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ABSTRACT
Spirobranchus kraussii (Annelida: Serpulidae) was recognized as being widely dis-
tributed both in the Pacific and Atlantic Oceans. However, the sampling records far
from its type locality (South Africa) have been questioned. Actually, recent molecular
phylogenetic studies showed that S. kraussii contains genetically distinct species. In
this study, we performed molecular phylogenetic analyses of S. cf. kraussii collected
from Japan using the nucleotide sequences of a mitochondrial gene and two nuclear
genes. Three lineages were recovered within Spirobranchus kraussii-complex in Japan,
and one (Spirobranchus sp. 6) showed moderate genetic difference (approximately 4%)
in the mitochondrial cytb gene sequence from Spirobranchus sp. 1, an undescribed
sequenced species from Honshu Island, Japan. However, the nucleotide sequences of
the 18S rRNA gene and ITS2 regionwere nearly indistinguishable. The other lineagewas
clearly distinct from the other previously sequenced species and is thus considered to be
another distinct species of this species complex (Spirobranchus sp. 5). Although detailed
morphological assessment of these lineages is necessary to define their taxonomic status,
the present study provided further implications for the species diversity within the S.
kraussii-complex.

Subjects Marine Biology, Molecular Biology, Zoology
Keywords Phylogeography, Polychaetes, Ryukyu Islands, Tokara Gap, Species complex

INTRODUCTION
Recognizing precise species boundaries is required to soundly conduct applied studies,
such as conservation and ecological studies (Mace, 2004). Although distinguishing
morphologically similar species has been challenging for biologists (Winker, 2005; Bickford
et al., 2007), the use of low-cost DNA sequencing techniques has made it much easier.
These techniques are useful for examining widely distributed species that may tend to
contain two or more genetically distinct species. Marine organisms have been especially
suggested to commonly contain cryptic species (Knowlton, 2000; Nygren, 2014).

The Japanese Archipelago is known to harbor rich species diversity in marine
environments, involving many annelid species (Fujikura et al., 2010). The type localities
of some Japanese annelids are far away from Japan and thus they have been treated
as cosmopolitan species (Imajima & Hartman, 1964; Imajima, 1996). However, recent
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molecular phylogenetic studies or DNA barcoding on these annelids have provided
growing evidence that they contain genetically distinct species, for example, in Capitellidae
(Tomioka et al., 2016), Dinophiliidae (Jimi et al., 2020), Marphysa spp. (Eunicidae) (Abe
et al., 2019), Maldanidae (Kobayashi et al., 2018), Nereididae (Tosuji et al., 2019), and
Spionidae (Simon, Sato-Okoshi & Abe, 2019). Many other cosmopolitan annelids remain
to be tested by a molecular phylogenetic analysis or DNA barcoding.

A serpulid species Spirobranchus kraussii (Baird, 1865) was recognized as a cosmopolitan
species ranging from South Africa toHawaii, through the IndianOcean, theMediterranean,
China, and Japan (Pillai, 1971; Imajima, 1996; Fiege & Sun, 1999; Coles & Eldredge, 2002;
Çinar, 2006; Belal, 2012), although the records from the areas far from its type locality
(South Africa) were questioned (Çinar, 2013; Hutchings & Kupriyanova, 2018). Indeed, S.
cf. kraussii from the Japanese coasts has been suggested to be a different species because
the morphology of uncini (comb-shaped chaetae) differs from that of the type specimen(s)
of S. kraussii (Imajima, 1996). Recent molecular phylogenetic analyses in Simon et al.
(2019) suggested that only South African specimens are S. kraussii and those from the
other countries, including Manazuru, Honshu Island, Japan (Fig. 1), are different species.
Japanese specimens of the S. kraussii-complex are temporarily referred to as Spirobranchus
sp. 1 because it is clearly unnamed and undescribed (Simon et al., 2019). Spirobranchus
sp. 1 has been recorded from a wide range of the coastal area in Japan, that is, Honshu
Island to Okinawa Island, Ryukyu Islands, based on morphological observations (Nishi,
1993; Imajima, 1996) (Fig. 1). Intra-specific genetic divergences have been documented
for coastal invertebrates between the Honshu and Ryuky Islands (Ogoh & Ohmiya, 2005;
Kojima et al., 2006; Kawane, Wada & Watanabe, 2008; Yamada, Furukawa &Wada, 2009;
Yamazaki et al., 2017), using the nucleotide sequences of mitochondrial DNA. Considering
the background of the genetic differentiation between Honshu and Okinawa Islands,
Spirobranchus sp. 1 on these islands may include unstudied genetically distinct lineages or
species. However, molecular data of Spirobranchus sp. 1 are limited to the mitochondrial
cytochrome b (cytb) gene and nuclear 18S rRNA gene sequences of specimens collected
from Honshu Island (Simon et al., 2019).

