of the number of bits per sample quantized by a uniform quantizer.
This function was calculated for the values of the block length change from 1 to 20.

— H=1
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Figure 7. Normalized block entropies of the analyzed primary EEG source, as a function of the
number of bits per sample, obtained by uniform quantization. Each curve corresponds to one of the
block length values from 1 to 20.

From Figure 7, one can see that an increase in the number of bits per sample (i.e., word
length or bit depth) lead to an initial increase and then a decrease in normalized block
entropy. An increase of the block entropy in the range ny, = [1,7], where ny, is the number
of bits per sample, corresponds to the better description of the information content of the
primary EEG source. The subsequent decay in normalized block entropy in the range
ny, = [8,16] can be interpreted as over-quantization, which introduces additional redun-
dancy in the primary EEG source. Many authors have noticed, see for example [26], that
over-quantization may increase the secret key extraction rate. With this phenomenon in
mind, we decided to design a system operating with two different quantization values:
ny, =5, which corresponds to the under-quantization mode, and n;, = 10 for the over-
quantization mode, and to investigate their impact on the overall system performance.

3. System for Sequential Secret Key Agreement Based on the Primary EEG Source
3.1. Statistical and Information-Theoretic Characteristics of the Primary Source

Figures 8 and 9 show the basic characteristics of the primary EEG sources for ny, = 5
and ny, = 10, respectively. The basic characteristics include the histogram of the signal
sequence length for all 76 test participants and the histogram of normalized Hamming
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distances Dy, of all their pairs. The normalized Hamming distance between two binary
sequences X and Y of the same length is given by the expression

number of non — match bits

Dp(X,Y) =
n(X,Y) number of bits compared

)

250 A
25 1
200 4
20 1

150 A

Count
—
)

Count

100 A
10 1

' - : " : - 0 T T - T r -
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Figure 8. Uniform coding with 5 bits per sample (ny, = 5). Histogram of EEG sequence lengths for all participants (left) and
histogram of normalized Hamming distances of all pairs (right): total sequence length 1,006,560 bits; mean and dispersion
of normalized Hamming distances is (0.41 +/— 0.036).

251

20 A

Count

101

\

200 1
1751
1501
= 1251
c
Q

© 100 4

751

501

251

0 T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

T T T T T T
10000 20000 30000 40000 50000 60000

Figure 9. Uniform coding with 10 bits per sample (ny, = 10). Histogram of EEG sequence lengths for all participants (left)
and histogram of normalized Hamming distances of all pairs (right): total sequence length of 2,013,120 bits; mean and
dispersion of normalized Hamming distances is (0.31 +/— 0.031).

For sequences of different lengths Dy, is calculated based on the expression:

Dn (x1,X2, -+ Xn,¥1,¥2, - - - ;ym) = Dy (X1,X2, - . Xp,y1,¥2, - - - ,¥p), p = min(n,m).  (5)

In this way, we minimized the rejection of available data during the SKD operation
and evaluation of its performance on all of the pairs of participants. Assuming that the
primary EEG source sequences consist of binary iid random variables, the conditional
entropy H(X 1Y) and the mutual information I(X,Y) become:

H(XTY) = hy(Dn(X,Y)), I(X,Y) = H(X) — h,(Dp(X,Y)) (6)

where hy, is the binary entropy function,

hy(p) = —plog,(p) — (1 —p)log,(1 —p), p € [0,1]. @)

Given that the function hy, is monotonically increasing in the range [0, 1/2], Dy, (X, Y)
measures well the maximum extraction rate of secret keys Ck, given by Equation (1), for a
fixed amount of information that Eve has about sequences X and Y.

Recall that in the case of random and completely independent sequences, the his-
togram of their mutual normalized Hamming distances is narrowly centered around the
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value of 0.5. To be convinced of this statement let S; be the binary random variable denoting
whether two binary strings X and Y of length p, differ in position i. These p random variables
are independent, with equal probability of 0 and 1, i.e., Prob{S;= 0}= Prob{S;= 1} = 1. By
linearity of mathematical expectation,

E{S1+S+...+Sp} = E{S1}+E{S2}+... + E{Sp} =
1/2+1/2+...+1/2=p/2. Consequently,

p_1

1
E{DL(X,Y)} = E1~:{sl+sz+...+sp} = 5

o | =

By comparing the right-side histograms in Figures 8 and 9, a shift towards smaller
normalized Hamming distances (i.e., smaller differences between the signals) can be
observed. This again shows that over-quantization introduces additional correlation to
the ensemble of realizations of the primary source. As the sampling rate for the EMOTIV
EPOC+ device was 2 samples per second, it follows that the test duration ranged from 83
to 500 s, with a mean value of approximately 250 s.

