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Long noncoding RNAs (lncRNAs) make up a large proportion of transcriptome in eukaryotes, and have
been revealed with many regulatory functions in various biological processes. When studying lncRNAs,
the first step is to accurately and specifically distinguish them from the colossal transcriptome data with
complicated composition, which contains mRNAs, lncRNAs, small RNAs and their primary transcripts. In
the face of such a huge and progressively expanding transcriptome data, the in-silico approaches provide
a practicable scheme for effectively and rapidly filtering out lncRNA targets, using machine learning and
probability statistics. In this review, we mainly discussed the characteristics of algorithms and features
on currently developed approaches. We also outlined the traits of some state-of-the-art tools for ease
of operation. Finally, we pointed out the underlying challenges in lncRNA identification with the advent
of new experimental data.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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1. Introduction

Over the past two decades, the development of high-
throughput RNA-sequencing technologies have revealed that the
vast majority of eukaryotic genomes is transcribed into non-
protein coding RNAs (ncRNAs) [109,21,69,75,29,55]. By far, there
are more than 229 public ncRNA databases, which are divergent
according to information source, type of RNA, source organisms,
data formats, and the mechanisms for information retrieval [93].
Among all of the ncRNAs, long noncoding RNAs (lncRNAs) – tran-
scripts of length above 200nt -- have aroused intense interests
due to their significant roles in many biological processes and dis-
eases, such as epigenetic modification, gene and protein expression
regulation, and cancer progression [15,44,113,118,121,140]. Differ-
ent tools have been developed to identify lncRNAs, predict their
function and correlate with various diseases [10,100,2]. Many
lncRNAs share similar features with classical mRNAs, such as tran-
scription by polymerase II with a 50-cap and 30-polyadenylated tail,
splicing pattern, sequence length, frequent accumulation in the
cytoplasm, and even overlap with coding genes
[135,136,96,117,151]. Therefore, when facing the rapidly aug-
mented transcriptome data, the primary challenge is how to effec-
tively distinguish long non-coding transcripts from protein-coding
genes, especially for those de novo transcriptome assembly in the
absence of highly confident reference genome.

Machine-learning-based in-silico methods provide a viable
approach for efficiently and rapidly identifying lncRNAs. In recent
years, a plenty variety of computational methods have been devel-
oped based on the substantial amount of publicly-available tran-
scriptome data and databases. These approaches typically apply
various algorithm models to screen out noncoding from coding,
by integrating the differentiated features between lncRNAs and
mRNAs. The earliest classification tools, such as CONC (Coding Or
Non-Coding) and CPC (Coding Potential Calculator), focused on
the coding capability of transcript itself, and much rely on the
recorded coding gene databases [86,72]. However, with the accu-
mulated number of lncRNAs found in diversified species, the
intrinsic distinctive features of lncRNAs are further assessed and
weighted in characterization of RNA coding potential. Until now,
many features are integrated into lncRNA’s identification, includ-
ing ORF length and coverage, nucleotide composition and codon
usage, conservation scores, k-mer sequence, RNA secondary struc-
ture, ribosome release score (RRS) and etc
[72,1,80,84,139,141,130,57]). For example, CPAT used logistic
regression model by integrating four features (ORF length, ORF
coverage, Fickett score and Hexamer usage preference) [141]; CNCI
used support vector machine (SVM) and hexamer for distinguish-
ing ncRNAs from coding RNAs [130]; PLEK applied a SVM algo-
rithm based on an improved k-mer scheme [80]; FEELnc
exploited random forest algorithm by extracting features of ORF
coverage, codon usage and nucleotide frequency [146].

On the other hand, with the development of recognition for
lncRNAs, we start to re-examine the ‘‘coding” concept of RNAs.
The results of advanced ribosome profiling have revealed that a
considerably large part of lncRNAs tend to contain short open read-
3667
ing frames (sORFs) and bind with ribosomes [64,7,120,4,90,82,25].
Moreover, increasing evident showed that these noncoding tran-
scripts are capable of encoding functional micropetides (<=100
amino acids, AAs) [60,82,53,152]. These micropeptide functions
are not exclusive against noncoding function, but mutually com-
patible with each other. All these facts raise questions on the fit-
ness of current binary classification on RNAs, and how should we
deal with new data when new information is provided. In this
review, we summarized the current in-silico methods on lncRNA’s
identification and outlined their individual traits. We also dis-
cussed the underlying challenges when facing new data on this
field.
2. General profile for lncRNA identification tools

In the beginning of the 21st century, as more attentions were
paid on lncRNAs which constitute the majority of noncoding tran-
scripts [114], the development of highly-resolvable in-silico
approaches to extract the lncRNA components from the huge num-
ber of transcriptome data is on an urgent demand. Up to date, there
have been dozens of tools being developed for lncRNA identifica-
tion. For each method, the key signatures are algorithm model
and selected features. Thus, we outlined the algorithm models
and features of present computational tools in Table 1 (see Supple-
mentary Table S1 for more details).
2.1. Algorithm models used in present computational tools

One pivotal step of machine learning is to explore the intrinsic
characteristics from huge and complex data for classification,
which requires the reliable algorithm models to support. Up to
now, many efficient algorithm models are implemented in lncRNA
identification, including logistic regression, SVM, random forest
(RF), and deep learning algorithm, etc. Wherein, SVM algorithm,
a classifier based on hyperplane and kernel function, was widely
adopted due to its stability and availability [73,130,80,57]. SVM
can use kernel functions to increase the dimension of the space
so as to extremely separate sets of data by constructing a separat-
ing margin or hyperplane at higher dimensions [30]. The data
points that can be used to determine the hyperplane are called
support vectors. There are several ready-made libraries for SVM,
such as libSVM [22], which greatly promoted the implementation
of SVM. Up to now, more than a dozen of tools had adopted SVM
as algorithm model, like CPC, CNCI, PLEK, COME, CPPred, etc.