In the present study, we conducted phylogenetic analyses of Spirobranchus cf. kraussii
from Japan based on the nucleotide sequences of mitochondrial genes and nuclear DNA to
reveal their species diversity. Morphological differences between each genetically distinct
lineage were also mentioned and discussed.

MATERIALS & METHODS
Specimens were collected at Shirahama, Wakayama (33◦41′38′′N, 135◦20′17′′E), and
Oura Bay (26◦33′10′′N, 128◦02′24′′E) and Yagachi Island (26◦39′01′′N, 128◦01′46′′E),
Okinawa Island (Fig. 1). The specimens are deposited in Seto Marine Biological Laboratory
(Shirahama, SMBL-V0604–V0611;Oura Bay, SMBL-V0620–V0627; Yagachi Island, SMBL-
V0612–V0619). The map of the sampling locations was produced using Generic Mapping
Tools (GMT) v5.1.1. (Wessel et al., 2013). All specimens were fixed and preserved in 99%
ethanol because we planned to use the specimens for population genetics. Morphology
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Figure 1 Map of the sampling localities of Spirobranchus kraussii-complex in Japan used in the
present study. (A) Japan. (B) Okinawa Island. 1. Manazuru, Kanagawa (Simon et al., 2019); 2. Shirahama,
Wakayama; 3. Yagachi Island, Okinawa; 4. Oura Bay, Okinawa.

Full-size DOI: 10.7717/peerj.11746/fig-1
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of the specimens was examined and photographed under a stereomicroscope. Terms of
serpulid morphology follows Ten & Kupriyanova (2009) and ‘‘flap’’ indicates a part of tube
that is flat projection of keel over the tube entrance (Ten & Kupriyanova, 2009; Sun, Hove
& Qiu, 2012; Simon et al., 2019). Portions of the body wall of the specimens were cut out
and treated with a mixture of 9 µL of proteinase K solution (Nacalai Tesque, Kyoto, Japan)
and 100 µL of 10% solution of Chelex 100 Resin (Bio-Rad, Hercules, CA) at 56 ◦C for >30
min and then at 100 ◦C for >20 min, and the supernatant fluid was used as template DNA
(following Kobayashi et al., 2021).

The partial sequences of the mitochondrial cytb gene, nuclear 18S rRNA gene, and
internal transcribed spacer-2 (ITS2) region were determined (following Kobayashi et al.,
2021). The PCRmixtures were as follows: (1) 8.75 µL of sterilized water, 0.06 µL of TaKaRa
Ex Taq Hot Start Version (TaKaRa Bio, Kusatsu, Japan), 1.25 µL of 10× Ex Taq Buffer,
1.0 µL of 2.5 µM dNTP mixture, 0.15 µL of 20 µM forward and reverse primers for the
mitochondrial cytb gene (cytbF/cobr825; Table 1) or the nuclear ITS2 region (ITS3/ITS4;
Table 1), and 1.0 µL of template DNA; or (2) KOD One PCR Master Mix (TOYOBO,
Osaka, Japan) (18SA1/1800r; Table 1), and 1.0 µL of template DNA. PCR amplifications
were performed as follows: (1) initial denaturation at 94 ◦C for 120 s; followed by 35
cycles of denaturation at 94 ◦C for 30 s, annealing at 50 ◦C for 40 s, and extension at
72 ◦C for 20 s; and then a final extension at 72 ◦C for 300 s (TaKaRa Ex Taq) or (2) 30
cycles comprising denaturation at 98 ◦C for 10 s, annealing at 60 ◦C for 5 s, and extension
at 68 ◦C for 2 s (KOD One PCR Master Mix). The PCR products were purified using
ExoSAP-IT (Thermo Fisher Scientific, Waltham, MA). Sequencing was outsourced to
Eurofins Genomics (Tokyo, Japan). The obtained nucleotide sequences were deposited
in the DNA Data Bank of Japan (DDBJ) with DDBJ/EMBL/GenBank accession number
LC604687–LC604692 and LC625520–LC625537 (cytb), LC604685–LC604686 (18S), and
LC604679–LC604684 (ITS2). Nucleotide sequences of the cytb gene were translated into
amino acid sequences using the invertebrate mitochondrial genetic code with MEGA
v7.0.26 (Kumar, Stecher & Tamura, 2016) to examine amino acid substitutions among
lineages of Japanese Spirobranchus.