3.2. Eavesdropper Model

Since the experimental evaluation of the system was performed on a group of partici-
pants, we can distinguish three typical scenarios from the point of view of an eavesdropper
(Eve), according to the degree of available prior information about the primary source.

1.  The eavesdropper is an insider who not only knows who Alice and Bob are but also
has all the EEG signals of the test participants, except the signals of Alice and Bob.
Additionally, the attacker on the system knows which of the participants’ signals is
closest (most similar) to the signals of Alice and Bob. So, for each pair (Alice, Bob),
the attacker can adaptively choose Eve, who is the closest to Alice and Bob in terms
of the normalized Hamming distance. This, theoretically and practically, imposes the
most difficult conditions for extracting secret keys, about which Eve should not have
any information. Therefore, this type of eavesdropper is colloquially named “Super
evil Eve”-SE.

2. The eavesdropper does not know who Alice and Bob are, so he chooses Eve whose
position is equally distant from all participants in terms of the normalized Hamming
distance, which is equivalent to a centroid of a cluster that encompasses the entire
population. Therefore, we colloquially called this Eve the “Medium evil Eve”-ME.
For the analyzed primary source, ME corresponds to subject N° 62, see Figure 10.

3. The eavesdropper has no specific information about the primary source, except that
it consists of EEG signals obtained by the EMOTIV EPOC+ device. The optimal
strategy for the attacker, in this case, is to record his EEG signal and participate in
the protocol with it as Eve. We colloquially called this Eve “Uninformed Eve”-UE.
In the conducted experiments, UE is a subject outside the group of test subjects,
whose EEG was recorded during the observation of one image, more precisely the
reproduction of the famous icon, the “White Angel”, from the Serbian medieval
monastery, MileSeva [12,27] for 768 s. Within the conducted cluster analysis, this
subject is referred to by numeral 76, see Figure 10.

Figure 10 shows the dendrogram for hierarchical cluster analysis of the primary source
signal, constructed by Ward’s method [28]. The input to the clustering procedure is a matrix,
formed by the normalized Hamming distances. One can note that the subject UE does not
differ significantly from other test participants, although his EEG signals resulted from a
completely different mental task.
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Figure 10. Dendrogram for hierarchical cluster analysis of the primary EEG signals of all test participants, formed by Ward’s
method. “Medium evil Eve”-ME and “Uninformed Eve”-UE are marked by their acronyms, and encircled in orange and
blue, respectively.

3.3. Structure of the Proposed SKD System

Figure 11 shows the basic block structure of the proposed SKD system. The ultimate
goal of the system is to ensure that the final secret keys of the legitimate participants
in the protocol (Alice and Bob) be identical, K4 = K, while Eve’s key Kr should not
carry any information about them. Following the basic Kerckhoffs principle-security is
not obscurity [29], Eve knows all the elements of the system and all the parameters of
individual subblocks. In [4] it is shown that the optimal strategy for Eve is to repeat the
same actions that Alice and Bob agree on over a public channel. Serialization and uniform
quantization are followed by advantage distillation, information reconciliation, and privacy
amplification. PA is realized by applying a selected family of universal hash functions. At
the end of the system operation cycle, Alice and Bob share an identical secret key, K4 = K,
while Eve’s key, Kg, does not carry any significant information about them.

dvantage
Distillation
(BPAD,
BP ADD

Information
Reconcilation
CASCADE

Universal
Hashing

Uniform
Quantization

Alice T
Serialization

F

= Advantage Inf i
Bob {% Serializati Uniform Distillation Rgcz;n;?alt?;n Universal
erialization e :
Quantization CASCADE Hashing Kg
Eve ializati Uniform Distillation Rlnform_?t;(_)n Universal
Serialization Quantization econciaion Hashing
CASCADE Kg

Figure 11. Structure of the proposed SKD system based on asynchronous EEG signals of the participants. Communications
over the public channel are marked in green.
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3.3.1. Advantage Distillation (AD)

In the general case, it is necessary to assume that Eve has an initial advantage over
Alice and Bob, i.e., that the normalized Hamming distance between Eve’s string and the
one of Alice (or Bob) is less than the normalized Hamming’s distance between Alice’s and
Bob’s strings. The goal of the advantage distillation (AD) phase is for Alice and Bob to
exchange messages over a public channel, which will result in reversing the advantage in
their favor.