RF model is an optimized version of decision-tree model by bag-
ging, which randomly and repeatedly extracts samples from the
whole data for training and uses average values as output [54]. This
model could greatly avoid the bad sample (noise) and thus
improve the accuracy. It can integrate multidimensional features
as well as evaluate the weights of different features. During the
training process, the interaction between features can be detected.
For unbalanced data sets, it can balance the errors; hence, if a large
percentage of features are missing, accuracy can still be main-
tained. However, RF models have been demonstrated to be overfit-



Table 1
The algorithm models and feature extraction of present computational approaches.

Tools Year Algorithm Model Features Reference

1st
sequence-
Related

2nd
Structure-
Related

Phylogenetic-
conservation

Exprimental
-Related

Translation-
Related

PhysiChemi-
Related

Combined /
Transformed
features

CONC 2006 SVM
p p p

[86]
CPC 2007 SVM

p
[72]

PORTRAIT 2009 SVM
p p p

[6]
PhyloCSF 2011 Continuous-time

Markov processes

p p
[84]

CPAT 2013 Logistic regression
p

[141]
CNCI 2013 SVM

p
, [130]

iSeeRNA 2013 SVM
p

[128]
Linc-SF 2013 SVM

p p p
[142]

PLEK 2014 SVM
p

[80]
LncRNA-ID 2015 Random Forest

p p
[1]

LncRNA-MFDL 2015 Deep learning
p p p

[37]
LncRScan-SVM 2015 SVM

p p
[129]

DeepLNC 2016 Deep learning
p

[134]
COME 2016 BRF

p p p
[57]

lncScore 2016 Logistic regression
model

p p
[154]

Lncident 2016 SVM
p

[49]
LncRNApred 2016 Random forest

p p
[111]

longdist 2017 SVM
p

[123]
CPC2 2017 SVM

p p
[68]

FEELnc 2017 Random Forest
model

p p
[146]

PLncPRO 2017 Random forest
p p

[126]
PlantRNA_Sniffer 2017 SVM

p
[138]

TLCLnc 2017 Ensembled two-
layer structured
classifier

p p
[56]

LncADeep 2018 Deep learning
p p

[148]
BASiNET 2018 Graph network

p p
[64]

CREMA 2018 Ensemble machine
learning classifiers

p
[125]

TERIUS 2018 Kernel density
estimation

p p p
[26]

lncRNAnet 2018 Deep learning
p

[8]
IRSOM 2018 Deep neutral

network

p
[112]

LncFinder 2019 Logistic regression,
SVM, Random forest,
ELM, Deep learning

p p p
[50]

CPPred 2019 SVM
p p p

[133]
LGC 2019 Maximum

Likelihood
Estimation

p p
[139]

PLIT 2019 Random Forest
p p

[32]
lncRNA-LSTM 2019 Deep learning

method

p
[98]

LncPred-IEL 2019 Ensemble machine
learning classifiers

p p p p
[147]

RNAplonc 2019 Eight machine
learning algorithms

p p p
[108]

PredLnc-GFStack 2019 Stacked Ensemble
Learning

p p p
[87]

CNIT 2019 XGBoost
p p

[46]
CodAn 2020 GHMMs

p
[101]

NCResNet 2020 Deep learning
p p p

[149]
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ting in some classification or regression problems, when the noise
is too much. Besides, for the data that may have many features
with polarized weight values, the more weight value the greater
impact on the random forest, which possibly leads to the incredi-
bility of results of classification under such weight assumption
[1,146]. There are a few tools employing RF as model, such as
LncRNA-ID, FEELnc, etc [1,146]).

Deep learning is a state-of-the-art classification algorithm
thrived in recent years, by which computer can automatically learn
the pattern characteristics and integrate them into model estab-
lishment [77]. Deep learning concept rooted from artificial neural
3668
network research, which are composed of three basic layers (input
layer, hidden layer, output layer), and imitate human brain to
explain the mechanism of data. The word ‘‘deep” in deep learning
refers to the use of multiple layers through which the data is trans-
formed. With the emergence of deep learning, we do not need to
do a lot of feature engineering, such as designing the content of
features or the combination of features and so on. But deep learn-
ing has a relatively high requirement on data size, and is involved
with some complicated modulation procedure, such as hyperpa-
rameter tuning, regularization and optimization.[37,134,148]. In
addition, the process of a deep neural network operation likes a
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black box, from which it is hard and difficult to interpret the per-
formance and evaluate the importance of every input feature
[149]. Such methods include LncRNA-MFDL, DeepLNC, LNCAdeep,
NCResNet and so on [37,134,149,149].

Moreover, in order to enhance performances, several ensemble
learning-based methods have been developed in recent years, such
as TLCLnc [56], Simopoulos et al.’s work [125], and LncRNApred
[111]. It was suggested that ensemble method likely obtains higher
cross-species prediction performance. For example, TLCLnc
achieved good performances on all 9 vertebrate species.

