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Abstract

Motion capture laboratories can measure multiple variables at high frame rates, but we can

only measure the average metabolic rate of a stride using respiratory measurements. Bio-

mechanical simulations with equations for calculating metabolic rate can estimate the time

profile of metabolic rate within the stride cycle. A variety of methods and metabolic equa-

tions have been proposed, including metabolic time profile estimations based on joint

parameters. It is unclear whether differences in estimations are due to differences in experi-

mental data or due to methodological differences. This study aimed to compare two meth-

ods for estimating the time profile of metabolic rate, within a single dataset. Knowledge

about the consistency of different methods could be useful for applications such as detecting

which part of the gait cycle causes increased metabolic cost in patients. Here we compare

estimations of metabolic rate time profiles using a musculoskeletal and a joint-space

method. The musculoskeletal method was driven by kinematics and electromyography data

and used muscle metabolic rate equations, whereas the joint-space method used metabolic

rate equations based on joint parameters. Both estimations of changes in stride average

metabolic rate correlated significantly with large changes in indirect calorimetry from walking

on different grades showing that both methods accurately track changes. However, estima-

tions of changes in stride average metabolic rate did not correlate significantly with more

subtle changes in indirect calorimetry due to walking with different shoe inclinations, and

both the musculoskeletal and joint-space time profile estimations did not correlate signifi-

cantly with each other except in the most downward shoe inclination. Estimations of the rela-

tive cost of stance and swing matched well with previous simulations with similar methods

and estimations from experimental perturbations. Rich experimental datasets could further

advance time profile estimations. This knowledge could be useful to develop therapies and

assistive devices that target the least metabolically economic part of the gait cycle.
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Author summary

Respiratory oxygen consumption measurements allow recording of the average metabolic

cost of walking, but the slow rate of these measurements prevents assessing which part of

the gait cycle has the highest metabolic cost. Simulation methods allow estimation of the

time profile of metabolic cost within the gait cycle. We compared estimations of the meta-

bolic cost of walking using a method that is based on kinematic and electromyography

recordings from participants in conjunction with muscle metabolic rate equations and a

method based on joint kinematics and kinetics. While both methods are able to accurately

estimate large changes in the average metabolic cost from walking on different inclina-

tions, the time profiles estimated by the two methods are different, indicating that estima-

tions of the time profile of metabolic cost are dependent on the estimation method. Both

estimation methods matched well with the results from experimental perturbation studies

that suggest that the metabolic cost of the swing phase is approximately 10% to 20% of the

metabolic cost of the entire gait cycle. Advances in estimations of the time profile of meta-

bolic cost could lead to practical applications such as designing rehabilitation robots that

assist specifically during the phase with the highest metabolic cost.

Introduction

Would we be able to detect and understand the effects of gait impairments if we could capture

only average metrics instead of time series? Motion capture laboratories can currently perform

measurements of a person’s movements (kinematics), forces (kinetics), and muscle electromy-

ography (EMG) at hundreds of frames per second, which allows us to analyze the time profiles

of these variables within the stride cycle. Energy from food is supplied to the human body in

the form of chemical energy in the muscles (metabolic energy expenditure). This metabolic

energy expenditure is one of the main determinants of the way we walk [1–5], and indirect cal-

orimetry measurements are an important tool for understanding how increases in metabolic

cost restrict the mobility of clinical populations [6–8]. In contrast to EMG and kinematic mea-

surements, the metabolic cost can be measured only once per breath, and one needs to average

several minutes of data to obtain a reliable average measurement [9]. As a result, we cannot

directly measure which phases of the stride cycle have an increased metabolic cost in patient

populations. Knowing such information would allow the design of assistive devices or thera-

pies that specifically target phases of gait with increased metabolic cost.

The cost of walking can also be estimated using simulations with muscle metabolic rate

equations [10–17]. These equations allow the time profile of the metabolic rate within the

stride cycle to be computed. Umberger et al., [17] developed muscle metabolic rate equations

that have been widely used [12,16,18–20], which divide muscle metabolic rate into compo-

nents due to energy loss from heat production during activation and maintenance of activation

of muscle fibers (activation-maintenance heat-rate), energy loss from heat production during

shortening and lengthening of muscle fibers (shortening-lengthening heat-rate), and mechani-

cal fiber work. A follow-up study from Umberger [20] applied muscle metabolic rate equations

in a 2D model with 12 muscles per side that are each composed of a contractile, series elastic

element, and parallel element (Hill-type muscles [21]). Umberger [20] used forward dynamics

simulation to predict the effect of muscle excitations in a rigid body model. Initial conditions

were based on motion capture data, and optimization was used to solve the redundancy prob-

lem where different muscle excitations can produce a possible gait pattern. The optimization

identified the muscle excitation patterns that produced a cyclic gait, and that minimized a cost
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function based on the muscle metabolic rate equations [17] according to the assumption that

humans move in a way that minimizes metabolic cost. Using the resulting muscle behaviors,

Umberger [20] obtained the first detailed estimation of the time profile of metabolic rate dur-

ing the walking stride cycle. Kim et al., [22] and Roberts et al., [23] argue that there are specific

challenges associated with muscle models because they simulate only a subset of muscles and

because complicated interactions between muscles and other tissues are difficult to simulate.

They developed equations to estimate the time profile of metabolic rate as a function of joint

parameters of a 3D full-body model [22,23]. Their equations also divide metabolic rate into

subcomponents due to activation-maintenance, shortening-lengthening, and mechanical

work. Finally, their model only uses joint moments and joint angular velocities as inputs in

combination with coefficients that have been optimized based on experimental data from

walking at different speeds.

Certain experimental studies have aimed to partition metabolic cost into functional roles,

such as body weight support and center-of-mass acceleration [24,25], yet others have aimed to

partition metabolic cost into different temporal phases including stance, step-to-step transi-

tion, and swing [26–29]. More specifically, the metabolic cost of the swing phase was estimated

to range from 10% to 20% of the cost of the entire stride cycle based on experiments that

involved assisting swing initiation with bungee cords [29] and increasing the body mass [27].

Another study measured that the metabolic cost of swinging one leg backward and forward

while standing on the other leg is 35% of the total metabolic cost of walking [28]. By assuming

that the cost of swinging the legs forward is one-half of the cost of swinging the legs in both

directions, one could estimate that the cost of the swing phase is 17% of the metabolic rate of

walking. It was estimated that the cost of the step-to-step transitions is 45% of the entire stride

cycle by independently manipulating body mass and body weight with a weight vest and a

body weight support harness [26]. Estimations of the temporal distribution of metabolic rate

are not always consistent. Estimations of the relative cost of the swing phase derived from

experimental studies (no more than 20% [27], 10% [29], ~17% [28]) are lower than estimations

from simulation studies (29% [20] and 26% [19]). Estimations of the total cost of both double

support phases (approximately 45%) from experiments with added mass and body weight sup-

port [26] are higher than those from certain simulation studies (27% [19,20]). The forward

simulation from Umberger [20] predicts a higher cost for the weight-acceptance phase and a

lower cost for the push-off phase compared to the joint-space estimation method from Roberts

et al., [23]. These inconsistencies could be due to differences in the estimation methods

[12,14,30] or differences in measurement data due to participant selection, walking conditions

(e.g., speed, shoes), measurement errors (e.g., soft tissue artifacts, [31]), and marker placement

artifacts [32].

In the present study, we compared the following two methods for estimating the time pro-

file of metabolic cost: an EMG-driven musculoskeletal simulation with muscle metabolic rate

equations from Umberger et al., [17], and a joint-space method [23] (Fig 1). We applied both

methods to the same experimental data to exclude the possibility that differences in metabolic

rate estimations are due to differences in underlying measurement data. Knowledge about the

level of confidence in estimations of the time profile of metabolic cost could be useful for prac-

tical applications. For example, in a study that highlights an elastic exoskeleton that reduced

the metabolic cost of walking, the authors speculated that one of the conditions with a high

spring stiffness reduced the metabolic rate associated with mechanical work during single sup-

port, but it increased the metabolic rate associated with muscle activation rate during push-off

[33]. Improved metabolic rate time profile estimation methods could be used to verify such

hypotheses and to inspire novel assistance strategies to reduce metabolic rate over the entire

gait cycle. Improved estimations of the time profile of metabolic cost could also be used to
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inform which predictive methods realistically simulate walking. Finally, improved knowledge

on whether the cost of the swing phase is negligible or not can help justify choices between

simulation methods that assume that leg swing is ballistic [34] and simulation methods that

include a nonzero leg swing cost [35]. Such knowledge has the potential to advance the study

of the energetic determination of human behavior and applications of such methods.