Several AD algorithms have been reported in the literature. The most widely known
among them are the bit-pair (BP AD) protocol [30] and the more recent bit-pair advantage
distillation/degeneration protocol (BP ADD) [31]. The main difference between these
two protocols is that, unlike BP AD, BP ADD not only reduces the normalized Hamming
distance between Alice’s and Bob’s sequences but also increases the distance between Eve’s
and Alice’s (Bob’s) strings [32].

Below is a description of the AD (Algorithm 1) and ADD (Algorithm 2) protocols. Xi
and Yi denote the i-th bit of sequences initially owned by Alice and Bob, respectively.

Algorithm 1 Bit Parity AD protocol

1: Alice and Bob group napy bits into 2-bit blocks.
: Alice and Bob compute the parity bits of these blocks,
{Xoi11 ®Xai421i=0,1, ..., [ P42 ]| -1},
3: Alice sends LHAZDOJ parity bits to Bob over the public channel. If the parities match, Bob
announces OK on the public channel.
4: Both Alice and Bob keep the first bits of these selected 2-bit blocks to form a new, shorter
string, which serves as the input bit string for the (s + 1)th round

Algorithm 2 Bit Parity ADD protocol

1: Fork =1,2,..., Alice computes Cy= Xpr_1 @ Xy and sends Cy to Bob; Bob computes
Di= Yok_1 @D Yok and sends Dy to Alice.

2:  If Cy # Dy, Alice deletes X1 Xy from X and Bob deletes Yo _1Yoi from Y. If Ci .= Dy,
Alice judges whether Xy, = 1 holds or not; if Xy = 1, Alice deletes X1 from X, otherwise,
Alice deletes Xy from X. Similarly, Bob judges whether Y, = 1 holds; if Y, = 1, Bob
deletes Y1 from Y, otherwise, Bob deletes Y5 from Y.

The efficiency of the BP AD and the BP ADD protocols can be assessed from Figures 12-15,
which show the evolution of the distribution of the corresponding normalized Hamming
distances during the first two iterations of these protocols. Iteration 0 (colored in blue)
denotes the initial distribution of the normalized Hamming distances of the available
primary source sequences. By comparing the mean values of these distributions at the end
of the second iteration (green), for the BP AD protocol (Figures 12 and 13) and the BP ADD
protocol (Figures 14 and 15), it is readily seen that Alice and Bob achieved a significant
advantage over Eve with the BP ADD protocol. It will be further confirmed through a
complete experimental evaluation.
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Figure 12. Evolution of the distribution of the normalized Hamming distances between Alice’s and Bob’s sequences during

two iterations of the BP AD protocol.
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Figure 13. Evolution of the distribution of the normalized Hamming distances between Alice’s and Eve’s sequences during

two iterations of the BP AD protocol.



14 of 25

Entropy 2021, 23, 1327
1200 . iter0
B iterl
. iter2

1000

800

600

Frequency

400

200

0
0.00

0.05

0.10 0.15 0.20 0.25 0.30 0.35 0.40
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Figure 15. Evolution of the distribution of the normalized Hamming distances between Alice’s and Eve’s sequences during

two iterations of the BP ADD protocol.

3.3.2. Information Reconciliation (IR)

After the AD phase, Alice knows much more about Bob’s sequence than Eve. The
goal of the IR phase is for Alice to get the full and exact knowledge of Bob’s sequence.
All protocols of this class use an iterative procedure for detecting and correcting errors
(discrepancies) in Alice’s and Bob’s sequence, based on two-way communication over a
public channel. After the detection and correction of all errors, Alice’s and Bob’s sequences
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exactly coincide, fulfilling the objective of this phase. Although a whole family of IR
protocols has been developed based on powerful error-correcting codes, such as low-
density parity-check codes [33], here we opted for one of the most widely used and
most efficient IR algorithms, the so-called Cascade protocol (Algorithm 3), first proposed
in [34]. It is generally believed that this protocol provides significantly less information
to Eve about the common sequence extracted by Alice and Bob, compared to complex
error-correcting algorithms. This protocol has found wide application in the domain of
quantum key distribution, and, as such, has been continuously improved and optimized.
In this paper, we used an implementation described in [35] and its associated GitHub
repository [36].