2.2. Features used in present computational tools

Feature selection is another vital factor for accuracy and speci-
ficity of prediction output. With the growing number of lncRNAs,
features are gradually accumulated, from the earliest ORF length
and coverage (CPC) [72], to conservative rating (phyloCSF) [84],
to nucleotide composition (CNCI, PLEK) [80,130], to structural fea-
tures and epigenetic information (COME) [57]. These features
include ORF length and coverage and integrity, nucleotide compo-
sition frequency such as GC content and k-mer scheme, codon
usage and distribution, conservation scores such as substitution
rate and phylogenic score, predicted RNA secondary structure,
ribosome release score (RRS), epigenetic information, etc. Some
features have several application limitations. For instance, features
related to ORF and conservation score require assembly of full-
length transcript for better performance [66]; calculation of the
RRS relies on a well-defined ORF and 30 untranslated region
(UTR) [47]; epigenetics information is not provided extensively
and species-specific [57]. Therefore, when establishing a model,
it is important to choose the valuable features and remove redun-
dancy in order to acquire an optimal outcome.

As far as the used features concerned, they can be refined into
more categories according to the characteristics of the information
they can provide, such as the nucleotide sequence-related, the sec-
ondary structure-related, the translational potential-related, the
protein property-related, or the non-biological information-
related, etc. In the process of feature selection, special attention
should be paid to the issue of integrity, which includes ‘‘feature
integrity” and ‘‘data integrity”. If the feature dimension is not com-
plete, no matter how much data will not substantially improve the
effect of the model, and vice versa. For most of the developed iden-
tification methods, they often adopted multiple features to opti-
mize the accuracy and specificity of prediction results, because
features with different natures probably have different contribu-
tions to the lncRNA identification. However, this does not mean
that more features are always better, because ‘‘overfeaturing” will
make the model to overestimate the impact of some aspects of the
Table 2
The availability of some commonly-used tools.

Tools

Availability CPC2 PhyloCSF CPAT CNCI iSeeRNA P

Package Online server
p p p p

Stand-alone
p p p p p p

Applicable to Model-
retrain

p p p

Pre-built
p p p p

Input format FASTA
p p p p p

BED
p p

GFF/GTF
p p

Reference genome -based
p p

-free
p p p p
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characteristics, which will significantly reduce model generaliza-
tion and prediction performance. Moreover, too many features will
render excessive expansion of vector dimensions, and thus
increase computational complexity and running load. So, it is nec-
essary to effectively select and combine the extracted features, so
as to not only avoid redundancy but also improve model perfor-
mance as much as possible.

2.3. The convenience of these tools

In addition, for the biologists with weak bioinformatics back-
ground, an important consideration to evaluate a computational
tool is its availability, convenience, application scope and effi-
ciency. Hence, we briefly evaluated the availability of current
relatively-popular tools, on the aspects of soft-package download,
webserver, data input format and dependency on reference gen-
ome (Table 2). For most commonly-used tools, they are inclined
to adopt FASTA format as input, and some provide webserver inter-
face, such as CPC2 and CNCI [72,130]. Depending on the selected
features, different methods show varied dependency on the refer-
ence genome. For instance, features such as conservation score
(PhyloCSF and COME) [84,57] and exon length (lncRScan-SVM)
[129] heavily rely on a reference genome, resulting in limited
application on non-model organisms lacking whole genome
sequence or gene annotation. In addition, the difference of training
datasets between methods can also influence prediction effect,
thus some tools, such as PLEK, COME, LncADeep, provides model-
retrain option for varied species [80,57,148].

The running time is also an important assessment factor for the
application of tools, it depends on the adopted features and perfor-
mance of models. As far as the reports by Li and his colleagues,
PLEK runs faster, 8 times faster than CNCI, 244 times faster than
CPC, and 1421 times faster than PhyloCSF [80]. In the work of
COME, Hu and his colleagues compared the time cost of four tools,
including COME, CNCI, RNAcode and HMMER; the order is
COME > CNCI > HMMER > RNAcode [57]. In another work of Lncfin-
der, Han and his colleagues evaluated the speed of six tools, by
using human data set that contains 2500 long non-coding tran-
scripts and 2500 protein-coding transcripts. Their results showed
that LncFinder (35.76 s), CPAT (9.05 s) and CPC2 (8.87 s) can pre-
dict several thousand sequences within 1 min and present reliable
results. CNCI (1333.19 s) and PLEK (83.67 s) were slower. While
CPC needed 4675.45 min to complete the process of alignment
and identification. During the process of developing NCResNet,
Yang and his colleagues estimated the running time of six models
and got similar results. All six tools, NCResNet, CPC2, CPAT, IRSOM,
LncFinder, and CPPred, are capable of large-scale (thousands to
tens of thousands of sequences) lncRNA identification tasks [149].
LEK lncRScan-
SVM

DeepLNC COME FEELnc LncADeep CPPred LGC

p
p p p p p p p
p p p p p

p p
p p p p p

p
p p p p
p p

p p p p p
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3. Survey of the current in-silico tools of lncRNA identification
according to selected features

As different lncRNA identification tools choose different
machine learning algorithms and features, these tools have their
own advantages and disadvantages for different types of noncod-
ing RNA or experimental conditions. For all ncRNAs, they could
be simply divided into two categories based on length threshold,
small RNAs of length � 200 bp (like miRNA, snRNA, piRNA, etc.)
and lncRNAs of length >200 bp. The later can further be divided
into many categories according to their location in genome, includ-
ing intergenic lncRNA, sense/antisense lncRNA and intronic
lncRNA.

For the early identification tools, they are not tailored for
lncRNAs due to the inadequate recognition of lncRNAs; therefore,
prediction of coding potential became a critical step for the subse-
quent lncRNA identification. One effective way is to compare
unknown sequences with known protein data to detect the simi-
larity between them, namely, the sequence conservation relative
to encoding genes. These methods are often alignment-based, such
as CONC, CPC and PhyloCSF. Certainly, characterization of coding
potential has its own significance for genome annotation, so as to
partition different functional regions on the genomes. Prodigal
[60], TransDecoder [48], GeneMarkS-T [132] and CodAn [101] are
such approaches that were developed for precise identification of
coding regions in transcirpts, these methods have an important
referential value for lncRNA identification. For example, using
these tools, we can further determine the ORF-related features
which were usually as a vital parameter during lncRNA
identification.

