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Although mice locate resources using turbulent airborne odor plumes, the stochasticity

and intermittency of fluctuating plumes create challenges for interpreting odor cues

in natural environments. Population activity within the olfactory bulb (OB) is thought

to process this complex spatial and temporal information, but how plume dynamics

impact odor representation in this early stage of the mouse olfactory system is unknown.

Limitations in odor detection technology have made it difficult to measure plume

fluctuations while simultaneously recording from the mouse’s brain. Thus, previous

studies have measured OB activity following controlled odor pulses of varying profiles or

frequencies, but this approach only captures a subset of features found within olfactory

plumes. Adequately sampling this feature space is difficult given a lack of knowledge

regarding which features the brain extracts during exposure to natural olfactory scenes.

Here we measured OB responses to naturally fluctuating odor plumes using a miniature,

adapted odor sensor combined with wide-field GCaMP6f signaling from the dendrites of

mitral and tufted (MT) cells imaged in olfactory glomeruli of head-fixed mice. We precisely

tracked plume dynamics and imaged glomerular responses to this fluctuating input, while

varying flow conditions across a range of ethologically-relevant values. We found that

a consistent portion of MT activity in glomeruli follows odor concentration dynamics,

and the strongest responding glomeruli are the best at following fluctuations within odor

plumes. Further, the reliability and average responsemagnitude of glomerular populations

of MT cells are affected by the flow condition in which the animal samples the plume, with

the fidelity of plume following by MT cells increasing in conditions of higher flow velocity

where odor dynamics result in intermittent whiffs of stronger concentration. Thus, the

flow environment in which an animal encounters an odor has a large-scale impact on the

temporal representation of an odor plume in the OB. Additionally, across flow conditions

odor dynamics are a major driver of activity in many glomerular networks. Taken together,

these data demonstrate that plume dynamics structure olfactory representations in the

first stage of odor processing in the mouse olfactory system.
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1. INTRODUCTION

Mice are adept at localizing odor sources (Gire et al., 2016;
Baker et al., 2018; Liu et al., 2019; Gumaste et al., 2020), but
the spatiotemporal information in olfactory environments that
aids this search behavior is largely unknown. Odors travel in
plumes which pull odor away from its source in filaments that are
broken and distorted as they travel in air, creating complex odor
environments. From the perspective of an olfactory searcher,
these intermittent filaments create stochastic odor encounters, or
whiffs, such that odor concentration dynamics fluctuate rapidly
from moment to moment. Features of these complex plume
dynamics contain information regarding odor source location
(Murlis et al., 2000; Celani et al., 2014). For example, as a
searcher encounters odors, the frequency, strength, and timing of
encounters provide complex cues about an odor source (Atema,
1996; Vergassola et al., 2007; Ache et al., 2016; Michaelis et al.,
2020).

A simple strategy, such as averaging odor concentration across
whiffs could eliminate the complexity of an odor plume, allowing
an animal to simply follow an increasing odor concentration
gradient to the odor source. However, an animal dependent
on this search strategy would operate at a timescale far
slower than that observed in mice engaged in olfactory-guided
search (Gumaste et al., 2020). This suggests that rodents most
likely extract information from the complex spatiotemporal
dynamics of olfactory environments to support their efficient
odor-guided search behavior.

The extraction of information from fluctuating odor plumes
will necessarily be impacted by the physics of odor transport.
Factors such as wind speed and the Reynolds number of the
plume could impact early olfactory processing in mammals.
Precise olfactometers have been used to model certain features
found in natural odor environments, such as fluctuating and
intermittent odor concentration dynamics. Although this work
provides important insights, olfactometers do not capture the full
complexity of the odor environment. One problem is a lack of
knowledge regarding which features of the plume are relevant to
olfactory search, constraining which features olfactometers have
been used to mimic. In addition, olfactometers create artificial
plumes that decouple odor concentration from features present
in olfactory environments. This omits correlations between
concentration fluctuations and the surrounding air flow as
well as small scale details of odor transport like diffusion.
Decoupling these factors creates challenges for interpretation
because it implicitly disrupts processing moderated by these
features, such as the impact of wind speed on the vibrissal
system (Yu et al., 2016) or feedback regarding bilateral nasal
sampling (Markopoulos et al., 2012; Esquivelzeta Rabell et al.,
2017). Directly observing how MT activity is impacted by the
plume dynamics of natural olfactory scenes will thus constrain
hypotheses regarding which spatiotemporal features of natural
odor stimuli are conveyed by the brain.