The Cascade information reconciliation protocol proceeds in several iterations. Alice’s
and Bob’s sequences are divided into blocks in each round and the parity of their blocks is
compared, which allows the finding and correction of an error in the event it occurs. The
number of iterations and the block size of the first iteration is determined by Alice and Bob
before execution.

Algorithm 3 Cascade protocol

Input: A, B %keys of Alice and Bob

Output: K %reconciled key

1: In the first iteration, Alice and Bob divide their strings into blocks and Alice sends the
parities of all her blocks to Bob

2:  Bob calculates his parities and proceeds with the binary algorithm (Algorithm 4)

3: At the beginning of every other iteration, Bob needs to reshuffle bits of his key and repeat
steps 1 and 2, but using larger blocks, new block size = 2 old block size

4: Corrected bits will cause a cascade effect on the shuffled blocks from earlier iterations, so we
go back and apply the binary algorithm to those blocks

5:  Repeat steps 3 and 4 until the number of iterations is reached

Algorithm 4 Binary algorithm

When blocks of keys A and B have different parity:

1:  Alice divides A into two halves and sends Bob the parity of the first half of A

2: Bob divides B in the same way and compares the parity with Alice’s to determine which
half contains an odd number of errors

3:  Apply these two steps repeatedly until an error is found.

Examples 1, 2, and 3 illustrate the operation of the AD, ADD, and Cascade protocols,
respectively.

Example 1 Bit Parity AD protocol

Input: A =1101000111011001001000100111111101
B =1100001000111010101000010110010010
1. A=11101100101111101110101100110100110101111111111101
B=11100100110100111110110110110100101101110101100110
23 A=1116%10010111116411010110611010011010114F14+111101
B=1116810011010014+11011014811010010110114816%+100110
4. A =100110101010
B =101011100001
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Example 2 Bit Parity ADD protocol

Input: A =0100000011010100101101001100101100
B =1010001100110111011000000000000011
1: A=01100100100111101101100110111101100111100110111100
B=10110100111100111101111101110100100100100100100111
2: A=0116610010011116%10110011014+16%100111100146111100
B=10114810011110014+101111101118188100100100168100111
3: A =100110101010
B =101011100001

Example 3 Cascade protocol

End of N-1 iteration:
A=100110101010
B=101011100001

We want to correct the yellow bits.

Shuffle
Iteration N Iteration N

By =110011011000  shuffled key 250
By =1100 1101 1000 5-1
Ask parity message: Z : ;
e 1100 - unshuffled key indexes=2,5,7,1 — correct 44
parity =0 131 : 65

e 1101 - unshuffled key indexes =4,11,3,6 — correct 6—7
parity =1 100:89

¢ 1000 - unshuffled key indexes =0,10,9,8 — correct 9510
parity =1 8§11

For all top-level blocks of B in this iteration parities are the same as the parities of correct
bits. In this cascade iteration we do nothing.
Iteration N+1

By =101001010 1  shuffled key

Shuffle
By=101001 010011 Tteration N + 1
Ask parity message: 50
e 101001 - unshuffled key indexes =5,9,0,10,7,2 — g:;
correct parity =0 10-3
e 010011 - unshuffled key indexes =8,6,1,3,11,4 — Z:g
correct parity =0 8—6
Both top level blocks of B in this iteration have different parity from 67
correct parity. One bit from each block will be corrected. :1% : g
Bng =0010011100 11 red bits are corrected 11— 10
4—-11

Change in this iteration of the algorithm directly affect the previous
iteration.

By =100011011001

Two top-level blocks from iteration N do not have correct parity. Therefore, two more
bits can be corrected.

By=000011011101

We repeat the process until the number of iterations is reached or we corrected all bits.
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3.3.3. Privacy Amplification—(PA)

During the execution of any IR protocol, observation of the public channel provides
some partial knowledge to Eve about the common sequence extracted by Alice and Bob.
Therefore, the last step in the SKD strategy is the application of an appropriate transforma-
tion, which will reduce Eve’s information to a negligible amount. Suppose that, during
the Cascade protocol execution, Eve received a set of information about the parity of the
individual blocks of the final common sequence. From the point of view of cryptanalysis,
this is equivalent to a kind of algebraic attack, in which the attacker can compose a set of
linear equations (corresponding to each parity query) over the unknown bit values of the
common sequence. The dominant approach in the design of PA algorithms is based on the
well-known leftover hash lemma [37]. It provides an answer to the question of whether
a cryptographic key of length 7, about which the opponent knows the values of some ¢
bits (t < n), can still be used or must be discarded in favor of a new key. The answer is
that we can use such a partially compromised key and, by appropriate transformation,
produce a key of length around n-t bits, about which the opponent knows almost noth-
ing. In [37] it was shown that the mentioned transformation can be any hash function
g:{0,1}" — {0, 1}k from the so-called universal class of hash functions (here k is the
length of the output hash string). In the experimental evaluation of the proposed SKD
system, we used a universal class of hash functions, given by