We selected the Umberger metabolic cost equations and the joint-space method because

both methods have been introduced specifically for estimating the time profile of metabolic

rate in their respective studies [20,23]. Since our goal was not to predict future experimental

conditions but instead to use experimental data to estimate a physiological time series (i.e., the

time profile of metabolic cost), we used the available EMG data from a recent experiment [36]

to drive the musculoskeletal method. This offers the advantage of capturing the neural drive of

the participants more realistically than musculoskeletal simulations that estimate the muscle

activation through an optimization [37]. We chose to use the Umberger metabolic rate equa-

tions since these are currently the most frequently used equations, and because they have

proven to correlate well with indirect calorimetry measurements [12]. An earlier version of the

joint-space method also showed acceptable correlations in this comparison [12]. The musculo-

skeletal method and the joint-space method are fundamentally different. In the musculoskele-

tal method, we used the EMG and kinematics as input, whereas in the joint-space method, we

used only joint moments and joint angular velocities (Fig 1). The musculoskeletal method is

more tied to theories about the metabolic cost. In contrast, the joint-space method is based on

empirical data that was used to estimate relationships between joint behavior and metabolic

cost [23].

Fig 1. Flow chart of both metabolic rate time profile estimation methods. The musculoskeletal estimation method uses a musculoskeletal model driven by joint

kinematics and EMG signals in conjunction with the muscle metabolic cost equations [17]. This method also used joint moment data for optimizing the participant-

specific muscle parameters but not for the metabolic rate estimation. The joint-space estimation method uses only the joint kinematics and joint moments as inputs

[23].

https://doi.org/10.1371/journal.pcbi.1008280.g001
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Hicks et al., [38] propose a validation strategy where estimations are made for multiple

movement conditions and the relative change in estimations are compared to the relative

change in the reference measurements. We conducted such a trend-validation study by com-

paring the changes in estimated stride average metabolic rate to the changes from indirect cal-

orimetry measurements during walking at different treadmill grades (downhill, level, and

uphill) and walking with different shoe inclinations (downward, level, and upward). The tread-

mill grade conditions are of interest because they lead to substantial changes in metabolic rate,

and the results can be compared to other metabolic rate estimation studies [12,39]. Downhill

walking can cause increases in muscle activation [40] required to perform negative joint work

[41] and thereby can be used to evaluate how well both methods estimate the changes in meta-

bolic rate due to negative work. Furthermore, walking with different shoe inclinations is of

interest since it mimics the effects of suboptimal muscle lengths (e.g., in cerebral palsy patients

[8]). As suggested by Koelewijn et al. [12], different walking conditions can serve as a test case

of whether estimation methods could be useful in estimating the effects of clinical interven-

tions. Estimations of the time profile of metabolic rate, which is the main focus of the present

study, can be improved by scaling the estimated time profile such that the stride average corre-

sponds to the absolute metabolic rate from indirect calorimetry. Therefore, we did not evaluate

how accurately the estimation methods tracked changes in absolute units (W kg-1). Instead, we

focused on how well they tracked changes in relative units (% of reference condition). We eval-

uated the correlations between changes in costs of different phases of the gait cycle between

both estimation methods, and we further compared the estimations to values reported in the

literature. There is no direct measurement of the time profile of metabolic rate; thus, this com-

parison between estimations of the cost of different phases provides an initial view of the vari-

ability between estimations from different methods, but it is not an absolute validation.

Materials and methods

Ethics statement

The study was approved by the University of Nebraska Medical Center Institutional Review

Board. Prior to the experiment all participants provided written consent for data collection,

analysis, and publication.

Experimental dataset

We conducted analyses on data from a previous experiment that involved walking with differ-

ent types of modular shoes and at different grades during multiple five-minute conditions [36]

(Fig 2A). The metabolic rate was recorded using indirect calorimetry (K5, Cosmed, Rome,

Italy). We recorded 3D kinematics using motion capture (VICON Vero, Oxford Metrics,

Yarnton, UK; 2000 Hz) from 41 reflective markers placed on anatomical landmarks on the

skin or tight-fitting suit and on the exterior of the shoes according to a modified Helen Hayes

marker set [42]. We recorded ground reaction forces using a treadmill with separate belts that

measure the separate ground reaction forces of each leg (Bertec, Columbus, OH, USA; 2000

Hz), and muscle activation using EMG (Trigno TM, Delsys, USA; 2000 Hz). Motion capture

and EMG measurements lasted 30 seconds during the last minute of each condition (Fig 2B).

Resting metabolic rate was also recorded during a five-minute standing condition before the

walking conditions. Since metabolic cost estimation methods require data from all the

recorded muscles and joints, we selected data from a subset of 6 participants (age 23.5 ± 2.1

years, mass 79.9 ± 13.8 kg, height 175.7 ± 7.0 cm; mean ± SD) that included trials only where

the EMG recordings from all muscles were free from artifacts and had no marker trajectory

gaps. We recorded EMG of the muscles of the right leg that represent the different primary
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functions required for sagittal plane movement during walking: soleus (uni-articular plantar-

flexion), gastrocnemius medialis (bi-articular plantarflexion), tibialis anterior (dorsiflexion),

vastus medialis (uni-articular knee extensor), rectus femoris (knee extension and hip flexion),

biceps femoris (knee flexion and hip extension) and gluteus maximus (uni-articular hip ex-

tension). The conditions included walking at 1 m�s-1 with level shoes at three treadmill grades

(6˚ downhill, level, and 6˚ uphill) and walking on a level treadmill with five shoe inclinations

(- 7˚, - 3˚, 0˚, 3˚, 7˚). The treadmill grade conditions are of interest because they lead to large

changes in metabolic rate and have been used as a paradigm for evaluating metabolic rate esti-

mation methods [30,39]. The shoe inclination conditions allow us to evaluate whether meta-

bolic time profile estimations are sensitive enough to measure more subtle changes in

metabolic cost for the stance phase due to the altered muscle configurations. Additional details

on the experimental procedure that were used in the present study can be found in the study

by Antonellis et al., [36].

Data processing

Breath-by-breath metabolic cost was calculated based on oxygen consumption and carbon

dioxide production across the last two minutes of each condition using a standard formula

[43]. The net metabolic rate of walking was calculated by subtracting the metabolic rate of

standing at rest from that under each walking condition (S1 Table). EMG data were high-pass

filtered with a 20 Hz cut-off, then rectified and low pass filtered with a 6 Hz cut-off. Processed

EMG signals were normalized based on maximum voluntary contraction (MVC) measure-

ments for each joint. We verified that the magnitudes of the normalized EMG signals were

Fig 2. Experimental procedures. (a) Conditions. We analyzed previously collected data from walking with level shoes at downhill, level and uphill treadmill

grades (-6, 0 and +6˚), and walking on a level treadmill with shoes with different outsole inclinations (from -7 to +7˚) [36]. The red lines indicate the

treadmill grades and shoe inclinations. (b) Measurements. We measured metabolic rate using indirect calorimetry, 3D kinematics using motion capture,

ground reaction forces using a force treadmill, and muscle activation using surface EMG sensors.

https://doi.org/10.1371/journal.pcbi.1008280.g002
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within similar ranges as normative data for EMGs normalized to MVC measurements [44]. In

one participant for whom the normalized EMG signals of the soleus and gastrocnemius media-

lis during the uphill walking trial exceeded the MVC value, we re-normalized those EMGs to

the maximum value of this trial [19]. We filtered the ground reaction forces with a low pass