We studied the response of MT cells in the OB to odor
concentration dynamics in awake mice as they processed natural
olfactory scenes, i.e., odor plumes. We used wide-field calcium
imaging to measure MT activity, allowing us to study MT

activity contributing to OB output at the level of glomerular
complexes on the dorsal surface of the OB. Simultaneous
recordings of the OB and plume dynamics show glomerular
population activity follows fluctuations of odor concentration
during plume encounters. The reliability and following behavior
of glomerular responses were moderated by wind speed and
the resulting changes in plume structure. The fidelity of odor
concentration tracking increased when concentration dynamics
were skewed, creating intermittent odor encounters across the
plume presentation. In addition, as the strength and reliability
of odor-evoked activity in MT cells increased, this activity
more accurately followed plume dynamics. Together, these data
demonstrate for the first time that the rapid fluctuations present
in natural olfactory scenes significantly structure the activity of
glomerular MT cell populations in the mouse OB.

2. MATERIALS AND METHODS

2.1. Olfactory Stimuli
Olfactory stimuli were released by an automated odor port within
a 40 × 40 × 80 cm acrylic wind tunnel where airspeed was
controlled by a vacuum at the rear of the wind tunnel, posterior
to the animal’s location (Figure 1A). Concentration dynamics of
olfactory stimuli varied stochastically from trial to trial creating
plumes with unique concentration dynamics on each trial.
Adjusting the velocity of wind flow allowed for variation in the
Reynolds number, resulting in characteristic changes of plume
dynamics for different flow levels (Supplementary Figure 1).
Reynolds numbers were calculated using the mean flow of each
condition and the half height of the tunnel (20 cm) as the head-
fix setup is placed on a stage such that it is elevated ∼20 cm
from the tunnel floor (Figure 1B). Low, medium, and high flow
Reynolds numbers were 2,400 ± 1,000, 8,800 ± 400, and 9,800
± 200, respectively (mean ± st. dev), hence the medium and
high flow conditions are fully turbulent, while the low flow is
in the chaotic mixing regime. Across all flow conditions, plume
presentations are stochastic and plume dynamics do not correlate
across time within trials (Supplementary Figure 2A) or across
trials (Supplementary Figure 2B). Odor statistics confirm that
high and medium conditions are fully turbulent (as seen from
large skewness levels implying intermittency (Figures 1E–G)
and spectra close to the expectation for turbulent flows, see
Supplementary Figure 1D). The low flow condition is not yet
fully turbulent [as seen from the low values of skewness
and symmetric odor distribution (Figures 1E,G) and flatter
spectrum (Supplementary Figure 1D)]. Absolute velocities of
low, medium and high flow conditions were 0.40 ± 0.16, 1.31 ±
0.05, and 1.81 ± 0.17 fpm and velocity fluctuations were 14 ± 3,
6± 2, and 5.3± 1.5 fpm, respectively.

A single session consisted of forty trials of odor presentation.
Odor ports were located upwind∼ 13 cm anterior to the animal’s
nose (Figure 1B), and each plume presentation had a duration of
10 s. Odor release began ∼10 s into the trial. In order to avoid
responses predicting the beginning of the plume, the exact time
of odor release was randomized by adjusting the duration of the
5 s intertrial interval by a length of time (s) drawn randomly
from a uniform distribution, U(−2, 2). Random clicking noise
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FIGURE 1 | Plume presentations and head-fix setup for in-vivo recording experiments. (A) All experiments conducted in a 40 × 40 × 80 cm wind tunnel for quick

clearing of odor presentations. The odor port (not pictured) was located ∼ 13 cms upwind of the animal’s nose. (B) (Left) Graphic detailing experimental setup. (Right)

Ethanol odor concentration measured using a modified, commercially available ethanol sensor placed ∼ 4 mm from the outer edge of the mouse’s nostril. (C) Diagram

depicting flow conditions (high, medium, or low) of the 40 trials within a single session. (D) Example odor traces are depicted for each flow condition. (E) Histograms

of the odor concentration magnitude sampled across two examples trials show a change in skewness between low flow (left, blue) and high flow (right, red), with

skewness increasing with increased airflow during plume presentations. (F) Comparisons between the deconvolved sensor signal and a PID signal during a set of

paired recordings show odor concentration dynamics of the deconvolution can recover dynamics observed in the PID recordings (r = 0.61, p < 0.001). An example

from low flow (top) and high flow (bottom) are shown. (G,H) Skewness (G) and asymmetry (H) of the deconvolved ethanol signal vs. the PID traces for each trial. All

points lie close to the bisector (Purple line, labeled “exact”) showing that the deconvolution preserves measures of skewness and asymmetry consistent to the PID

trace. High flow trials (orange) are separable from low flow trials (blue) and are substantially different from 0 (the expectation for any symmetric distribution, e.g., a

Gaussian).

was used to control for the clicking sound of the port serving
as a cue for plume onset. Starting 5 s prior to plume onset, a
number was drawn from a uniform distribution,U(0, 1), for each
camera frame, and if the number exceeded 0.95 a clicking sound
was produced.