H :{hM: M € GP(Z)kX“}, )

where M denotes a binary matrix of dimensions k x 1, while all operations are performed
in a two-element Galois field, GF(2). If n,, is the number of parity queries exchanged over
the public channel during the execution of the Cascade protocol, then the inequality 1, > ¢
holds, where t is the number of bits of the Alice-Bob common sequence that Eve can know
after completion of the IR phase. In the worst-case scenario, Eve gains knowledge of one
bit of the Alice-Bob common sequence for each new parity query. In this case, t = n;,, and
therefore dimension k of matrix M in Equations (9) and (10) becomes:

k=n-—np. (11)

Since the starting key length and the number of parity queries are known (values n
and nyp), k is also known, so the hash functions given by Equations (9) and (10) can be
calculated and applied, giving a final common Alice-Bob secret key. According to the
leftover hash lemma, this results in Eve’s key Kf carrying negligible information about the
established common final secret key K4 = Kp between the legitimate parties, Alice and Bob.

4. Results

The proposed SKD system was tested on two types of primary EEG sources, obtained
for two quantization values: 1, = 10 and n;, = 5 bits per sample. In the context of advantage
distillation, two variants of SKD were tested, the first with the BP AD algorithm and the
second with the BP ADD algorithm, henceforth abbreviated as AD and ADD, respectively.
The tests were performed on all 76 x 75/2 = 2850 pairs of subjects, for two quantization
variants and all three types of Eve (EE, ME, UE). The number of the AD algorithm iterations
was set at 1, = 2. It has been shown in practice that this number of iterations was sufficient
to achieve a significant advantage for Alice and Bob over all Eve types. The selected
value of the parameter 7, is a trade-off between maximizing the advantage over Eve and
minimizing the resulting loss of sequence length at the output of the AD stage.

In all quantization and advantage distillation variants, the Cascade IR algorithm was
used with the maximum number of iterations 7. = 4 and the initial parity testing block
length ny,c = 8. The cascade algorithm terminates its operation when Alice’s and Bob’s
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sequences become equal. The mean value of the number of iterations needed to achieve
this equality is denoted by nc.

The system performance was measured by the following indicators, see Tables 1 and 2:
final key length,

the total length of final keys,

key rate (KR),

IR efficiency,

the final normalized Hamming distance between Alice’s and Eve’s keys,

key agreement rate (KA),

leakage rate (LR), and

mean block entropy.

Table 1. Results for AD protocol.

Parameter na=2nc=4nblock =10 nb =10 na=2nc=4nblock=10nb =5
Type of Eve EE AE UE EE AE UE
nc mean 2.27 2.26 2.27 2.57 2.59 2.56
Final key length 1301.55 129053  1301.76 243.04 24248 243.30
(mean,std) +502.16 +496.85 +50244 +138.77 +139.26 +137.28
Total lerﬁg}; offinal  5o00 416 3581203 3710007 587,184 569,341 587,576
Key rate (KR) [%] 4.79 4.75 4.79 1.79 1.77 1.79
Leakage rate 0.0006 0.0006 0.0006 0.0058 0.0053 0.0057
& +0.0010 4+0.0010 +0.0010 £0.0198 +0.0170 =+ 0.0168
IR efficienc 1.17 1.17 1.17 1.17 117 1.17
y +0.05 +0.05 +0.05 +0.05 +0.05 +0.05
Final normalized 0.4997 0.5005 0.4999 0.4997 0.5003 0.4988
Hamming (A,E) 400147 400149 400147 400527 40.0495 =+ 0.0487
Key agreement rate
N 100 100 100 84.77 84.61 84.74
(KA) [%]
Mea&b:lo[clkfé‘]t)mpy 09989 09988 09989 09926 09924 09927

Table 2. Results for ADD protocol.