Butterworth filter with a 6 Hz cut-off [36,45]. Motion capture data were processed using Open-

Sim (version 4.0, SimTK, Santa Clara County, California; [46,47]) with the model from Raja-

gopal et al., [48] (Fig 3A). We chose this model since it is based on detailed morphological data

from cadavers and magnetic resonance imaging. The arms were removed from the original

model since we did not record their kinematics. We scaled the model using the scaling tool

based on motion capture data from a static pose with the “adjust model markers” and “pre-

serve mass distribution” options. The calculated mass distribution was adjusted to account for

the mass of the shoes. The inverse kinematics tool was used to estimate the joint kinematics

and muscle paths from the marker data (Fig 4). In this procedure, we restricted the ankle and

knee motion to one degree of freedom (flexion and extension), which should be a reasonable

approximation for walking, but we used all three degrees of freedom for the hip, to realistically

simulate the hip movement of walking. We used the inverse dynamics tool with a 6 Hz cut-off

filter setting for the marker coordinates to calculate the joint moments. Furthermore, the joint

moments were used as inputs for the joint-space estimation method of the metabolic rate time

profile [23] (Fig 3B) and as inputs for an optimization of the muscle parameters in the muscu-

loskeletal method. The analysis tool was applied with a 6 Hz cut-off filter to calculate 3D kine-

matics, which were also used for estimating the metabolic rate with the joint-space method

[23] as well as for driving the musculoskeletal simulation. We segmented all data into strides

Fig 3. Models for musculoskeletal and joint-space methods. Kinematic, kinetic, and musculoskeletal analyses were performed

in OpenSim using a model based on Rajagopal et al., [48]. (a) Musculoskeletal method. Schematic of the model that was used to

estimate muscle-tendon paths and calculate the muscle metabolic rate, and the degrees of freedom that were used for each joint.

The muscles shown were simulated based on EMG recordings. (b) Joint-space method. Schematic of the joints that were used to

estimate the metabolic rate time profile using the method from Roberts et al., [23] and the sign conventions for joint angular

velocity and joint moment.

https://doi.org/10.1371/journal.pcbi.1008280.g003
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that start at the ipsilateral heel strike and end with the next ipsilateral heel strike based on foot

contact detection from ground reaction force data (S1 File).

Musculoskeletal simulation

We removed all muscles from the original model of Rajagopal et al., [48] except for those from

which we recorded EMG signals [18]. Similar to a previous study [49], we drove the lateral gas-

trocnemius based on EMG data from the medial gastrocnemius since EMG signals were only

recorded for the medial gastrocnemius. Muscles were simulated as Hill-type muscles using the

Millard muscle model in OpenSim [50]. The standard muscle parameters that were provided

with the model were used as the initial settings, similar to other studies [50–53] (Table 1). For

the maximum isometric force, we used the sums of muscle groups that were represented by

the muscles from which we measured the EMG signals. All length-dependent muscle parame-

ters were initially adjusted for each participant by running the scale tool in OpenSim on the

motion capture measurement of the standing position (Fig 4). The software calculates a scale

factor for how much the length of each muscle-tendon actuator needs to be adjusted for the

model to match the experimental marker positions while maintaining the relative geometry.

This scale factor for each muscle is then applied to all length-dependent muscle parameters

(e.g., tendon slack length, optimal fiber length). We prescribed the motion from the kinematic

Fig 4. Processing methods. Flowchart describing the steps that were used to process the recorded data for the inverse kinematics, inverse dynamics, and forward

dynamics muscle state estimation. The default muscle parameters from the scaling step (tendon slack length and optimal fiber length) were optimized with a generalized

pattern search algorithm to maximize the agreement with the moments from the inverse dynamics. The optimized muscle parameters were used as inputs for the

musculoskeletal simulation that was used for the estimation of metabolic rate with muscle metabolic rate equations. The data from the kinematic and inverse dynamic

analyses were used as inputs for the joint-space metabolic rate estimation.

https://doi.org/10.1371/journal.pcbi.1008280.g004
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analysis to the musculoskeletal model using a MATLAB function [54]. Finally, we used the for-

ward dynamics tool in OpenSim with the prescribed motion, the processed EMG signals as

controls, and the default actuator settings to simulate the behavior of the different components

of the muscle-tendon unit (e.g., fiber length, tendon force). This is different from studies

where forward simulation was used to estimate full-body movement from muscle forces and

musculoskeletal dynamics that begin from an initial pose and velocity (e.g., [20]). We used the

fifth order Runge-Kutta-Merson integrator in OpenSim to solve the dynamic equations for the

muscle states in the forward dynamics tool. We did not specify an initial state, which makes

the software start from the default muscle states as the initial states.

Muscle-parameter optimization and validation

Different studies use optimization methods to improve the scaling of the muscle-parameters to

maximize the agreement between muscle-generated and inverse dynamics moments [19,56–

58]. We chose to optimize the tendon slack length and optimal fiber length for each muscle of

each participant (Fig 4) since it is expected that joint moments are most sensitive to these two

parameters [56,59–62] and several studies that involved an optimization step had used these

muscle-parameters [19,56,61]. Our optimization cost function was based on the mean squared

errors (MSEs) between the net sagittal plane joint moments generated by the simulated mus-

cles and the net sagittal plane joint moments measured through inverse dynamics. The mus-

cle-generated net joint moments were calculated by multiplying the tendon force of each

muscle by its moment arm and by calculating the net result from all the extensors and flexors

around each joint. For the hip joint, we only evaluated the mean squared error of the phase

where the hip extension moment from inverse dynamics is in the sagittal plane extension

direction since our model did not include uni-articular hip extensor muscles. Hip flexion dur-

ing walking appears to come mostly from stretch and recoil of ligaments instead of muscles

[19,63], and not modeling metabolic cost from uni-articular hip flexors, therefore, appears to

be a reasonable approximation. In the cost function, we included a number of penalty terms

that, through trial-and-error, were found to be useful to avoid unrealistic solutions [20,64,65].

One term was designed to avoid solutions where a muscle did not apply force. Another penalty

term was designed to avoid solutions where the tendon force of the soleus was lower than the

mean tendon force of the medial and lateral gastrocnemii [66,67]. Similar to Markowitz and

Herr, [19], we also used a penalty term to constrain tendon slack lengths and optimal fiber

lengths to stay within physiologically realistic operating conditions. In summary, the cost

Table 1. Muscle parameters in musculoskeletal simulation and muscle metabolic rate estimation.

Maximum isometric

force (N) [52]

Optimal fiber

length (m) [53]

Tendon slack

length (m) [53]

Pennation angle at

Lopt. (rad.) [50]

Maximum contraction

velocity (Lopt s-1) [51]

Slow-twitch

ratio (%) [55]

Muscle width

coefficient [20]

Tibialis anterior 1227 0.07 0.24 0.20 10 70.0 0.49

Soleus 6195 0.04 0.28 0.38 10 80.3 0.80

Gastrocnemius

medialis

3116 0.05 0.40 0.17 10 56.6 0.61

Gastrocnemius

lateralis

1575 0.06 0.38 0.21 10 50.7 0.61

Vastus medialis 9594 0.10 0.20 0.42 10 50.3 0.76

Rectus femoris 2192 0.08 0.45 0.22 10 38.7 0.76

Biceps femoris 1870 0.10 0.33 0.18 10 54.2 0.78

Gluteus maximus 3338 0.15 0.05 0.35 10 55.0 0.77

Lopt is optimal fiber length.

https://doi.org/10.1371/journal.pcbi.1008280.t001

PLOS COMPUTATIONAL BIOLOGY Estimating the time profile of metabolic rate during walking

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008280 October 28, 2020 9 / 27

https://doi.org/10.1371/journal.pcbi.1008280.t001
https://doi.org/10.1371/journal.pcbi.1008280


function was as follows:

Cost function ¼ MSEankle þMSEknee þMSEhip extension þ c1 � ZeroForcePenalty

þ c2 � PlantarflexorDistributionPenaltyþ c3 � PhysiologicalRangePenalty ð1Þ

where c1, c2, and c3 were all set to 106. These coefficients were chosen to be much larger than the

mean squared errors, such that the optimization quickly moves to regions where all the penalty

terms are zero. ZeroForcePenalty is equal to the number of muscles for which the tendon force

stays zero over the entire stride. ZeroForcePenalty is zero if all the tendon forces are greater than

zero for at least a part of the stride. PlantarflexorDistributionPenalty is equal to one if the tendon

force of the soleus is lower than the mean tendon force of the medial and lateral gastrocnemii.