Ethanol concentration throughout each trial was measured
by a modified, commercially available ethanol sensor placed
within 3.5–4 mm from the mouse’s right nostril (Figure 1B).
For the experimental flow sessions, a benzaldehyde and ethanol
odor solution (0.6% benzaldehyde, 85.7% 200 proof ethanol,
and 13.7% distilled water) was used as the plume source for all
trials. Odor solutions were stored in odor reservoirs (centrifuge
tubes) with air-tight, customized tops. Tops had two openings
connected to tubing. One tube was connected to a Clippard

electric valve (part no. EV-2-12) to create airflow and the
other was attached to a 3D printed odor port. For each plume
presentation, the valve was opened to allow airflow into the tube
such that odor vapors exited the odor reservoir and traveled
through cylindrical tubing (1/16′′ inner diameter) to the release
point at the odor port. The odor port mounted the end of the
tubing so that it was suspended at roughly nose height and
located∼13 cm directly upwind of the animal’s nose (Figure 1B).

One set of experiments consisted of an odor panel during
which 3 odors were released across forty trials. For these sessions,
wind speed was held constant and only odor changed. For all
trials plumes were presented at high flow. For the first ten
trials, ethanol was presented (solution for plume source 86.3%
200 proof ethanol and 13.7% distilled water), for trials 11–25 a
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benzaldehyde-ethanol mixture was presented (solution same as
flow experiments), and for trials 26–40 a isoamyl acetate- ethanol
mixture was presented (solution for plume source consisted
of 0.6% isoamyl acetate, 85.7% 200 proof ethanol, and 13.7%
distilled water). Solutions were stored in three separate reservoirs,
each with its own separate value and tubing. To change between
odors during a session, the tubing running into the odor port was
switched out manually during the appropriate intertrial intervals
dividing odor conditions.

2.2. Implantation of Cranial Window
Implantation of the cranial window was adapted from
methodology detailed in Batista-Brito et al. (2017). Mice (n
= 3 flow panel, n = 2 odor panel) were anesthetized with
isoflurane for surgery. 2 × 2.5 or 2 × 3 mm craniotomies were
performed above the olfactory bulbs and custom cut double
windows were implanted. A customized stainless steel head
plate was glued directly on the skull posterior to the window,
and two stainless steel screws (Neuroscience Invivo Research
Components) were placed posterior to the head plate. Metabond
was then added to cover all exposed skull and a thin layer built
to cover the screws and the central surface of the headplate. The
position of the craniotomy was biased toward either the left or
right bulb.

2.3. In vivo Imaging
Widefield fluorescent microscopy was used for awake, head-fixed
imaging in Thy1-GCaMP6f-GP 5.11 (IMSR Cat# JAX:024339,
RRID:IMSR_JAX:024339) mice to view neural activity in the
dorsal OB. Mice were between 11 weeks and 13 months old when
imaged. 488 nm LED stimulation was used for the duration of the
trial (∼30 s), but was absent during intertrial intervals (∼ 5 s) to
avoid excessive bleaching. All mice were imaged at 30 Hz with 4×
0.13 NA objective (Nikon). Neural activity was recorded using
a Teledyne Photometrics Prime 95B sCMOS camera. For each
session, mice were head-fixed above a freely rotating, circular
track, allowing mice to run at will during imaging sessions.

2.4. In vitro OB Slice Imaging
To establish patterns of expression and signals obtained from the
OB of Thy1- GCaMP6f- GP 5.11 animals, imaging experiments
were conducted in OB slices. These animals show GCaMP6f
expression in the main olfactory bulb as well as other areas
of olfactory cortex, including but not limited to piriform and
anterior olfactory cortex (Dana et al., 2014). Slice work verified
strong expression in MT somas and dendrites (Figure 2A).
Although we believe MT cells to drive the signal imaged in the
OB, it is possible centrifugal feedback could contribute to some
of the observed responses.