Meanwhile, with the accumulation of knowledge about
lncRNAs, more intrinsic features of lncRNAs were discovered, such
k-mer frequency, the different secondary structure. In this way,
some methods were developed specifically for lncRNA’s identifica-
tion, such as LncRScan-SVM [129], lncRNA-MFDL [37], lncRNA-ID
[1], lncRNApred [111], PLEK [80], CNCI [130], COME [57], DeepLNC
[134]), FEELnc [146], etc. Some were even for a particular type of
lncRNAs, such as linc-SF [142] and ISeeRNA [131,128] that was
designed for identification of intergenic lncRNAs. Next, we will
respectively elaborate some methods according to the different
attributes of features.
3.1. Alignment-based methods

Early identification tools tend to choose alignment-based meth-
ods due to the absence of systematic knowledge of lncRNAs. For
these alignment-based methods, they heavily rely on the existence
of known coding-gene sequences or databases. On the other hand,
there are also some newly developed methods that need to align
transcripts to genomes in order to integrate more genome-scale
experimental data, such as expression profiles and histone modifi-
cations. Alignment-based methods may be limited when facing de
novo sequencing of new organisms without well annotated gen-
ome sequences. In addition, due to the iterative alignments for
searching homologous sequences, the alignment-based methods
are extremely time-consuming when dealing with large-scale tran-
scriptome data.
3.1.1. Prediction based on primary sequence conservation
Researches had shown that the primary sequences of lncRNAs

are poorly conserved. Therefore, the methods in this class are often
used to perform BLASTX comparison with known protein data-
bases to identify the encoded RNAs at first, and then screen out
non-coding genes by eliminating the encoding genes in the tran-
scriptomes. However, by analyzing the sequence similarity to
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known proteins or protein domains, it is likely to misclassify
unknown coding transcripts into noncoding as false positive, thus
requiring relatively high quality of known protein databases. As a
result, to some non-model organisms, it is not friendly because
of the shortage of well-established information on genome and
transcriptome.

CPC is the representive of this kind of methods, which is based
on SVM and adopts six features including three features based on
ORF prediction and three features to conduct the alignments
against UniProt proteins. The features based on ORF include log-
odds score, ORF coverage and ORF integrity. Coding transcripts
usually has a longer and more complete ORF with a higher log-
odds score. The other three alignment-based features are hits num-
ber, hits score and frame score from BLASTX. Coding transcripts
tend to have more hits with higher hits score and higher frame
score [72]. As the earliest lncRNA identification tool, it is widely
applied on lncRNA identification of many model organisms (such
as human, mouse and Arabidopsis), with good performance. How-
ever, for many non-model plants, especially those species without
well-established information of genome and transcriptome, its
accuracy and specificity are reduced. Besides, the running speed
of CPC was relatively low due to the process of pair-wised align-
ments. As reported in one study by Cabili and his colleagues, it took
two days to identify the encoding capacity of 14,353 transcripts
[18].
3.1.2. Prediction based on phylogenetic analysis
Phylogenetic analysis screened lncRNAs from the perspective of

species evolution, which employed the feature of codon substitu-
tion frequency (CSF) to discriminate lncRNAs from mRNAs [27].
One basic hypothesis about CSF is that the CSFs of ncRNAs between
homologous species are different. Therefore, by aligning in multi-
ple species to calculate the substitution frequency of codons of
known mRNAs and ncRNAs respectively, we could obtain the dif-
ferent distributions of CSF scores for both mRNAs and ncRNAs in
each species. It can be found that the CSF scores of mRNA or
lncRNA have a completely different distribution.

PhyloCSF is such kind of method, which applied a comparative
genomics method to assess the coding potential of nucleotide
sequences by multiply aligning them with known protein-coding
region across species and statistically analyzing phylogenetic
codon models [84]. However, there are some defects of PhyloCSF.
First, due to the poor conservation of lncRNA sequences, it is likely
low efficient to seek out the homologs of lncRNAs between species
[18]. Second, for those lncRNAs overlapping with the coding region,
they are most likely to be mistaken for coding genes by PhyloCSF.
In addition, multiple alignment takes a lot of time to perform com-
parison between species, therefore, the running speed of PhyloCSF
software is relatively slower.
3.1.3. Prediction according to secondary structure conservation
In term of the current knowledge on lncRNAs, they often func-

tion by binding with proteins, which needs these lncRNA mole-
cules to hold a certain shapes or folds that are capable of
conducting a variety of molecular functions
[79,99,102,144,144,122]. In this sense, the secondary structure of
ncRNAs should be more conservative as compared with the pri-
mary sequence, because it likely harbors some important func-
tional elements so as to specifically target proteins and genomic
regions [94,104,73,16]. However, it is not easy to assess the conser-
vatism levels of secondary structure of ncRNA molecules; after all,
for different ncRNA molecules, although their nucleotide
sequences are completely different, they can still fold into the
same structures, and thus perform the same functions. Taking
the secondary structure of tRNAs as an example, that is, the
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sequence composition of tRNAs can be completely different but
still have the same cloverleaf structure.