Otherwise, PlantarflexorDistributionPenalty is zero. PhysiologicalRangePenalty is equal to the

number of muscles for which the following boundary criteria are not satisfied:

Fiber length � optimal fiber length � ð1 � widthÞ ð2Þ

and

fiber length � optimal fiber length � ð1þ widthÞ ð3Þ

where fiber length is the adjusted fiber length of each simulation iteration, optimal fiber length is

the adjusted optimal fiber length of each simulation iteration, and width is the width of the

force-length curve [20]. If the fiber length stays between the boundaries for all muscles, then

PhysiologicalRangePenalty is zero.

For each participant and muscle group, we searched for the tendon slack lengths and the

optimal fiber lengths that minimized the cost function using the generalized pattern search

function in MATLAB. The algorithm was programmed to identify the optimal muscle parame-

ters starting from the initial output from the scale tool, within a range from 50 to 150% [56].

The algorithm terminated when all the penalty terms were zero, and the improvements in the

cost function were smaller than 10−6 or 300 iterations had been completed. The optimized

muscle parameters (Table 2) were used in the simulations for the metabolic rate estimations.

To evaluate the final result of the optimization, we reported the root mean square error of the

muscle-generated moments compared to the joint moments from inverse dynamics.

Musculoskeletal metabolic rate estimation

Metabolic rate was estimated from the musculoskeletal simulation using a version of muscle

metabolic rate model [17] with additional modifications [16,20,68]. The muscle density in the

simulation is set to 1059.7 kg m-3 [69] (Table 3). The ratio of isometric force divided by the

Table 2. Optimized muscle parameters. Optimal fiber lengths and tendon slack lengths that minimize the cost func-

tion and were used for calibrating the muscle parameters (mean ± inter-participant s.e.m.).

Optimal fiber length (m) Tendon slack length (m)

Tibialis anterior 0.06 ± 0.01 0.25 ± 0.01

Soleus 0.06 ± 0.01 0.29 ± 0.01

Gastrocnemius medialis 0.08 ± 0.01 0.44 ± 0.01

Gastrocnemius lateralis 0.09 ± 0.01 0.42 ± 0.01

Vastus medialis 0.12 ± 0.01 0.21 ± 0.01

Rectus femoris 0.09 ± 0.01 0.45 ± 0.01

Biceps femoris 0.13 ± 0.02 0.35 ± 0.02

Gluteus maximus 0.14 ± 0.00 0.02 ± 0.00

https://doi.org/10.1371/journal.pcbi.1008280.t002
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physiological cross-sectional area (i.e., specific tension) is set to 600,000 N m-2 [48] and is used

to obtain the muscle masses. We used the default slow-twitch ratios in OpenSim [55]. Meta-

bolic energy consumption is the result of muscle fiber mechanical work and energy loss from

heat production. Consequently, the metabolic cost equations partitioned metabolic rate into

fiber mechanical work and two heat rates: activation-maintenance heat rate and shortening-

lengthening heat rate. A scaling factor that depends on whether the effort is primarily aerobic

or anaerobic in nature (i.e., aerobic factor) was set to the default value for aerobic activities of

1.5 [17,70]. We used the orderly fiber recruitment model from Bhargava et al., [10]. Mechani-

cal work adsorption from muscle fibers (i.e., negative mechanical work) was included, as pro-

posed in the original model from Umberger et al., [17], and implemented in recent simulation

studies [18]. The total metabolic rate per muscle was enforced to be no less than zero based on

the concept that negative mechanical work cannot lead to ATP synthesis [14].

Joint-space metabolic rate estimation

Joint angular velocities and joint moments were used as inputs. The MATLAB script from Rob-

erts et al., [23] was modified to calculate metabolic rate from only the lower limb joints and report

metabolic rate from the right side of the body by entering values of zero for the angular velocities

and moments of the joints on the other side. We reasoned that reporting the time profile of the

metabolic rate of one side of the body for each phase of the gait cycle is more informative than

reporting the bilateral average. For example, a plot of the bilateral sum of the time profiles of both

sides of the body does not allow us to distinguish which part of the metabolic rate can be attrib-

uted to the first and second double support phase. Our modified MATLAB code estimated the

joint-space activation-maintenance and shortening-lengthening heat rates and mechanical power

that were used towards obtaining the joint-space estimations of metabolic rate.

Simulation validation

To validate the accuracy of the musculoskeletal simulation, we verified if the muscle-generated

moments from the optimized simulation stayed within two times of the standard deviation of

Table 3. Estimated metabolic rate (% mean ± s.e.m.) of different phases of the gait cycle during level walking from the current work and other studies. We seg-

mented the strides into double support phases, single support phase, and swing phase based on our ground reaction force data from both legs. Strides are segmented from

the ipsilateral heel strike to the next ipsilateral heel strike such that the first double support phase starts with an ipsilateral heel strike and ends with contralateral toe-off,

and the second double support phase starts with contralateral heel strike and ends with ipsilateral toe-off. The metabolic rate time profile in the normal walking condition

from the Jackson et al., [18] study was obtained by applying the modified Umberger [20] estimation code from [68]. The data from Roberts et al., [23] were obtained from

their supplementary data file for walking at 70% of the preferred walking speed. We selected this trial from their supplementary data because the walking speed is most sim-

ilar to the walking speed from our study (1 m�s-1). We obtained the unilateral metabolic rate from the right ankle knee and hip joints by entering the data from the right

ankle knee and hip as inputs to their MATLAB code and entering signals with zeros for all non-lower limb joints and all joints on the left side of the body.

First double support (1 to

15% of stride) (%)

Single support (15 to

50% of stride) (%)

Second double support (51

to 65% of stride) (%)

Swing (66 to 100%

of stride) (%)

Sum of double

support phases (%)

Own musculo-skeletal estimation 17 ± 1.3 41 ± 2.7 19 ± 4.0 22 ± 1.8 37 ± 3.0

Own joint-space estimation 10 ± 0.7 26 ± 2.3 49 ± 2.7 15 ± 1.0 60 ± 2.8

Jackson et al., [18] 10 ± 0.5 39 ± 2.8 27 ± 3.0 24 ± 1.9 37 ± 2.8

Roberts et al., [23] 10 28 39 23 49

Umberger (calculations based on

digitized time profile)

27 40 8 25 35

Markowitz and Herr, [19] N/A 47 N/A 26 27

Grabowski et al., [26] N/A 55 N/A N/A 45

Griffin et al., [27] 99–76 1–24 N/A

Gottschall and Kram., [29] 90 10 N/A

Doke et al., [28] 83 17 N/A

https://doi.org/10.1371/journal.pcbi.1008280.t003
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the moments from the inverse dynamics as suggested in validation guidelines from Hicks et al.,

[38]. Additionally, we calculated the root mean squares of the errors between muscle-generated

and inverse dynamics moments. Muscle fiber length and force time series were compared to time

series from in vivo imaging and force sensing studies for muscles for which literature data was

available [71–74]. To verify how similar our estimations are to the literature, we plotted all the

EMG, muscle fiber, and joint parameters and metabolic cost components of each muscle and

joint versus available supplementary data from the literature (S1 and S2 Figs). The musculoskeletal

estimation results were plotted versus the dataset from Jackson et al., [18], which used a similar

EMG-driven musculoskeletal simulation approach. The metabolic cost estimation code based on

Umberger et al., [17] with modifications from Uchida was used to obtain the heat rates from that

dataset [68]. For the joint-space estimation method, we plotted the angular velocity, moment, and

estimated metabolic rate of each joint versus data from one of the trials that were published in

their supplementary data [23] with the speed that was most similar to our experiment.