Parameter na=2nc=4block=10nb =10 na=2nc=4block=10nb =5
Type of Eve EE AE UE EE AE UE
nc mean 1.37 1.37 1.37 1.92 1.93 1.92
Final key length 245428 243594  2454.09 739.12 743.11 738.29
(mean,std) +819.68 +81147 +81952 £297.97 +£30032 -+ 29851
Total 1e111§;1; offinal o o91706 6759745 6,994,143 2,103,530 2,059,898 2,104,116
Key rate (KR) [%] 9.04 8.96 9.04 5.44 5.44 5.44
Leakage rate (LR) 0.0003 0.0003 0.0003 0.0013 0.0012 0.0013
cakage rate +0.0005 4+0.0005 =+0.0006 =+0.0022 +£0.0024 =+ 0.0027
IR efficienc 3.63 3.60 3.63 1.86 1.85 1.86
Y +2.11 +2.11 +2.11 +0.63 +0.62 +0.63
Final normalized 0.4998 0.4999 0.5005 0.5002 0.5000 0.5000
Hamming (A,E) +0.0106 +0.0107 +0.0109 £0.0209 =£0.0200 = 0.0210
Key agreement rate
100 100 100 99.86 99.89 100
(KA) [%]
Mean block entropy

(k = [1, 20]) 0.9994 0.9994 0.9994 0.9979 0.9979 0.9979
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The key rate is given by

_ total length of (-estabhshed keys 100 [%] (12)

total length of input sequences

and the information reconciliation efficiency is defined as

m m

IR efficiency = = (13)
” TH(AJB) ~ nhy (D, (A B))

where m is the total number of bits exchanged over the public channel during the IR phase,
n is the length of strings at the beginning of the IR phase, and #;, is the binary entropy
function defined in Equation (6). In fact, it is the relationship between the exchanged
number of bits and the theoretical minimum number of bits, established in [38]. This ratio
has a minimum value of 1, corresponding to an optimal IR procedure based on Slepian
Wolf’s optimal source coding of correlated sources. At the same time, this quantity is a
form of measure of the so-called communication complexity of the IR protocol.
The final normalized Hamming distance is given by:

Final normalized Hamming (A, E) = D, (Ka, Kg) (14)

i.e., represents the normalized Hamming distance between the final Eve’s and Alice-Bob’s
keys. Ideally, these keys must be statistically independent. Then, according to Equation (8),
the expected value of (14) is equal to 0.5.

The key agreement rate (KA) is calculated according to the expression

__number of successful key establishment (K y = Kp)

KA -100 [%] (15)

total number of attempts

The leakage rate measures the amount of information per bit contained in Eve’s keys
about Alice and Bob’s common keys:

LR = [(X;Z)=1— hy (D, (A E)) (16)
The mean block entropy is given by

k=20
Mean block entropy :% Y Hy (17)
k=1

where Hy, is a block entropy of order (block size) k, given by Equation (3). This quantity
measures the degree of uncertainty of the established keys. Figure 16 shows the change in
Hy for order k in the range from 1 to 20 for all 6 variants of the tested SKD systems.

As for the degree of randomness of the generated keys, it is common to use a selected
battery of statistical tests.

Table 3 shows the results of the randomness tests of key sequences obtained by the AD
and ADD protocols. The randomness tests are based on the statistical test suite developed
by the US National Institute of Standards and Technology, NIST, ref. [39]. The outcome of
each experiment is represented by the p-value as shown in Table 3. An individual test is
considered to be passed successfully if the obtained p-value is higher than the threshold of
0.01. Following the obtained results, it was shown that the AD and ADD key sequences
met the defined randomness criteria in all presented tests.
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Figure 16. Block entropy of final keys obtained by the proposed SKD quantization system withny, =5
and with ny, = 10 bits for all three types of Eve (EE, ME, UE).

Table 3. Randomness test results of the AD and ADD key sequences. The tests are based on the
statistical test suite developed by NIST, and results are presented in terms of P-values. Initial
letters indicate test names: F-frequency, BF-block frequency, R-runs, LR-longest run, FFT-fast Fourier
transformation, S-serial, AE-approximate entropy, CSf-cumulative sums forward, CSr-cumulative
sums reverse. Both tested sequences have the same length of 12 million bits.

F BF R LR FFT S AE Csf CSr
AD 09114 0.5341 03504 05341 09914 0.7399 05341 0.7399  0.0668
ADD 0.0351 0.7399 0.3504 0.0088 0.7399 0.7399 01223 0.7399 0.2133

Based on all the data presented in Tables 1-3, the following conclusions can be drawn.

a. The SKD system based on 10-bit quantization is significantly better than the one
based on 5-bit quantization. The average KR for all Eve types for the AD protocol is
4.78% for 10-bit quantization and 1.78% for 5-bit. Consequently, the 10-bit AD gives
an advantage approximately 2.7 times higher than the 5-bit AD. In the category of
ADD protocols, the same indicators are 9.01% for 10-bit quantization and 5.44 for
5-bit, which is an advantage of approximately 1.6 times for the 10-bit ADD.

b.  The key agreement rate (KA) is 100% for 10-bit quantization, regardless of the type
of AD protocol.