Phylogenetic analysis based on the concatenated gene sequences (cytb + 18S rRNA) was
conducted using Galeolaria hystrix (outgroup) and 15 sequences of Spirobranchus species,
which were selected according to the report of Pazoki et al. (2020) (Table 2). All sequences,
except for our specimens, were obtained from GenBank. In addition, ITS2 phylogeny
was reconstructed using 18 sequences of Spirobranchus spp. (Table 2). The alignment
was performed using MAFFT v7.294b (Katoh & Standley, 2013). The best-fit substitution
models were selected based on the AICC using PartitionFinder v2.1.1. (Lanfear et al., 2017):
HKY+I+G for the cytb dataset, GTR+I for the 18S rRNA dataset, and TVM+G (replaced
with GTR+G in MrBayes) for the ITS2 dataset.

Molecular phylogenetic analyses using the concatenated sequences were conducted
using Bayesian inference and maximum likelihood (ML) methods. Bayesian analysis
was performed using MrBayes v3.1.2. (Ronquist & Huelsenbeck, 2003). Two parallel runs
were performed for 5,000,000 generations (with a sampling frequency of 1,000), using
the default value of four Markov chains. The initial 25% of samples were discarded and

Kobayashi and Goto (2021), PeerJ, DOI 10.7717/peerj.11746 4/18

https://peerj.com
http://dx.doi.org/10.7717/peerj.11746


Table 1 Nucleotide sequences of the primers used in this study.

Gene/region Primer Sequence (5′–3′) Direction Usagea Reference

18S 18A1 CCTACCTGGTTGATCCTGCCAG Forward P Steiner & Dreyer (2003)
NS2 GGCTGCTGGCACCAGACTTGC Reverse S White et al. (1990)
NS5 AACTTAAAGGAATTGACGGAAG Forward S White et al. (1990)
189r TCGGAATTAACCAGACAAATC Reverse S Nakamura et al. (2007)
1800r ATGATCCTTCCGCAGGTTCACC Reverse P Steiner & Dreyer (2003)

ITS2 ITS3 GCATCGATGAAGAACGCAGC Forward P/S White et al. (1990)
ITS4 TCCTCCGCTTATTGATATGC Reverse P/S White et al. (1990)

cytb CytbF (aka Cytb424F) GGWTAYGTWYTWCCWTGRGGWCARAT Forward P/S Boore & Brown (2000)
cobr825 AARTAYCAYTCYGGYTTRATRTG

(I was replaced with Y)
Reverse P/S Burnette, Struck & Halanych

(2005)

Notes.
aP: PCR, S: sequencing.

Table 2 Species used in present analyses with DDBJ/EMBL/GenBank accession numbers and habitat information.Newly obtained sequences
are indicated in bold.

Taxon Locality cytb 18S ITS2

Spirobranchus aloni Israel MF319301 MF319276 MF319230, MF319232
Spirobranchus cariniferus New Zealand JX144878 JX144817 –
Spirobranchus corniculatus Israel MF319311 MF319281 MF319244, MF319254

Philippines KP892811 KP892778 KP892792, KP892793
Australia KP892795 KP892774 KP892782, KP892783

Spirobranchus gardineri Israel MF319337 MF319297 MF319262, MF319266
Spirobranchus kraussii South Africa MK308650 MK308665 –
Spirobranchus sp. 1 (sensu Simon et al.,
2019)

Manazuru, Japan MK308653 MK308668 –

Shirahama, Japan LC604687, LC604688,
LC625526–LC625531

– LC604683, LC604684

Spirobranchus sp. 2 (sensu Simon et al.,
2019)

Hawaii, USA MK308655 MK308670 -

Spirobranchus sp. 3 (sensu Simon et al.,
2019)

Australia MK308647 MK308662 –

Spirobranchus sp. 5 (sensu Kobayashi
& Goto, 2021; this study)