Analysis

Since the musculoskeletal estimation method was based on only eight muscles and the joint-

space estimation did not include the angular velocities and moments of the upper body, we

did not expect the estimated metabolic rates to match the absolute value of the measured meta-

bolic rate. As such, we evaluated the relative changes in percent. The estimations were con-

verted to percentages of the stride average under the baseline condition (walking with level

shoes on a level grade). It is known that indirect calorimetry measurements and biomechanical

measurements that affect the estimation methods (EMG) can sometimes have high variability

due to measurement noise. Before the analysis, we eliminated data with extreme outliers in

stride-average metabolic rates that fell outside a range of the median plus-minus three times

the interquartile range [75]. The estimations were performed for all 42 conditions except for

one downward shoe condition due to faulty signals from the EMG sensors.

To evaluate how well both methods estimated the relative changes in stride-average metabolic

rate, we conducted a repeated measures correlation (Rrm) analysis [76] of the percent change of

the estimation compared to indirect calorimetry. This statistical test takes into account that there

is within- and between-subject variation in the data. The tests provide a correlation coefficient

and P-value that expresses how strongly and consistently the estimation correlates with indirect

calorimetry. Moreover, the repeated measures correlation test provides a slope coefficient that

describes whether the estimation underestimates or overestimates the indirect calorimetry mea-

surement depending on whether the slope is smaller or greater than one, respectively. To evaluate

the mutual consistency of the time profiles of both estimation methods, we used the repeated mea-

sures correlation to compare the two estimation methods on the averages of the different phases

of the gait cycle (first and second double support, single support, and swing phase) during each

walking condition. A Bonferroni correction was used to adjust for comparisons of multiple condi-

tions. All statistical analyses were performed in MATLAB (MathWorks, Natick, MA, USA), and

the ANCOVA function was used to conduct the repeated measures correlation analysis [76]. For

all the statistical tests, we set the significance threshold at 0.05.

Results

Simulation validation: Muscle-generated moments approximate inverse

dynamics

The time profile of metabolic rate was estimated with an EMG-driven musculoskeletal method

and a joint-space method that used joint moments from inverse dynamics analyses. To
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evaluate the validity of the musculoskeletal simulation, we compared the muscle-generated

joint moments with the joint moments from inverse dynamics analysis. The mean muscle-gen-

erated moments of the ankle and knee stayed within a range of two times the standard devia-

tion from the inverse dynamics moments for the majority of the stride cycle and had root

mean square errors of 0.17 ± 0.02 and 0.19 ± 0.03 Nm kg-1 (Fig 5). The muscle generated

moment of the hip had a higher root mean square error of 0.30 ± 0.02 Nm kg-1, mainly because

Fig 5. Musculoskeletal method validation. (a) Hip moments, (b) Knee moments, (c) Ankle moments. Red lines

represent the net joint moments from the simulated muscles in the normal walking condition. The shaded area is s.e.

m. The black line represents the net joint moments from inverse dynamic analyses. Dashed lines represent the mean

inverse dynamics joint moments ± two times the standard deviation, which is suggested as a validation threshold [38].

Values in the plots represent mean ± inter-subject s.e.m. of root mean square errors of the difference between muscle-

generated and inverse dynamics moments. The muscle-generated hip moments followed the inverse dynamics

moments in the extension direction but not in the flexion direction since the optimization algorithm was programmed

only to minimize the error during hip extension moment generation.

https://doi.org/10.1371/journal.pcbi.1008280.g005
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the muscle-generated moments did not track the hip flexion portion of the inverse dynamics

moment. This result was expected because we programmed the optimization algorithm only

to minimize the error from the portion of the stride cycle where the inverse dynamics

moments are in the extension direction. We chose this option as it is challenging to record sur-

face EMG of the primary hip flexor muscles, and literature suggests that hip flexion during

walking mostly comes from tendon stretch instead of muscle contraction [77]. Overall, the

errors appear of a similar magnitude as in other metabolic cost estimation studies that evaluate

muscle-generated moments [18,19].

Effects of conditions: Treadmill grade affects total leg work rate, and shoe

inclination affects metabolic rate at the ankle

Less downhill and more uphill grades resulted in increasing magnitudes of positive work of

the entire leg (i.e., individual leg COM power), average plantarflexion moment, average EMG

of the soleus, gastrocnemius medialis and tibialis anterior, and decreasing magnitudes of nega-

tive work of the entire leg [36]. The muscle analysis suggests that more uphill grades led to

increasing metabolic rate during the entire stance phase, primarily at the ankle followed by the

hip and knee, increasing activation-maintenance heat rate and positive fiber work, and

decreasing shortening-lengthening heat rate and negative fiber work (S3 Fig). Less downward

and more upward shoe inclinations lead to increasing magnitudes of average plantarflexion

moment, positive and negative ankle work, and average tibialis anterior EMG. The muscle

analysis suggests that downward shoe inclinations led to increasing metabolic rate at the ankle

due to increased fiber work during the second double support phase (i.e., from contralateral

heel strike to ipsilateral toe-off). Upward shoe inclinations led to increasing metabolic rate at

the ankle, which is related to an earlier increase in activation-maintenance heat rate during

single support (S4C and S4E Fig). More detailed information about the effects of the condi-

tions on joint moments, powers, and muscle activations are provided in the study that reports

the experimental dataset [36].

Stride-average metabolic rate: Estimations correlate with large indirect

calorimetry changes from grade walking but not subtle changes from

footwear

To investigate the accuracy of both methods in estimating the changes in the stride-average

metabolic rate, we compared the estimations of both methods to changes in average metabolic

rate measured with indirect calorimetry. Compared to the metabolic rate for walking on a

level treadmill, the metabolic rate for downhill walking on a 6˚ grade was reduced by 17 ± 2,

27 ± 2, and 36 ± 2% (mean ± standard error of the mean [s.e.m.]), and the metabolic rate for

uphill walking on a 6˚ grade increased by 83 ± 4, 49 ± 10, and 111 ± 12% using estimations

from the musculoskeletal simulation method, the joint-space method, and indirect calorime-

try, respectively (Fig 6A, S2 Table). For walking on a level treadmill with shoes with a 7˚ down-

ward inclination, we estimated increases in metabolic rate of 4 ± 3 and 12 ± 6% compared to

that for walking with level shoes using the musculoskeletal estimation method and indirect cal-

orimetry, respectively (Fig 7A). In contrast, the joint-space method estimated a reduction in

metabolic rate of 2 ± 2%. For walking with shoes with a 7˚ upward inclination, we estimated

increases in metabolic rate of 10 ± 4, 4 ± 2, and 6 ± 5% using the musculoskeletal estimation

method, the joint-space estimation method, and indirect calorimetry, respectively.

The estimations of the stride average metabolic rate from the musculoskeletal and joint-

space estimation method showed strong positive correlations with changes in indirect calorim-

etry measurements from walking on different grades (Rrm = 0.98, P< 0.01 for musculoskeletal
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method versus indirect calorimetry; Rrm = 0.92, P< 0.01 for joint-space method versus indi-

rect calorimetry; Fig 6B). Indirect calorimetry changes followed a slope greater than one for

both methods, which indicates that both methods underestimated indirect calorimetry mea-

surements (slopes were 1.51 and 1.72 respectively for the musculoskeletal method and joint-

space method versus indirect calorimetry). Correlations of both estimation methods versus the

subtle changes in indirect calorimetry from walking with different shoe inclinations were weak

and not significant (Rrm of musculoskeletal method versus indirect calorimetry is 0.24,

P = 0.29; Rrm of joint-space method versus indirect calorimetry is 0.06, P = 0.80, Fig 7B).