For the lncRNA molecules with longer length, exploring their
structure conservation will be more difficult, since the prediction
effect for the secondary structures of long sequences is not very
good [40]and the functional structural regions are likely discrete.
Hu and his colleagues had attempted to analyze the local structure
conservation of lncRNAs by segmenting the long transcripts into
shorter bins (100 bp), the later was used to calculate the RNA sec-
ondary structure conservation scores by scanning them against
Rfam with the INFERNAL program (a binary score indicating the
existence of a homologous structure in Rfam) [107]. As Hu and
his colleagues found, the RNA secondary structure conservation
features showed the highest specificity score, which meant most
of the mRNAs had no conserved structures [57]. Thus, methods
that incorporate lncRNA structural information are meaningful
for an accurate identification of lncRNAs.
3.1.4. Prediction according to genome-scale experimental features
It was proven that, as compared with mRNA, lncRNA also have

other identifiable features which were found by means of genome-
scale experiments, such as expression profiles, different types of
histone modification, tissue specificity and ribosome release
scores. For example, lncRNAs had relatively lower expression level,
greater tissue specificity, and higher signals of H3K36me3 and
H3K4me3 than mRNAs [33,18]. Moreover, ribosome profiling data
suggest that ribosomes may have divergent binding patterns on
mRNAs and lncRNAs [47]. Therefore, these genome-scale experi-
mental features could be used as the indicators to distinguish
lncRNAs from mRNAs [42,88,88,116,43].

In the work of COME tool, Hu and his colleagues integrated mul-
tiple genome-scale experimental features, including expression
profiles, histone modification, tissue specificity and the ribosome
profiling features. It was found that adding these genome-scale
experimental features could help to improve the prediction perfor-
mance as well as the robustness between species [57]. However,
obtaining these genome-scale experimental features is not easy.
For example, the ribosome profiling features included ribosome
release score (RRS) ([47,137]) and translation efficiency score
(TE) [62,47]; but the calculation of TE and RRS scores required high
expression levels for both mRNA and ribosome data, they were not
available for most transcripts. In addition, how to integrate these
genome-scale experimental features into the computational model
is also a problem. COME used a two-step calculation procedure,
which split the whole genome sequences into 100-nucleotide bins
in the decompose step, and calculated the input features based on
the indexed bins. Subsequently, in the compose step, they will use
only three values (maximum, mean and variance) of all the bins for
each feature vector of one transcript which usually have multiple
bins [57].
3.2. Alignment-free methods

With the dramatically increased number of lncRNAs in recent
years, the intrinsic differences of sequences between lncRNA and
coding gene are extracted and explored for lncRNA identification.
These features can be manifested at different levels of transcripts,
including nucleotide primary sequences, translational potential of
transcripts, RNA secondary structures, nucleotide/protein physico-
chemical characteristics, etc. Moreover, there are some methods
that further transform/combine these basic features into high level
features, such as structure parameters of complex network, which
can be used for machine learning for distinguishing lncRNAs and
mRNAs. Next, we will explain and illuminate them as followed.
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3.2.1. Features related to sequence intrinsic
This kind of features contain many contents, including the com-

position and arrangement of nucleic acid sequence (such as GC
content, k-mer scheme, Fichett Score), codon use and neighbor-
hood relationship (such as codon number, codon ratio, hexamer
score), ORF-related features (such as ORF length, coverage and
integrity), ect. The sequence compositions have demonstrated to
be different between coding and noncoding; however, they varies
from species to species, resulting in very unstable performances
on different species [49]. ORF-related features including ORF
length, ORF coverage and ORF integrity, are often used as the con-
ventional evaluation criteria on the assumption of short-ORF RNAs
having a low/no translational ability. K-mer scheme is a relatively
robust feature for lncRNA identification, which represents the pat-
terns of successive base sequences and have been adopted by
many models, such as CNCI, PLEK, DeepLNC [130,80,134]. Hexamer
score is simplified k-mer scheme, which fixes K = 6 so as to evalu-
ate the neighborhood relationship between two adjacent codons,
such as CPAT [141].

CPAT is an alignment-free lncRNA identification tool, which
applied four features to identify lncRNA, including the longest
ORF length, ORF coverage, Fickett score, hexamer score. Among
them, Fickett score and hexamer score each can be used as a clas-
sifier of ncRNA [38]. Fickett score calculates the preference and
composition frequency of A, C, G and T bases in codon, while hex-
amer score calculates the combination frequency of six bases (hex-
amer) of adjacent amino acids in transcript sequences. Leaning
upon the intrinsic divergence between lncRNA and coding gene,
CPAT used logistic regression to construct the classification model
[141].

The CNCI method also evaluates the coding capability of tran-
script sequences according to nucleotide usage frequency with
SVM. CNCI introduces a concept of ANT (adjoining nucleotide tri-
plets), which is similar to the hexamer of CPAT. Firstly, CNCI con-
structs two ANT Score Matrix to evaluate the usage frequency of
all kinds of ANTs in coding and noncoding genes respectively. For
each candidate transcript, CNCI uses a sliding window strategy
by a step length of three nucleotides to generate six reading
frames, and calculates the sequence-score (S-score) of each frame
based on ANT score matrix. By producing six discrete numerical
arrays, the most likely coding domain sequence is identified
[130]. CNCI has a good performance for poorly annotated species
or those without whole-genome sequence information, but it
may misclassify transcripts that contain insertion or deletion (in-
del) sequencing errors [80].

The PLEK method was developed for distinguishing lncRNAs
from coding RNAs, based on an improved k-mer scheme and a
SVM algorithm. The k-mer parameters in PLEK range from 1 to 5.
By adopting a sliding-window strategy with a step length of one
nucleotide, PLEK counts the occurrence number of all kinds of k-
mer strings in each transcript, and exploits the calibrated k-mer
usage frequencies of each transcript as computation features
[80]. DeepLNC also used k-mer scheme as features. The difference
is that DeepLNC uses the traditional k-mer scheme as a sole fea-
ture, the k values selected in DeepLNC are 2, 3, and 5 [134].