Yagachi Island, Okinawa
Island, Japan

LC604689, LC604690,
LC625520– LC625525

LC604685 LC604681, LC604682

Spirobranchus sp. 6 (sensu Kobayashi
& Goto, 2021; this study)

Oura Bay, Okinawa Is-
land, Japan

LC604691, LC604692,
LC625532– LC625537

LC604686 LC604679, LC604680

Spirobranchus latiscapus New Zealand JX144879 JX144821 –
Spirobranchus sinuspersicus Iran MN372436 MN372443 -
Spirobranchus cf. tetraceros Israel MF319335 MF319295 MF319257, MF319258
Galeolaria hystrix New Zealand JX144861 JX144799 –

the subsequent 75% were accepted to ensure that the four chains reached stationary
distributions, according to the average standard deviation of split frequencies (Ronquist
& Huelsenbeck, 2003). An ML phylogenetic analysis was conducted with IQ-TREE v1.6.12
(Nguyen et al., 2014) using 1000 ultrafast bootstrap replicates. Bayesian analyses were also
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performed for individual genes with 5,000,000 generations (with a sampling frequency
of 1,000) and burn-in at 1,250. The resultant tree was edited using FigTree v1.4.3
(https://tree.bio.ed.ac.uk/software/figtree/). Haplotype networks were constructed with
the TCS algorithm (Clement et al., 2002) using the cytb haplotypes of Spirobranchus spp.
with PopART (Leigh & Bryant, 2015) to visualize the relationships among the haplotypes.

RESULTS
The anterior regions of the specimens collected from Okinawa Island in ethanol were pale
blue in color (Fig. 2). A flap-like structure was present at the opening of their dwelling tubes
(Figs. 2C and 2F). The collars of the ethanol fixed specimens of Shirahama were blueish,
whereas those of Oura and Yagachi were less colored (Fig. 3). The shape of chaetigers
and surface morphology in thorax show variations between specimens in each locality
(Fig. 3), although this should be carefully examined in the future because the shapes of
some specimens were modified due to extraction from tubes after fixation. The ventral
surface of peduncles of ethanol fixed specimens differ in color between localities (Fig. 4).
Specimens from Shirahama possess a dark-colored peduncle (n= 6) with variations in the
density of pigmentation between specimens (Figs. 4A and 4B). The peduncles of specimens
collected from Okinawa Islands were rather whitish and never heavily pigmented like the
specimens of Shirahama (Figs. 4C–4F). Specimens at Oura lack conspicuous pigmented
bands (n= 5) (Figs. 4C and 4D). Four specimens at Ygachi possessed lightly pigmented
bands while one specimen lacks bands on the peduncle (n= 5) (Figs. 4E and 4F).

Nucleotide sequences of the cytb gene were identical within Shirahama (356 bp, n= 8)
and Yagachi (349 bp, n= 8), while the two haplotypes were found at Oura Bay (356 bp,
n= 8) (Fig. 5). In addition, the cytb sequences were identical among specimens collected
from two localities on Honshu Island, that is, Manazuru (MK308653) and Shirahama.
In contrast, there were differences in the cytb gene sequences of specimens from Honshu
Island and two localities in Okinawa Island: approximately 4.0% (14 bp; unique nucleotide
substitution for this pair occurred at six sites) between Honshu Island and Oura Bay;
approximately 22.1% (77 bp) between Honshu Island and Yagachi; and approximately
22.1% (77 bp) between Oura Bay and Yagachi (Table 3). Two amino acid positions of
cytb varied among specimens in Honshu Island and Oura Bay: isoleucine (I)/valine (V)
and threonine (T)/serine (S). There were 16 of 116 amino acid substitutions between the
specimens collected from Honshu Island and Yagachi Islands. The partial sequences of
the 18S rRNA gene (1,612 bp) were identical between the specimens from Oura Bay and
Manazuru (MK308668), whereas 17 bp were different between the specimens from Oura
Bay (1,840 bp) and Yagachi (1,837 bp) (Table 3). The partial sequences of the ITS2 region
of Spirobranchus specimens collected from Honshu Island and Oura Bay were 567 bp long,
of which only three sites were variable, without indels. In contrast, 52 indels were observed
between specimens from Shirahama and Yagachi (611 bp) after alignment.