Inspection of the spatial distribution of the average metabolic rate over different muscle groups

reveals that the musculoskeletal method resulted in the largest estimation of the metabolic rate

for the plantarflexors (57 ± 3.1% of stride average, Table 4), followed by the knee extensors and

hip extensors, and with the lowest estimation for the knee flexors and dorsiflexors (both

5 ± 1.4%). According to the joint-space method, the highest portion of metabolic cost also

came from the plantarflexors (41 ± 3.5%) and the lowest portion also came from the

Fig 6. Estimations of the stride average metabolic rate and the time profile of metabolic rate during downhill,

level, and uphill walking with level shoes. (a) Stride average metabolic rate. Red triangles, blue circles, and black

diamonds indicate the results from the musculoskeletal estimation, the joint-space estimation method, and indirect

calorimetry, respectively. Error bars indicate s.e.m. The average trends across conditions from the same method are

shown as a solid line from a second-order polynomial curve fit. (b) Individual stride averages. Symbols are individual

trials. Lines are individual fits from the repeated measures correlation test. Slopes that are less or more steep than a

slope of 1/1 indicate overestimation or underestimation, respectively. Rrm-values indicate the repeated measures

correlation. �� indicate that the P-value of the repeated measures correlation is� 0.01. (c) Time profiles under

different treadmill conditions. Red and blue lines indicate the results from the musculoskeletal estimation and joint-

space estimation methods, respectively. Strides are segmented from the ipsilateral heel strike to the next ipsilateral heel

strike. The shaded area indicates s.e.m. (d) Individual phase averages. Symbols are averages of the phases during the

level walking condition separated by vertical lines: first double support (from ipsilateral heel strike to contralateral toe-

off), single support, second double support (from contralateral heel strike to ipsilateral toe-off), and swing phase. Rrm-

values indicate mean ± s.e.m. of the repeated measures correlations of the different walking conditions.

https://doi.org/10.1371/journal.pcbi.1008280.g006

PLOS COMPUTATIONAL BIOLOGY Estimating the time profile of metabolic rate during walking

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008280 October 28, 2020 15 / 27

https://doi.org/10.1371/journal.pcbi.1008280.g006
https://doi.org/10.1371/journal.pcbi.1008280


Fig 7. Estimations of the stride average metabolic rate and the time profile of metabolic rate during walking on a

level grade with different shoe inclinations. (a) Stride average metabolic rate. Red triangles, blue circles, and black

diamonds indicate the results from the musculoskeletal estimation method, the joint-space estimation method, and

indirect calorimetry, respectively. Error bars indicate s.e.m. The average trends across conditions from the same

method are shown as a solid line from a second-order polynomial curve fit. (b) Individual stride averages. Symbols are

individual trials. Lines are individual fits from the repeated measures correlation test. Slopes that are less or more steep

than a slope of 1/1 indicate overestimation or underestimation, respectively. Rrm-values indicate the repeated measures

correlation. (c) Time profiles under different shoe inclination conditions. Red and blue lines indicate the results from

the musculoskeletal estimation and joint-space estimation methods, respectively. Strides are segmented from the

ipsilateral heel strike to the next ipsilateral heel strike. The shaded area indicates s.e.m. (d) Individual phase averages.

Symbols are averages of the phases during the level walking condition separated by vertical lines: first double support

(from ipsilateral heel strike to contralateral toe-off), single support, second double support (from contralateral heel

strike to ipsilateral toe-off), and swing phase. Rrm-values indicate mean ± s.e.m. of the repeated measures correlations

of the different walking conditions.

https://doi.org/10.1371/journal.pcbi.1008280.g007

Table 4. Estimated metabolic rate (% mean ± s.e.m.) of different muscle groups during level walking in our own analyses and other studies. For the musculoskeletal

estimation method, we grouped the metabolic costs of different functions similar to [20] as follows: soleus, gastrocnemius medialis and gastrocnemius lateralis for the plan-

tarflexors, vastus medialis for the knee extensors, gluteus maximus for the hip extensors, tibialis anterior for the dorsiflexors, and biceps femoris for the knee flexors. For

the joint-space estimation method, we partitioned the metabolic costs for the ankle plantar flexors/dorsiflexors, knee extensors/flexors, and hip extensors/flexors based on

when the joint moments were in the corresponding direction. The metabolic rate of muscle groups in the normal walking condition from the study by Jackson et al., [18]

was obtained by applying the modified Umberger [20] estimation code from [68]. The data from Roberts et al., [23] were obtained from their supplementary data file for

walking at 70% of the preferred walking speed. We selected this trial from their supplementary data because the walking speed is most similar to the walking speed from

our study (1 m�s-1. We obtained the unilateral metabolic rate from the right ankle knee and hip joints by entering the data from the right ankle knee and hip as inputs to

their MATLAB code and entering signals with zeros for all non-lower limb joints and all joints on the left side of the body.

Plantar flexors (%) Knee extensors (%) Hip extensors (%) Dorsi flexors (%) Knee flexors (%) Hip flexors (%)

Own musculoskeletal estimation 57 ± 3.1 22 ± 2.5 11 ± 0.7 5 ± 1.4 5 ± 1.4 N/A

Own joint-space estimation 41 ± 3.5 7 ± 3.2 24 ± 4.3 1 ± 0.2 7 ± 1.3 20 ± 2.3

Jackson et al., [18] 62 ± 4.0 23 ± 1.6 N/A 8 ± 1.0 7 ± 0.4 N/A

Roberts et al., [23] 38 ± 36.9 9 ± 4.9 9 ± 7.8 4 ± 2.7 7 ± 3.5 33 ± 12.8

Umberger [20] 26 ± 10.1 18 ± 7.7 39 ± 16.1 17 ± 7.1

https://doi.org/10.1371/journal.pcbi.1008280.t004
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dorsiflexors (1 ± 0.2%). However, the order of the muscle groups in between was slightly dif-

ferent with the second and third highest portions for the hip extensors and hip flexors followed

by the knee extensors and knee flexors.

Metabolic rate time profile estimations show moderate to weak

correlations

To evaluate the mutual agreement between the metabolic rate time profile estimations of the

musculoskeletal method and the joint-space method, we evaluated the correlation in the esti-

mations of metabolic rates of different phases. According to the musculoskeletal method, the

majority of the metabolic cost of level walking comes from the single support phase (41 ± 3%),

followed by from the swing phase (22 ± 2%), the second double support phase (19 ± 4%, from

contralateral heel strike to ipsilateral toe-off), and the first double support phase (17 ± 1%,

from ipsilateral heel strike to contralateral toe-off) has the lowest metabolic cost (Table 3, Fig

6C, Fig 7C). According to the joint-space method, the majority of the metabolic cost of level

walking does not come from the single support phase but the second double-support phase

(49 ± 3%), followed by the single support phase (26 ± 2%), the swing phase (15 ± 1%) and the

first single support phase also comes last, similar to the musculoskeletal method (10 ± 1%).

Estimations of the metabolic cost of different phases showed weak positive correlations

between both methods that were not significant, except for the most downward shoe inclina-

tion (Rrm = 0.67, P = 0.020 for 7˚ downward shoe condition, Rrm = 0.35 ± 0.16, P� 0.243 for

all other shoe conditions, Fig 7D; Rrm = 0.22 ± 0.25 and P� 0.146 for all treadmill grades, Fig

6D). The slopes of estimations of the costs of phases from the musculoskeletal method versus

the joint-space method were smaller than one, which indicates that the musculoskeletal

method estimated smaller fluctuations in metabolic rate within the stride cycle than the joint-

space method.

Discussion

The aim of this study was to evaluate two methods that allow for the estimation of the time

profile of metabolic cost within the gait cycle within the same dataset. The time profiles of the

musculoskeletal and joint-space methods showed weak positive correlations with each other

that were mostly not significant, which highlights that both methods provide different time

profile estimations. Both estimations of stride average metabolic rate were sufficiently accurate

to correlate significantly with changes in indirect calorimetry measurements from walking on

different grades, but not from walking with different shoe inclinations. Since it is not possible

to validate the time profile estimations against direct measurements of metabolic rate time

profiles, these evaluations of stride-average estimations can provide insights into the potential

accuracy: If a method could accurately estimate the time profile of metabolic rate, it would also

likely be able to estimate changes in stride average metabolic rate. Our results suggest that both

methods were accurate enough to estimate large but not subtle changes in metabolic rate, such

as changes from shoe inclinations. The correlations of changes in stride average metabolic rate

versus indirect calorimetry were slightly higher for the musculoskeletal method than for the

joint-space method. Compared to the musculoskeletal method, the joint-space estimation

method could be expected to have a weaker correlation to indirect calorimetry because it was

developed based on a dataset from walking at different speeds [23] and not from walking at

different grades or with different types of shoes [36]. The changes from the footwear condi-

tions were not always estimated in the correct direction, possibly due to counterintuitive

effects on muscle-tendon dynamics, which are not always captured in joint biomechanics. The
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joint-space method might not be sufficiently accurate for estimating the effects of devices with

complex interactions, such as with exoskeletons.