3.2.2. Features related to transcript’s coding potential
The features under this category are associated with the coding

potential of transcripts, and thus are likely confusing with ORFs.
Since ORFs are the conceivable coding sequences predicted by
reading frame, here, we designate these transcript-related features
as ones supported with more translatable evidences, such as ribo-
some binding and release scores.

During protein translation, the ribosomes interact with mRNAs
to initiate translation and finally release from mRNAs to terminate
translation [124]. Based on this fact, Achawanantakun and his col-
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leagues developed an lncRNA identification tool named lncRNA-ID,
which integrated ribosome interaction features that involved vari-
ous stages of translation. There are two features from Kazak motif
for translation initiation, three features against ribosome coverages
on three regions (the whole transcript, ORF and 30UTR) for transla-
tion process, and ribosome release score (RRS) to capture the trans-
lation termination signal [1]. The results showed that combination
of multiple groups of features leads to better performance than
using a single group of features, and the ribosome interaction fea-
tures present the best discriminative power [1].

Recently, the combined feature of composition, transition, and
distribution (CTD) was found to be associated with the coding
potential of RNA transcripts. The composition features mean the
frequency of amino acids with a particular trait in the total theoret-
ically translated products; the transition features reflect the varia-
tion trend of two adjacent amino acids; while the distribution
features are to assess the position and distribution of amino acids
with a certain property. According to the results of NCResNet and
CPPred models, CTD features are valuable in predicting RNA coding
potential, especially for sORF data, and thus, to improve the perfor-
mance on sORF data significantly [149,133].

3.2.3. Features related to RNA secondary structure
For lncRNAs, their secondary structures probably has more

important roles for biological functions, therefore, relatively more
conservative than mRNAs [17,95]. To some extent, the sequence-
derived features of lncRNAs present the surface content of nucleo-
tide strings, whereas the secondary structure features may imply
some important functional information.

To explore the discriminating power of this category, lncRNA-
MFDL constructed a deep learning model by fusing the secondary
structure with ORFs, k-mer and the most-like coding domain
sequences to discriminate lncRNAs and mRNAs [37]. LncFinder
introduced multi-scale secondary structural features at three
levels: stability, secondary structure elements combined with pair-
ing condition and structure-nucleotide sequences [50]. The mini-
mum free energy (MFE) scores were used to evaluate the
secondary structure stability. Generally, lncRNAs are less stable
than mRNAs [28], with a lower MFE. It was found that secondary
structural features surpassed features of transcript length, Fickett
score and pI (isoelectric point) value, demonstrating a considerable
discriminating power of structural features [50].

However, the use of secondary structure features alone is not
statistically robust enough to detect lncRNAs. This is because a ran-
dom RNA with low GC content can also fold into low-energy struc-
ture. Besides, in term of the importance of RNA secondary structure
on biological function, we can exploit the features of secondary
structure to further sub-classify the internal functions of ncRNAs.
For example, Childs and his colleagues developed a method, named
GraPPLE, for classifying non-coding RNA molecules as functional
and, furthermore, into Rfam families based on the graph properties
of the predicted RNA secondary structure. By graphical RNA mole-
cules, both local–global and global structural properties are cap-
tured, which can be used to further deduce the large- and small-
scale structural as well as functional differences between mole-
cules. Thus, GraPPLE may provide a valuable computational tool
to discover potentially interesting RNA molecules among large
candidate datasets [23].

3.2.4. Features based on physicochemical property of nucleotide/
proteins sequences

Several tools applied physicochemical properties of nucleotide/
proteins sequences as features, such as pI values of predicted pro-
teins in CPC2 and CPPred, electron–ion interaction pseudo-
potential (EIIP) of nucleotide sequences in LncFinder and
NCResNet.
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CPC2 is the update of CPC, and also uses SVM to construct clas-
sifier, but no need for alignment. It mainly integrated four features:
the longest ORF length, ORF integrity, Fickett score, and pI value
[68]. It was assumed that the peptides artificially identified in a
non-coding transcript should have different chemical properties
when compared with these real ones encoded by coding
sequences. The characteristic of pI is obtained by translating the
longest ORF into amino acid sequence and then calculating the
physicochemical property of pI of amino acid [12]. As a result, pI
feature obtained good performance in CPC2 model. In another
work, CPPred also used pI as a feature, it was found that pI feature
is human-specific [133].

The use of pI is trying to theoretically transform RNA sequence
into protein sequence. In the work of LncFinder, Han and his col-
leagues explored the physicochemical property of nucleotide
sequence, EIIP, as feature. EIIP was initially used to indicate the
power spectrum distribution for the coding region of transcripts,
which are totally different from ncRNAs [103]. For any DNA
sequence, nucleotides can be converted into different EIIP values:
A ? 0:1260; C ? 0:1340; G ? 0:0806; T ? 0:1335 [103]. Com-
pared with pI values, EIIP values are directly from RNA sequences,
thus avoiding the potential bias caused by the speculated transla-
tion process [50].
3.2.5. Features derived from transformation/combination
The features in the data directly affect the prediction model

you use and the results you can achieve. So far, in order to distin-
guish lncRNAs from coding genes, many features have been
selected. In addition to de novo extraction, new features can also
be obtained in other ways, such as reanalysis of current known
features, or combination of different types of features. It is very
attractive to get new features through transformation/combina-
tion, which often means that the model is more concise and the
prediction performance is better. In addition, obtaining new fea-
tures through transformation/combination also allows us to learn
more about the nature of the prediction problems, although
sometimes feature transformation/ combination implies a higher
level of abstraction.