The concatenated data set for phylogenetic analysis comprised 2,333 characters of
mitochondrial cytb (444 characters) and nuclear 18S rRNA genes (1,889 characters).
In the combined data set, 403 sites were variable. Bayesian and ML analyses, using the
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A B C

D E F

Figure 2 Ethanol fixed specimens of Spirobranchus spp. collected fromOkinawa Island.
Spirobranchus sp. 6 from Oura Bay: (A) dorsal view. (B) ventral view. (C) tube. Spirobranchus sp. 5
from Yagachi Island: (D) dorsal view (lacking operculum and peduncle). (E) ventral view. (F) tube. Tubes
are not derived from the specimens of the body photographs. Arrowheads indicate the flaps overhanging
the tube opening. Scale bars= 5 mm (A, B, D, E, F) or 1 mm (C).

Full-size DOI: 10.7717/peerj.11746/fig-2

concatenated dataset yielded the same tree topologies. Therefore, only the Bayesian tree
is shown with posterior probabilities (PP) and ML bootstrap values (BS) (Fig. 6A). A
specimen of Spirobranchus collected from Oura Bay, Okinawa Island, was a sister to
Spirobranchus sp. 1 collected from Manazuru, Honshu Island (PP = 1, BS = 87%). A
specimen of Spirobranchus collected from Yagachi Island, Okinawa, was a sister to a cluster
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Figure 3 Variations in the thorax of ethanol fixed specimens of Japanese Spirobranchus cf. kraussii.
Spirobranchus sp. 1 from Shirahama, Honshu Island: (A) SMBL-V0607, (B) SMBL-V0608; (C), SMBL-
V0609. Specimens were extracted from the dwelling tubes after fixation. Spirobranchus sp. 6 from Oura
Bay, Okinawa Island: (D) SMBL-V0625, (E) SMBL-V0626, (F) SMBL-V0627. Spirobranchus sp. 5 from
Yagachi, Okinawa Island: (G) SMBL-V0612, (H) SMBL-V0613, (I) SMBL-V0617. Scale bars= 5 mm.

Full-size DOI: 10.7717/peerj.11746/fig-3

that includes all the remaining species of Spirobranchus kraussii-complex (PP = 1, BS =
95%).

Bayesian phylogenetic analysis based on the ITS2 sequences revealed that all the species
obtained from GenBank were recovered as monophyletic with high support values (PP
=1, BS >94%), except for S. gardineri (PP = 0.94, BS = 61%) or S. aloni (PP = 0.80, BS =
74%) (Fig. 6B). The specimens of Spirobranchus collected from Shirahama and Oura Bay
were monophyletic and phylogenetically indistinct (Fig. 6B). Phylogenetic analyses on the
position of the specimen collected from Yagachi Island based on independent genes (cytb
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Figure 4 Variation in the color of inner surface of peduncles of ethanol fixed specimen of Japanese
Spirobranchus cf. kraussii. Spirobranchus sp. 1 from Shirahama, Honshu Island: (A) SMBL-V0609, (B)
SMBL-V0608. Spirobranchus sp. 6 from Oura Bay, Okinawa Island: (C) SMBL-V0620, (D) SMBL-V0625.
The stem of the peduncle in (C) is missing. Spirobranchus sp. 5 from Yagachi, Okinawa Island: (E) SMBL-
V0617, (F) SMBL-V0618. Arrowheads indicate the peduncles. Scale bars= 5 mm.

Full-size DOI: 10.7717/peerj.11746/fig-4
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Spirobranchus sp. 1
Shirahama

Spirobranchus sp. 6
Oura Bay
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1

Figure 5 Haplotype networks of Spirobranchus cf. kraussii in the Japanese Archipelago based on the
partial nucleotide sequences of the mitochondrial cytb gene. Spirobranchus sp. 1 at Shirahama (356 bp),
Spirobranchus sp. 6 at Oura Bay, Okinawa Island (356 bp), Spirobranchus sp. 5 from Yagachi, Okinawa Is-
land (349 bp). A line indicates a single nucleotide substitution. Numbers in the circles indicates the fre-
quency of the specimens.

Full-size DOI: 10.7717/peerj.11746/fig-5

Table 3 Pairwise differences in nucleotide sequences of Spirobranchus spp.1, 5, and 6 in Japan. Differ-
ences in the nucleotide sequences of 18S rRNA gene (of 1611 bp for Honshu Island and Oura Bay, and of
1837 bp for Oura Bay and Yagachi Island; upper diagonal) and cytb gene (of 349 bp; lower diagonal).