The first double support phase had the lowest metabolic cost according to both estimation

methods (respectively 17 and 10% according to the musculoskeletal and joint-space method),

but according to the musculoskeletal method, the single support phase was the phase with the

highest metabolic cost (41%) whereas the joint-space method estimated the highest metabolic

cost during the second double support phase (49%, Table 3). While there are no direct mea-

surements of the time profile of metabolic rate, our results can be compared to estimates from

the literature. Our estimations of the relative cost during the swing phase (~22% according to

the musculoskeletal method and 15% according to the joint-space method) are within the

range from studies with experimental perturbations (1 to 24% based on added mass experi-

ments [27]; 17% based on experiments with isolated leg swinging [28] and 10% based on an

experiment with elastic swing leg assistance [29]). Our musculoskeletal estimation of the total

cost of the double support phases is close to the estimation based on added mass and body

weight support experiments (37% in our data versus 45% in [26]). We also compared our data

to the results for individual muscles and joints from supplementary datasets from previous

musculoskeletal and joint-space estimation studies. We found that the costs of different phases

(first and second double support, single support, and swing phases) from our musculoskeletal

method were less than 10% of the mean values derived from the normal walking condition

data in the study from Jackson et al., [18] (Table 3, S1 and S2 Figs). This agreement with the

results from Jackson et al., [18] makes sense because our study also used an EMG-driven

approach. The main differences of our study compared to Jackson et al., [18] are that we did

not rely on optimization to scale the EMG measurements since we had MVC measurements

and that we included a hip extensor muscle. The metabolic rates of the different phases from

the joint-space estimations are also within 10% of values derived from data from the Roberts

et al., [23] study, which used similar methods to the joint-space estimation in our study. One

main difference of our analysis compared to their study is that we did not have motion capture

data of the joints in the upper body. Therefore, we did not include contributions of the upper

body joints to metabolic rate.

The costs of phases appear to be similar to those from studies that used similar methods as

our study (when comparing the musculoskeletal estimation method to data derived from [18]

and when comparing the joint-space estimation to data derived from [23]). However, our esti-

mations of the cost of the second double support phase are more than two times greater than

that of Umberger (respectively 19 and 49% with the musculoskeletal and joint-space methods,

compared to only 8% in Umberger [20]). Our estimations of the cost of the sum of the double

support phases are greater than that of Markowitz and Herr (respectively 37 and 60% with the

musculoskeletal and joint-space method compared to 27% in Markowitz and Herr, [19]).

While we do not know the exact causes of these differences, it is known that the choice of

methods to estimate the change of Hill-type muscles and metabolic-rate equations can have

vast influences on the resulting estimations [12,14]. The study from Umberger [20] used for-

ward simulation to predict the kinematics and muscle behavior of a 2D model with 12 muscles

per side. The metabolic rate was then estimated with the equations from Umberger et al. [17],

with the modification where the metabolic rate from negative work was not included. Marko-

witz and Herr, [19] used joint kinematic measurements and EMG measurements (supple-

mented by EMG measurements of deeper muscle layers from the literature) to drive a 2D

model with 14 muscles per leg in a similar EMG-driven method as our study. One major dif-

ference compared to our study is that they used a multi-objective optimization to optimize

muscle parameters (e.g., tendon slack length) for minimizing metabolic rate estimated with

the original equations from Umberger et al., [17] and maximizing the correlation between
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estimated and measured joint moments. We chose to use recent modifications that are

designed to represent the human body more realistically, such as a 3D model [48] with muscles

that wrap over curved surfaces (e.g., epicondyles) instead of 2D models with straight-line mus-

cles [19,20]. To realistically capture the neural drive, we used EMG measurements to drive the

simulation instead of estimating the activation through optimization [20], and we used the

updated muscle metabolic cost equations [16] rather than the original equations [17,19]. These

methodological differences could explain the different results in our study compared to the

studies from Umberger [20] and Markowitz and Herr, [19].

If we had conducted an experiment with a hip exoskeleton [78] or an ankle tether that pulls

on the leg during the swing phase [29], it could be expected that effects on metabolic rate can

exist during the swing phase. In contrast, the inclined treadmill and inclined shoe conditions

do not apply any forces to the leg during the swing phase. Therefore, we expected that most of

the effects of the conditions on the metabolic rate would likely occur during the stance phase.

The results of both metabolic time profile estimations confirm that the changes in metabolic

rate occur almost entirely during the stance phase (S3D and S4D Figs). Further analyzing the

distribution of the costs over different muscle groups reveals that our estimations of the meta-

bolic rate of the plantar flexors (57± 3% of the sum of all muscles with the musculoskeletal

method and 41 ± 4% of the sum of all joints with the joint-space estimation method) were

larger than the results from Umberger [20] (26 ± 10%, Table 4). Our estimations of the meta-

bolic rate of the hip extensors (11 ± 1% with the musculoskeletal method and 24 ± 4% with the

joint-space estimation) were lower than the results from Umberger (39 ± 6%). Other studies

that used the Umberger estimation method appear to confirm the finding of a greater meta-

bolic cost for the hip muscles than the ankle muscles [12,14], although the difference appears

to be less pronounced in those works than in the study from Umberger [20]. These differences

in the relative contributions of muscle groups likely contributed to the differences in the esti-

mations of the time profile of metabolic rate during walking between studies.

A limitation of studies that estimate the metabolic rate time profile is that there is no direct

measurement of the time profile to which the estimations can be compared, and the results

depend on the chosen methods. Our data show that the estimations of the time profile can be

different when using two different methods on the same data (i.e., an EMG-driven method in

conjunction with muscle metabolic rate equations compared to a joint-space method). Overall,

there are three main categories of methods to estimate the muscle states: forward simulations,

inverse approaches, and EMG-driven approaches. Forward simulations predict the muscle

behavior, joint kinematics, and kinetics that result from muscle excitations using a forward

dynamics analysis of a multi-segment model with a foot-ground interaction model that esti-

mates the ground reaction forces. These simulations can be designed to track human experi-

mental data [79], or they can determine muscle excitations that optimize a specific objective

(e.g., metabolic cost minimization in combination with a number of constraints, such as

enforcing cyclic gait [20]). An advantage of this approach is that it can be used for predictive

simulations of assistive devices that have not yet been tested. A disadvantage could be that the

predicted activations, kinematics, and kinetics can sometimes be different from experimental

data. Inverse approaches estimate the muscle state by distributing the moment from inverse

dynamics over the muscles in a way that optimizes a physiologically realistic objective

[12,16,58,80] such as minimizing the sum of squared activations [81]. Again, it is not known

how universally valid this approach is, and other candidate objectives for computed muscle

control have been proposed [82,83]. An advantage of this type of approach is that it can be

used when specific EMG data are not available, for example, for specific deeper muscle layers

that are hard to measure with surface EMG. Furthermore, EMG-driven approaches use

recorded EMG in combination with prescribed kinematics to estimate the muscle states
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[18,56,57]. EMG-driven approaches offer the advantage of capturing the neural drive of the

participants more realistically [37], but they require the most extensive experimental data

(kinematics, EMG). Overall, it is likely that all three methods could result in different estima-

tions. A case study was performed to evaluate to which extent using the same metabolic rate

equations but with a different overall approach could affect metabolic time profile estimations.