Horizontal OB slices (300–400 µm) were made following
isoflurane anesthesia and decapitation. Olfactory bulbs were
rapidly removed and placed in oxygenated (95% O2, 5% CO2)
ice-cold solution containing the following (in mM): 83 NaCl,
2.5 KCl, 3.3 MgSO4, 1 NaH2PO4, 26.2 NaHCO3, 22 glucose,
72 sucrose, and 0.5 CaCl2. Olfactory bulbs were separated into
hemispheres with a razor blade and attached to a stage using
adhesive glue applied to the ventral surface of the tissue. Slices

were cut using a vibrating microslicer (Leica VT1000S) and
were incubated in a holding chamber for 30 min at 32◦C.
Subsequently, the slices were stored at room temperature.

Slices were placed on a Scientifica SliceScope Pro 6000,
using near infrared imaging for slice placement and 488 nm
LED illumination for imaging activity and a QI825 Scientific
CCD Camera (Q Imaging) for image acquisition. Imaging was
performed at 32–35◦C. The base extracellular solution contained
the following: 125 mM NaCl, 25 mM NaHCO3, 1.25 mM
NaHPO4, 25 mM glucose, 3 mM KCl, 1 mM MgCl2, and 2
mM CaCl2 (pH 7.3 and adjusted to 295 mOsm), and was
oxygenated (95% O2, 5% CO2). An elevated KCl solution
(equimolar replacement of 50 mM NaCl with KCl in the
extracellular solution) locally applied through a borosilicate
pipette using a picospritzer 2 (Parker Instrumentation) was used
to stimulate cells.

2.5. Data Pre-processing
ImageJ was used to crop fields of view (FOVs) for data analysis.
It was also used to extract pixel averaged signal for hand-drawn
region of interest (ROI) analysis.

Matlab 2019b was used to analyze data and plot figures.
Data was aligned using NoRMCorre software to perform
piecewise rigid and non-rigid motion correction (Pnevmatikakis
and Giovannucci, 2017). This alignment corrected for both
global frame movement due to head jitter (rigid) and localized
distortion due to brain movement (non-rigid).

2.6. Precise Tracking of Plume Dynamics
In the past it has been difficult to simultaneously record
neural responses and plume dynamics without disrupting plume
structure. Photoionization detectors (PIDs) are used to detect
odorants, but PIDs sample via an active process, redirecting
airflow into the sensor to detect odorants. In these experiments
we used a miniaturized ethanol sensor modified from a
commercially available metal oxide (MOX) sensor (Tariq et al.,
2021). The sensor was placed within 4 mm of the lateral edge
of the mouse’s right nostril to capture the odor concentration
signal across plume presentations for each trial. The sensor, a
Figaro TGS 2620 Organic Solvent Vapor Sensor, was adapted
similar to described in Tariq et al. (2021) by removing most of the
metal head cap, including both a mesh covering and a solid metal
covering. The resulting sensor was open to make direct contact
with the airflow. In this adapted design, the sensor is mounted
only to a circular base plate with a shortened metal cylindrical
wall surrounding it. A single odor, a benzaldehyde-ethanol
mixture, was used for each trial in the flow experiments. Odors
released together travel together within plumes at sufficiently
small scales because dispersion dominates over diffusion (Yeung
and Pope, 1993; Celani et al., 2014). In this way, the ethanol
sensor measured the odor concentration of the benzaldehyde-
ethanol mixture. The plume for each trial was released by an
automated odor port at the upwind end of the wind tunnel,
and the ethanol sensor measured the odor concentration of the
ethanol across each trial. During plume presentations, the odor
released from the odor port traveled in stochastic plumes through
the wind tunnel. Therefore, plume onset time varied on each

Frontiers in Cellular Neuroscience | www.frontiersin.org 4 April 2021 | Volume 15 | Article 633757

https://scicrunch.org/resolver/RRID:IMSR_JAX:024339
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Lewis et al. Plume Dynamics Structure OB Output

FIGURE 2 | In-vivo recording of glomerular population response. (A) Change in fluorescence of MT cells in an acute in vitro OB slice preparation averaged over 3 s

following a puff of high K+ solution. (B) In vivo view of the dorsal olfactory bulb through an implanted cranial window. (Left) Window activity averaged across a single

trial. (Right) Projected standard deviation for the same trial shows MT activity in the dorsal OB responsive to the odor presentation. (C) Diagram depicting flow

conditions (high, medium, or low) of the 40 trials within a single session. (D) The deconvolved ethanol trace (blue) compared to the deconvolved response of each

glomeruli (black) within the recorded FOV during a single low flow trial depicted by asterisk in (C). Red arrows indicate onset and offset of plume presentation. (E)

Same as (D) but for a single high flow trial from the same session also depicted by asterisk in (C).

trial dependent on when the first filament made contact with
the plume sensor. Reynold’s numbers calculated within each
flow condition (see Olfactory Stimuli above) show that plume
dynamics are highly unsteady and dynamic, and fully turbulent at
both medium and high flow. The odor was released 10 s after the
trial began for a duration of 10 s. Each indicated flow condition
was maintained throughout the entire trial. Flow condition was
set for each trial block (Figure 1C) by adjusting the strength of a
vacuum exhaust at the downwind side of the wind tunnel to one
of three levels, low, medium, and high. Plumes were presented
at medium level flow for the first 10 trials, after which flow
alternated between high and low flow in blocks of five trials.
Some sessions transitioned frommedium to low flow initially and
others transitioned from medium to high flow.