Honshu Island Oura Bay Yagachi Island

Honshu Island (Spirobranchus sp. 1) – 0 0.9 (17 bp)
Oura Bay, Okinawa (Spirobranchus sp. 6) 4% (14 bp) – 0.9% (17 bp)
Yagachi Island, Okinawa (Spirobranchus sp. 5) 22.1% (77 bp) 22.1% (77 bp) –

and 18S rRNA) resulted largely in low support values, while the specimens from Oura Bay
and Honshu Island were clustered in both analyses (Fig. S1).

DISCUSSION
Recently, the hidden diversity of Spirobranchus kraussii- complex was illustrated using
molecular analysis (Simon et al., 2019). In addition to Spirobranchus sp. 1, which was
collected from Honshu Island, Japan (Simon et al., 2019), our phylogenetic analyses
revealed two newly identified lineages in S. kraussii-complex from Okinawa Island, Japan.

We tentatively referred to Spirobranchus from Yagachi Island as Spirobranchus sp.
5 because this lineage is clearly genetically distinct from the other lineages (Fig. 6A).
As Spirobranchus sp. 4 (sensu Simon et al., 2019) has been described as Spirobranchus
sinuspersicus by Pazoki et al. (2020), we used ‘‘sp. 5’’ for this lineage to avoid confusion.
Spirobranchus sp. 5 was not clustered with Spirobranchus sp. 1 or sp. 6, in the phylogenetic
analysis based on the cytb and 18S gene sequences. Although Spirobranchus sp. 5 was
clustered with the clade of Spirobranchus sp. 1 and sp. 6 in the ITS analysis, this is probably
because the analysis did not include any other species of Spirobranchus kraussii-complex.
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Figure 6 Bayesian phylogenetic trees (A) based on concatenated dataset (mitochondrial cytb + nuclear
18S rRNA gene sequences) and (B) the ITS2 region of the species of Spirobranchus. The numbers above
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ues above 50% (a hyphen represents <50%). Operational taxonomic units with newly obtained DNA se-
quences are shown in bold.

Full-size DOI: 10.7717/peerj.11746/fig-6

Kobayashi and Goto (2021), PeerJ, DOI 10.7717/peerj.11746 11/18

https://peerj.com
https://doi.org/10.7717/peerj.11746/fig-6
http://dx.doi.org/10.7717/peerj.11746


Spirobranchus sp. 5 on Yagachi Island was previously identified as the same species as
S. kraussii based on morphological characteristics (Nishi, 1993) presumably because S.
kraussii was widely believed to be a cosmopolitan species at that time.

The sequence obtained from a specimen of Spirobranchus collected from Oura Bay,
Okinawa Island, was recovered as a sister to Spirobranchus sp. 1, but showed 4% difference
in the partial sequence of the cytb gene with Spirobranchus sp. 1 on Honshu Island. The
Tokara Strait between the northern Ryukyus (the Osumi Islands) and central Ryukyus
(Amami-Oshima and Okinawa Islands) is known as a genetic boundary for coastal
organisms; both inter- and intra-specific genetic divergence occurred between individuals
on Honshu and Ryukyu Islands (Kojima et al., 2003; Kojima et al., 2006; Ogoh & Ohmiya,
2005; Kawane, Wada & Watanabe, 2008; Yamada, Furukawa &Wada, 2009; Wong, Chan
& Shih, 2010; Yamazaki et al., 2017). Intra-specific genetic differentiation in the nucleotide
sequences of mitochondrial DNA between Honshu and Ryukyu Islands is smaller than
Spirobranchus in at least three coastal invertebrates, such as: intertidal crabs Deiratonotus
japonicus (1% in COI) and Gaetice depressus (1% in COI)(Kawane, Wada & Watanabe,
2008), and trochid gastropod Monodonta spp. (e.g., <1% in COI of Monodonta labilo
from Wakayama and Iheya Island, Okinawa; LC316230 and LC316267) (Yamazaki et
al., 2017). By contrast, the differentiation is larger in an intertidal crab Ilyoplax pusilla
(9–11% in COI) (Yamada, Furukawa &Wada, 2009), a luminous marine ostracod Vargula
hilgendorfii (e.g., 8% in cytb between specimens collected from Wakayama and Okinawa
Island; AB192865 and AB192726)(Ogoh & Ohmiya, 2005); tideland snails Cerithidea spp.
(Kojima et al., 2006). In addition, geographic distributions of some genetically close species,
probably sister species, are separated between Honshu and Okinawa Islands (Kojima et al.,
2003; Wong, Chan & Shih, 2010). The genetic difference is 1.7–2.8% in COI of intertidal
snails Batillaria multiformis and Batillaria flectosiphonata (Kojima, pers. comm.) but
4.4% in COI of Scopimera globosa (AB515320) and Scopimera ryukyuensis (AB515318)
(Wong, Chan & Shih, 2010). The genetic differences in the mitochondrial genes between
Honshu and Ryukyu Islands vary between species thus the universal scale for intra- vs.
inter-specific variations in the genetic differences between Honshu and Ryukyu Islands
is hard to estimate. The genetic difference between Honshu and Oura Bay is quite large,
considering the genetic difference of the specimens within Honshu Island (0%; Manazuru
and Shirahama) or low genetic diversity at each locality (Fig. 5). The low intra-specific
diversity in the cytb gene is common for serpulids, for example, the Mean Tamura Nei
pairwise distance of the three species ofHydroideswere quite low (0%) except forHydroides
amri (10%) (Sun et al., 2016).