For instance, in the work of Tripathi and his colleagues, tradi-
tional k-mer features has been further transformed into the form
of entropy [134]. In the proposed Deep Neural Network model
(DeepLNC), the k-mer information has been used as a sole feature,
and generated on the basis of Shannon entropy function, which
resulted in improved classifier accuracy. Another interesting exam-
ple is about BASiNET, an alignment-free lncRNA identification tool
based on the feature extraction from complex network measure-
ments [64]. Using the concept of complex network, BASiNET trans-
formed the k-mer information extracted from the sequence into an
undirected weighted network, in which the nodes represent the
words (k-mers), and the weight of an edge represents the fre-
quency that one word was identified as a neighbor from another
word. Furthermore, this method applied a threshold to the weight
of the edges in order to view different resolutions of the network,
and used a couple of network topological measures as new
features.

These features, entropy used in DeepLNC or network structure
parameters used in BASiNET, are high level features transformed/-
combined from basic features. The acquisition of these features
does not require prior biological information, such as genome
annotation or homologous sequence alignment. But on the other
hand, these biological-information-free features contain a lot of
hidden biological significance. Whether it is the different distribu-
tion trend of various k-mers, or the most persistent edges (pat-
terns) in the BASiNET network, they are worthy of further
exploration.
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4. Challenges and future perspectives

4.1. New data and new features

In order to efficiently characterize lncRNAs from coding RNAs,
researchers have been engaged in improving algorithm models
and features. In most cases, a dramatic advance on algorithm is
not practical in a short term. Hence, more attention was paid for
acquiring new data and new features, which can be optimized by
either deep understanding of lncRNA properties or technological
progress. Until now, many features were selected for distinguishing
lncRNAs from coding genes, they could work as a single or as com-
bined feature sets, with different scopes of application. Given that
feature extraction is sensitive to small perturbation of the training
dataset, the prediction capability of eachmethod is likely skewed in
accuracy and specificity, especially when facing de novo assembling
transcriptome data with no high-quality genome annotation.
Therefore, features with greater commonness would facilitate
lncRNA identification across species, such as the k-mer scheme of
PLEK, TLCLnc and IRSOM [80,56,112], ORF length of CPAT and
CPPred [141,133] and GC content of COME and LGC [57,139].

In terms of data types, previous studies on lncRNAs mainly
focused on species of animals, while there was relatively little dis-
cussion on plants. With the increased transcriptome data of plant
samples, the functional cognition for plant lncRNAs is becoming
more and more important. Therefore, some methods are developed
specifically for identification of lncRNAs in plants, such as RNA-
plonc [108], CREMA [125]and PLIT [32]. The replenishment of plant
data increases the diversity of lncRNA sequences, prevents the data
from animal bias, and is conducive to optimizing the extraction of
lncRNA features. On the other hand, as the plant genomes have
experienced a lot of duplication, especially at the whole genome
level, it is likely to exist a lot of paralogs of lncRNAs. This fact
can further promote the analysis of lncRNA evolution to some
extent, and facilitate to find more conservative function domains
or motifs, which will ultimately help lncRNA function prediction.
Meanwhile, these increasing data of lncRNAs in plants provides a
reference pool in order to deeply evaluate how the features really
perform on the lncRNA identification.

Since lncRNAs were not well understood in the early stage,
some simple features involved in coding potential, such as ORF,
were used to screen lncRNAs, but they could not distinguish
lncRNAs from other types of ncRNAs. One simple criterion for
determining whether a transcript is a lncRNA is to set the length
threthold of greater than 200nt. However, with the biological sig-
nificance increase of lncRNAs, there emerged some specific meth-
ods for identification of lncRNAs, such as COME considering the
unique epigenetic information and secondary structure conserva-
tion of lncRNAs [57]. Meanwhile, some new features have also
been proposed, such as entropy and network structure parameters,
all of which appeared to have a relatively high relevance with
lncRNA identification [134,64]. New features can be discovered in
several ways: de novo extraction, reanalysis of current known fea-
tures, or combination of different types of features. For instance, k-
mer information can be further converted into the form of entropy
[134]. These new features can not only help to identify coding/non-
coding genes, but also further subdivide each category internally.
For example, Grapple employed graph theory model to further per-
form the functional classification within ncRNAs [23].
4.2. The discovery of bifunctional RNA blurred the boundary between
coding and noncoding