C. The quality of cryptographic keys for all tested variants of the proposed SKD system
is approximately the same and meets the highest cryptographic criteria, both in
terms of randomness (confirmed by the NIST test, see Table 3) and in terms of low
information leakage. The expected value of the normalized Hamming distance
between Eve’s and the legitimate keys is almost 0.5, see Tables 2 and 3, indicating
strong statistical independence.

d.  The price paid for the high KR obtained by the ADD protocol is an increase in
communication complexity: average IR efficiency = 3.62, compared to an average
value of 1.17 for the AD protocol and 10-bit quantization. Note that the IR efficiency
for the AD protocol is close to unity, i.e., to the optimum value.
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e. The fact that the efficiency of the system depends little on the attacker is fascinating.
It can be seen from the extremely small variations of performance indicators for all
three types of Eve (EE, ME, UE), for the given quantization and AD settings. This
phenomenon can be explained by the fact that the AD protocols look for parts of
Alice’s and Bob’s signals which tend to be more similar to each other than to Eve’s
signals. The AD protocols seem to find these parts because patterns in the primary
EEG source are clearly expressed, invariant to individual variations. This mechanism
also explains why asynchronous EEG signals can achieve a high KA rate.

5. Comparison with Related Works

Direct comparison with available studies is not possible because, so far, the EEG
signal has not been used to solve the SKA problem. The dominant use of EEG in the field
of security is for application as a biometric signal with the simultaneous generation of
cryptographic keys, available after successful authentication [40]. Although these systems
are not comparable with the proposed SKA system, primarily because the secret key
distribution phase is missing, it is worth mentioning that state of the art systems of this
class can generate keys of up to 192 bits with FAR/FRR parameters equal to (0.18%/0.18%),
ref. [41].

Indirect comparisons can be made with those studies proposing an SKA based on a
source of randomness (source model) derived from other bio-signals, whose sensors have
similar functionalities to the EEG sensor. In [42,43], the Walkie-Talkie system is presented.
It is a shared secret key generation scheme that allows two legitimate devices to establish a
common cryptographic key by exploiting users’ walking characteristics (gait). The intuition
is that the sensors on different locations on the same body experience similar accelerometer
signals when the user is walking. Experimental results show that the keys generated by
two independent devices on the same body can achieve up to 26 b/s, which requires
approximately 5 s of walking. We should keep in mind the non-comparability of this result
with the performance of our system since secret keys are established in the same physical
place (the body of the subject), which is equivalent to the absence of distribution of the
established secret key, similar to the previously mentioned class of biometric EEG systems.

The closest in concept to our system is the system proposed in [44], in which the source
of common randomness is the ECG signal, but without the presence of an attacker (Eve).
The authors present empirical results of the secret key generation speed of approximately
2 b/s, without testing the final keys for randomness.

It follows that the proposed SKA, based on asynchronous EEG signals of participants,
is superior in all parameters (key generation speed, probability of successful key agreement,
cryptographic quality of established keys, communication efficiency) to any published
system of the same class.

6. Security Issues and Application

The proposed SKA system is based on the three-step SKD algorithm, for which
information-theoretical security has been proven. Therefore, the key K established in this
way, of length |K| = k bits, has a maximal uncertainty of H (K) = k bits, which cannot be
overcome by solving associated mathematical problems, but only by the exhaustive search
of all 2% possibilities. Since it was experimentally confirmed that the value of the final
normalized Hamming distance (14) is close to the ideal value of 0.5 (see Tables 1 and 2), it is
impossible to perform the so-called related-keys cryptanalytic attack, because all generated
keys are uncorrelated.

The separation of the source of common randomness, and thus the SKA system
from the cryptographic and telecommunication module, enables an offline procedure of
generating keys at a time that suits the users. EEG signal recording can be performed in
a secure environment, whose level of security depends on the situation and application
scenario. It can vary from the absolute secure level (e.g., a professional Faraday cage
inside of a controlled security perimeter), down to ad hoc solutions in the field. The
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public authenticated channel, over which the AD and IR part of the SKD protocol is
performed, can be any channel (for example, the Internet) on which the participants were
previously authenticated.