We compared a computed muscle control-based estimation to our EMG-driven estimation in

one trial and found two different time profiles (S5 Fig). The metabolic rate equations can also

have a substantial effect on the resulting metabolic rate estimations. A recent study from Koe-

lewijn et al., [12] compared estimations with five different versions of metabolic equations on

walking at downhill, level, and uphill grades with muscle-state estimations that were kept con-

sistent across the different comparisons. Moreover, they included the equations from Umber-

ger et al. [17], which are very similar to the equations used in our musculoskeletal method and

the equations from Kim and Roberts, [22], which are similar to the joint-space method from

[23]. They found a wide range of correlations of the different estimation methods compared to

indirect calorimetry measurements, which confirms that muscle metabolic rate equations or

joint-space-metabolic rate equations can have a considerable influence on estimated metabolic

rates. Additionally, they found a slightly higher correlation and a regression slope closer to 1/1

for the Umberger et al., [17] equations compared to the joint-space equations. These findings

are consistent with our results for the treadmill grade conditions that also show a higher corre-

lation and regression slope closer to one with the muscle metabolic rate equations compared

to the joint-space equations.

Although using EMG measurements for EMG-driven simulation ensured realistic activa-

tion, the fact that we did not model data from muscles that act predominantly outside the sag-

ittal plane and the fact that we did not calibrate the muscle parameters to match the non-

sagittal components of the hip moment could be limitations. Muscles that act in the frontal

plane could contribute substantially to metabolic rate; for example, a study that models the

effects of different exoskeleton configurations shows the potential benefits of assisting hip

abduction [18]. To obtain a sense of how realistic our simulations were in addition to optimiz-

ing the agreement of the muscle-generated moments with the inverse dynamics moments, we

plotted the muscle parameters, joint parameters, heat rates and metabolic rates for each muscle

and joint in the condition with the level shoes on the level grade. Then, we compared these val-

ues versus those from similar metabolic estimation datasets [18,23] and literature from EMG,

imaging, and tendon force measurement studies (S1 and S2 Figs). Our peak activations of the

gastrocnemius (54%) were higher than those in the musculoskeletal simulation from Jackson

et al. [18], but this appears to be closer to reference data of MVC-normalized gastrocnemius

EMG (~80% [44]). The fiber length of the gastrocnemius shows a plateau during midstance

before shortening at push-off, similar to data from ultrasound measurements [84]. The average

time series of the fiber length of the soleus was slightly different from the Jackson et al., [18]

simulation since it lengthens during the midstance phase. However, this behavior appears to

be realistic based on a comparison with ultrasound data [71]. For more proximal muscles,

there is less data on fiber kinematics, except the vastus medialis, for which the values from one

experimental study show satisfactory agreement with our fiber length estimations [19,72,73].

The muscle activations for other muscles, joint angles and joint moments match well with the

results from Jackson et al., [18] and Roberts et al., [23] studies.

Although there is no direct measurement of the time profile of metabolic rate during walk-

ing, we believe there could be opportunities to obtain additional information by conducting

perturbation studies with devices such as exoskeletons [18,85,86] or tethers [87,88] that can be

programmed to act during specific phases of the gait cycle. Optimizing coefficients in simula-

tion models so that the estimations of the stride average metabolic rate match trends from
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“rich” datasets with perturbations to different parts of the gait cycle could potentially provide

more confidence in estimations of the metabolic rate time profile. The ability to estimate the

metabolic rate time profile with improved confidence levels could have a similar impact as

transitions from average to dynamic measurements in other fields. For example, after dynamic

plantar pressure measurement was developed [89], many clinical studies started to appear in

the literature [90]. This technique is now used for various applications, such as foot-type classi-

fication [91], insole design [92], and physical therapy [93]. Estimating the metabolic rate time

profile could have applications within the same categories (diagnosis [94], targeted exercise

therapy [95], and assistive device optimization [96,97]).

This research demonstrated that new methods for estimating the metabolic rate time profile

can match experimental estimations of the relative cost for the stance and swing phase, but the

exact shape of the time profile is highly sensitive to the estimation method. Further improved

estimations based on rich experimental datasets could lead to clinical applications and improve

our understanding of the energetics of gait.

Supporting information

S1 Fig. Muscle-parameters, joint parameters, and metabolic rate estimations of the lower

leg muscles and joints. Solid lines are the population average of our own data in the condition

with level shoes on a level treadmill. Red dashed lines are the average results under normal

walking conditions from the dataset from Jackson et al., [18]. The metabolic rate time profile

in the normal walking condition was obtained from the study by Jackson et al., [18] by apply-

ing the modified Umberger [20] estimation code from [68]. Dashed blue lines are supplemen-

tary data from walking at 70% of the preferred walking speed from Roberts et al., [23]. We

selected this trial from their supplementary data because the walking speed is most similar to

the walking speed from our study (1 m�s-1).

(TIFF)

S2 Fig. Muscle parameters, joint parameters, and metabolic rate estimations of the upper

leg muscles and joints. Full lines are the population average of our own data in the condition

with level shoes on a level treadmill. Red dashed lines are the average results in the normal

walking condition from the dataset from Jackson et al., [18]. The metabolic rate time profile in

the normal walking condition was obtained from the study by Jackson et al. by applying the

modified Umberger [20] estimation code from [68]. Dashed blue lines are supplementary data

from walking at 70% of the preferred walking speed from Roberts et al., [23]. We selected this

trial from their supplementary data because the walking speed is most similar to the walking

speed from our study (1 m�s-1).

(TIFF)

S3 Fig. Effects of treadmill conditions on muscle parameters. (a) Hip metabolic rate. (b)

Knee metabolic rate. (c) Ankle metabolic rate. (d) Total right side metabolic rate. (e) Total

activation-maintenance heat rate. (f) Total shortening-lengthening heat rate. (g) Total fiber

work. Lines represent subcomponents of the total metabolic rate estimated with the musculo-

skeletal method. Colors represent treadmill conditions. 100% on the vertical axis represents

the stride average of the total metabolic rate of the right side.

(TIFF)

S4 Fig. Effects of footwear conditions on muscle parameters. (a) Hip metabolic rate. (b)

Knee metabolic rate. (c) Ankle metabolic rate. (d) Total right side metabolic rate. (e) Total

activation-maintenance heat rate. (f) Total shortening-lengthening heat rate. (g) Total fiber

work. Lines represent subcomponents of the total metabolic rate estimated with the
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musculoskeletal method. Colors represent treadmill conditions. 100% on the vertical axis rep-

resents the stride average of the total metabolic rate of the right side.

(TIFF)

S5 Fig. Supplementary computed muscle control comparison. Comparison of estimation of

the time profile of metabolic rate using EMG-driven musculoskeletal method versus computed

muscle control (CMC) data. The EMG-driven timeseries is a metabolic time profile of one par-

ticipant during level walking, obtained with the model, musculoskeletal method, and muscle

metabolic rate equations that are used in the musculoskeletal method in the main text. The

computed muscle control time series is a metabolic time profile of the same participant and

walking condition, obtained with the same muscle metabolic rate equations but with a differ-

ent model and general approach to obtain the states of the muscles. For the computed muscle

control driven timeseries, we used the computed muscle control tool in combination with the

default model (Gait2392) in OpenSim to obtain the muscle states from 46 lower leg muscles

per side. This comparison shows that metabolic time profile estimations can be different even

when the same muscle metabolic rate equations are used but with different models and general

approaches to obtain muscle state data.

(TIFF)

S1 Table. Raw metabolic rate data in absolute units (W kg-1). Treadmill grade conditions,

shoe inclination conditions and normal walking condition. Rows indicate participants. Col-

umns include different estimation methods and indirect calorimetry.

(PDF)

S2 Table. Changes in metabolic rate in percent of normal walking condition. Treadmill

grade conditions and shoe inclination conditions. Columns include different estimation meth-

ods and indirect calorimetry. Rows represent mean and inter-participant s.e.m.

(PDF)

S1 File. MATLAB data file named “Data_MetabolicTimeProfileEstimation.mat” with tem-

poral, kinematic, kinetic, muscle, and metabolic data for both metabolic cost estimation

conditions for all participants and conditions. A text file named “Data_MetabolicTimeProfi-

leEstimation—readme.txt” with an explanation on data organization is included.

(ZIP)
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