The past knowledge on lncRNAs is non/low protein coding [52].
Therefore, classification of genes into coding or non-coding often
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depends on whether the transcript holds a long, or even conserved
ORF, and this length cutoff often sets as 300 nts for most lncRNA
identification tools. However, increasing evidence demonstrated
that lncRNAs in various eukaryotic organisms harbor sORFs and
can express functional micropeptides with length less than 100
amino acids [82,5,34,41,51,58,83,91]. Studies on lncRNA-encoded
functional micropeptides in eukaryotes were initially found in
plant [85,67]. The early nodulin 40 (Enod40) gene in legume, pre-
viously annotated as lncRNA, encodes two peptides of 12 and 24
AA residues which regulate root nodule organogenesis by binding
with a sucrose synthesizing enzyme [119]. Three other micrope-
tides, Brick1 (Brk1) in maize, POLARIS (PLS) and ROTUNDIFOLIA
(ROT4) in Arabidopsis, were found to be involved in leaf morpho-
genesis [24,39,106]. Another micropeptide, kiss of death (KOD, 25
AAs) in Arabidopsis, acts as an inducer of programmed cell death
[13]. In animal, lncRNA-derived sORFs displayed more abundant
diversity on biological functions. The micropeptides, MLN, Scl
and MOTS-C in human can regulate the activities of SERCA
(sacro/endoplasmic reticulum Ca2+-ATPase) in the muscle-specific
tissues [78,91]. AGD3 encodes a small protein of 63 AAs that mod-
ulates human stem cell differentiation [70]. The polished rice or
tarsal-less (tal) gene in Drosophila encodes four micropeptides
from 11 to 32 AAs, all of which play a vital role in tarsal morpho-
genesis in the fly leg [41]. All these facts imply that sORFs-encoded
micropeptides originated from noncoding regions are capable to
exert important regulatory roles in fundamental biological pro-
cesses, and have been oversighted previously because of their
small size. Some large-scale experimental approaches developed
in recent years, such as ribosome profiling sequencing (ribo-seq)
[61,62]and mass spectrometry (MS) [9,127], further promote the
discovery of sORF-encoded peptides, unraveling that translation
is more extensive than initially thought. By far, there were thou-
sands of translated sORFs discovered in lncRNAs in various species
[63,11,120,65], some of which are translated as frequently as
canonical protein-coding ORFs or well conserved across species
[7,115], suggesting the potential functionality of these sORFs.

On the other hand, studies showed that a protein-coding RNA
can also perform non-coding functions. For example, independent
of the tumor suppressor function on the form of protein, p53 gene
encoded a triple synonymous mutant (TriMp53) in codons, which
has an increasing affinity for Mdm2 (an E3 ubiquitin-protein
ligase), thus in-cis suppressing p53/TP53 protein ubiquitination
[20,19]. The ASCC3 gene encodes a helicase involved in DNA repair,
which could be switched into a shorter lncRNA by UV-induced
alternative splicing [14,143]. Protein Phosphatase 1 Nuclear Tar-
geting Subunit (PNUTS or PPP1R10) was originally designated as
a protein-coding gene encoding an inhibitory regulatory subunit
of protein phosphatase-1 (PP1) [3]. It can dynamically switch into
LncRNA-PNUTS in the effect of actinomycin-D and cycloheximide.
LncRNA-PNUTS was supposed to regulate epithelial-to-
mesenchymal transition (EMT) and cell migration as a competing
endogenous RNA (ceRNA) for miR-205, a primary regulator of
EMT-related transcription factors [45,76]. The facts that lncRNAs
harbor sORF and mRNAs also express non-coding transcript vari-
ants blur the boundary between coding and noncoding genes, pos-
ing a further challenge on the identification of gene coding
potential [71,105,82].

4.3. The dilemma of current tools on sORF-contained lncRNAs

However, currently-developed computational methods often
have a poor performance on sORF-contained lncRNAs, since most
of them integrated ORF-related features (ORF length, ORF coverage,
ORF integrity) for analyzing [97,81,133]. As compared with canon-
ical protein-coding ORFs, sORFs derived from lncRNAs are difficult
to acquire statistically significant values because of the very short
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length of the sequences and the low number of possible changes
[92,74]. Consequently, a number of RNA molecules have been des-
ignated as non-coding and actually harbor short open reading
frames (sORFs) that code for functional peptides, which have been
omitted due to their small size. Indeed, some work had concerned
about this problem recently. Tong and coworkers developed
CPPred model to improve the prediction performance on sORF data
[133], by introducing CTD features that are associated with the
process of protein translation by integrating the information of
nucleotide composition, nucleotide transition and nucleotide dis-
tribution [36]. Additionally, several merits, such as methylation,
ribosome release score (RRS) that detects the translation termina-
tion at the stop codon at the end of an ORF [137,47], additional
structural elements like internal ribosome-entry sites (IRES)
[53,35,110,150], were take account into detecting the potential
sORFs in transcripts.

We also attempted to analyze the divergence between ORFs
stemming from coding regions and that from noncoding regions
by using our in-home python script. We firstly integrated a set of
lncRNA-encoded amino acid sequences, which were obtained from
CNC database (http://www.rna-society.org/cncrnadb/) and have
been verified by human experiments or found by mass spectrom-
etry; then, we downloaded all human protein-coding sequences
from Gencode V34. We compared the length and amino acid com-
position of mRNA and lncRNA ORFs. Our results show that lncRNA-
encoded amino acid sequences are significantly shorter than ordi-
nary protein sequences, which is an obvious result, and there are
also significant differences of k-mer distribution between their
amino acid sequences, which is an interesting result (data not
show).

All these facts raised the questions that whether we should
dynamically look upon the concept of coding potential in the view
of evolutionary significance, or whether it is suitable to use current
dichotomy classifiers for these ‘‘coding and noncoding”
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bifunctional or hybrid genes. In the future, it is necessary to con-
sider how to integrate these new high-throughput data more effec-
tively, such as ribo-seq and high resolution MS. Therefore,
collecting more manually curated data and extensive data explor-
ing are on an urgent demand. On the other hand, we need to
develop a better classification model for bifunctional RNA. First,
we should investigate the prediction results for bifunctional RNAs
of the current tools that are developed based on binary classifica-
tion model, and whether these tools based on different models
and features have different preferences. Further, we should con-
sider whether we need to introduce other classifier model, such
as multiple classifiers systems, or fuzzy classification (Fig. 1). Com-
pared to multiple classifiers system, we think that fuzzy classifica-
tion maybe a better choice. Fuzzy classification is the process of
grouping elements into a fuzzy set, which is a mathematics term
and remarks some sets whose elements have degrees of member-
ship [153,31]. All these problem need to be discussed and solved in
the future. We hope this review could bring new thinking and
inspiration on this field.
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