Although collar and thorax show variations between specimens in each lineage (Fig.
3), the color of the ventral surface of peducles showed variation between the lineages
of Japanese Spirobranchus cf. krausii (Fig. 4). The variation of color in pedancles within
species have been reported for S. kraussii complex (Simon et al., 2019). The difference in
the color of peduncles between each locality might be one of the diagnostic characters of
these Japanese Spirobranchus cf. krausii, although the color variation should be examined
based on more specimens collected from various localities. Considering both the results on
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phylogenetic analyses and morphological observation, we tentatively refer to Spirobranchus
in Oura Bay as Spirobranchus sp. 6.

The nuclear ITS2 region has been used to distinguish species of Spirobranchus because
each clade corresponds to the species identified by morphological observations (Perry et
al., 2018). However, in this study, ITS2 analysis did not show phylogenetic differences
among specimens collected from Shirahama and Oura Bay, contrary to the results of cytb
analysis. The nucleotide sequences of the ITS2 region showed that only 3 of 567 sites
were variable. The absence of difference in the nucleotide sequence of the nuclear ITS2
region suggests that either interbreeding still exists between the lineages in Shirahama and
Oura Bay, or that the lineage sorting of the two lineages is incomplete. Sun et al. (2016)
found two lineages in the cytb phylogeny of an Australian serpulid species,Hydroides amri,
however, their nucleotide sequences of the ITS2 region were identical. The inconsistency
in the genetic differentiation of cytb and ITS corroborate the studies, which showed higher
rates of evolution in the mitochondrial genes than the ITS region of marine invertebrates
(Blouin, 2002; Vilas, Criscione & Blouin, 2005).

Since the presence of distinct species of S. kraussii has been suspected for decades
(Imajima, 1996; Çinar, 2013;Hutchings & Kupriyanova, 2018), ‘‘S. kraussii’’ from Australia,
Hawaii, Iran and Japan were shown to be different species (Simon et al., 2019; Pazoki et
al., 2020). However, the Mediterranean and Red Sea (Shalla & Holt, 1999; Belal, 2012)
and Asian (Pillai, 1971; Becker, 1993) specimens of S. cf. kraussii are yet to be examined.
Spirobranchus cf. kraussii has been recorded from the southern Chinese coast (Tan &
Morton, 1998; Fiege & Sun, 1999; Zheng et al., 2004; Sun, Hove & Qiu, 2012; Lin et al.,
2017), which is geographically relatively close to Okinawa Island. However, individuals
inhabiting China have not been sequenced yet; thus, it is not clear whether Japanese
Spirobranchus spp. are the same species as Chinese S. cf. kraussii. Molecular data are needed
to reveal whether species in Japanese Archipelago also inhabits mainland Asia or not in the
future.

CONCLUSIONS
The present study revealed the genetic diversity of Spirobrachus kraussii-complex in
Okinawa Island, Japan. Two lineages were found using molecular phylogenetic analysis for
the first time. One of them is clearly distinct from the other previously sequenced lineages
and is considered to be another distinct species of the complex. Although morphological
studies are needed to clarify the taxonomic status of these two lineages, the present study
provides further knowledge on the diversity of Spirobranchus kraussii-complex.
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