Since it is an asynchronous offline system, the question of the secret key agreement
rate is not a critical parameter.

Below are examples of two usage scenarios of our SKD system with a 9 b/s secret
key rate:

Example 4.

Assignment. Transfer one page of printed text absolutely secretly (guaranteed informa
tion-theoretical security).

The solution. Assuming that the average printed page of text has 20,000 bits, it is
necessary to apply the Vernam cypher with a one-time cryptographic key of the same
length [1]. For this, we need 20000/9 = 2222 s of recorded EEG signal, which is approxi-
mately 37 min. A 37-min EEG recording session can be performed at both communication
parties, at any time before the cypher text is generated and sent.

Example 5.

Assignment. Supply a pair of cryptographic devices with cryptographic keys, whose
symmetric encryption algorithm has a key length of 500 bits.

The Solution. We need 500/9 = 56 s of recorded EEG signal, which is under one minute.
Therefore, it is necessary to record 1 min of EEG signal at both communication parties, any
time before starting secure communication. Note that a professionally designed symmetric
encryption system, whose secret key is 500 bits long, can work securely for a very long
period of time in a normal mode of use, without the need to change the secret keys.

7. How to Increase the Secret Key Rate

In order to increase the KR, several different approaches are possible depending on
the purpose of the entire cipher system.

Scenario A-Hybrid system: SKA source model + SKA channel model

After the completion of the off-line procedure for secret keys agreement with the
proposed SKD system, encrypted communication on the main communication channel will
begin. If an additional SKD based on the Channel model is designed (SKA_ChMod), then
the equivalent KR is significantly increased, given the typical KR values for SKA_ ChMod
systems (see overview of the channel models, ref. [20]). This approach would be especially
effective if the main channel is wireless. The downside of this approach is the exposure of
the SKA_ChMod procedure to electronic jamming, which, in critical conditions (e.g., war
actions), can completely fail.

Scenario B-Change of primary EEG source

In this scenario, the SKA remains in the off-line mode of operation, retaining all the
positive properties, such as robustness and high reliability. Because KR is limited by the
secrecy capacity, given by (1), its increase is possible by changing the source of common
randomness, for which the Ck is as large as possible. In our case, this would mean finding
new transformations of the original EEG signals for which the resulting primary source
would have a higher Ck. Within this approach, it is also possible to add new biometric
sensors as sources of common randomness (for example ECG, gait sensors, etc.), under
conditions that do not reduce the functionality of the entire system.

Scenario C-Elimination of eavesdroppers

When Eve is independent of Alice and Bob, i.e., when Z is independent of X and Y,
the secret key capacity is equal to its maximum value (2). We can view this phenomenon as
a form of elimination of Eve, which potentially creates the possibility of increasing KR.

Here is an example of a practical scenario for eliminating Eve. Imagine that the primary
source for legitimate users Alice and Bob is formed on the basis of the transformation T;,
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from the set of transformations T, with the property that any two elements of this set give
mutually uncorrelated (orthogonal) outputs. More precisely,

(TZ(X)/TZ( )) >0, Vi
[(T{(X); Tj(Z)) =0, Vj #1i (18)
I(T(Y)Tj(2)) =0, ¥j #i

If Alice and Bob choose the transformation T; secretly (e.g., based on previously
exchanged secret keys), then Eva’s observations Z with probability (Card(T) —1)/Card(T)
are independent of X and Y, where Card(T) is the number of elements in the set T. For
example, if we generate transformations T by deep neural networks with millions of
continuous parameters, this probability is both theoretically and practically equal to 1.

8. Conclusions

The paper presents a class of SKD systems whose inputs are so-called performance
measures derived from asynchronously recorded EEG signals of communication parties.
Experimental evaluation shows that careful selection of system parameters can give a
key agreement rate KA = 100%, and a secret key rate up to KR = 9%, with good random
properties, and little leakage of information (LR = 0.0003) to a potential attacker on the
system. The system shows low sensitivity of performance to variations of the EEG signal
of Eve (attacker), which confirms the hypothesis about the importance of synchronicity of
legitimate participants, achieved by efficient AD protocols.

Our future research will be focused on reducing the communication complexity of the
proposed system, and on its possible combination with other approaches for the extraction
and distribution of cryptographic keys, primarily based on the so-called data exchange
problem [13], as well as on the further improvement of the system in the domains of local
randomness generation [45] and biometric applications [46].
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