2.7. Ethanol Deconvolution
Recent characterization of MOX sensors comparing their
deconvolved signals to simultaneously recorded PID (200B: mini

photo-ionization dectector) signals have validated the use of
MOX sensors in capturing turbulent plume dynamics despite
their slower recording dynamics (Martinez et al., 2019; Tariq
et al., 2021). Tariq et al. show resolution of frequencies up
to 15 Hz and high correlations between deconvolved MOX
sensor and PID recordings at distances extending to >1 m
in a turbulent airflow setting. For our experiments, ethanol
concentration throughout each trial was measured by a modified,
commercially available ethanol sensor placed within 3.5–4 mm
from the mouse’s right nostril (Figure 1B). A single session
consisted of 40 trials of odor presentation (plumes).

Sensor signal was acquired at 100 Hz and then low pass
filtered at 30 Hz using a Kaiser window. The signal, e, was
then normalized within each trial using the mean and standard
deviation of the signal during the plume presentation. The signal
was deconvolved by adapting the deconvolution specified in
Tariq et al. (2021). The kernel was defined in the same manner,
but instead of normalizing the range of the kernel, the integral
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of the kernel is normalized. Thus, the kernel, k, is calculated
as follows:

k0(t) = e−t/τdecay − e−t/τrise (1)

k(t) = k0(t)/

∫ T

0
k0(s)ds (2)

where t is an array with evenly spaced timestamps at the proper
sampling rate for the length of a single trial (T), τdecay = 0.4629,
and τrise = 0.0001. Both signals, e and k, are then transformed
into Fourier space using the Matlab Fourier transform function,
and the ethanol signal is deconvolved in Fourier space by

dividing ê by k̂. The inverse Fourier transform of the resulting

deconvolution is taken to obtain d such that d = F−1(ê/k̂). The
deconvolved signal, d, is then normalized within each trial using
the mean and standard deviation during the plume presentation,
d = (d− < d >)/std(d). The deconvolution optimizes the
preservation of odor concentration dynamics across trials, but
does not preserve the absolute value of odor concentration.

To optimize the parameters for the deconvolution, a complete
session of 40 plume presentations was recorded with the usual
ordering of flow condition blocks (Figure 1C). No mice were
recorded during this session. Instead, a PID was placed 4 mm
from the ethanol sensor in the same position where the animal is
usually head-fixed.

To optimize parameters, the PID signal, p, was first
downsampled to 100 Hz to match the sensor sampling rate. Next,
the signal was normalized within each trial using the mean and
standard deviation of the signal during plume presentation, p =

(p− < p >)/std(p). This normalized signal was then Fourier
transformed, convolved with the kernel and back-transformed to
obtain the convolved signal c = F

−1(p̂·k̂). It was then normalized
and compared to the raw ethanol across a range of τdecay and
τrise parameter values. The Kernel parameters were chosen by
minimizing mean squared error between the e and normalized
c signals averaged across all trials within the paired recording
session: minτrise , τdecay < ||e − (c− < c >)/std(c)||2 >. This
optimized kernel is used to deconvolve the raw ethanol signal
in the recording sessions. The deconvolved ethanol sensor signal
allows for the recovery of plume dynamics unique to each trial
(Supplementary Figure 2). It is significantly correlated with the
PID signal as measured during plume presentations (r = 0.61,
p < 0.001, both sampled at 100 Hz), which is a 0.22 improvement
from the correlation between the raw ethanol sensor and PID
signal (r = 0.39, p < 0.001, both sampled at 100 Hz).

Finally, with the exception of Supplementary Figure 1, the
deconvolved trace was downsampled for figures and analyses
to match the calcium trace (30 Hz) by averaging all samples
taken across each camera frame. Deconvolution of the sensor
signal during paired recordings is plotted and compared to both
the raw sensor signal and to the PID reading from the paired
recordings (Supplementary Figure 1). An initial inflection of
signal at plume onset can be observed in the deconvolved ethanol
signal for some trials (Figure 1D, Supplementary Figure 1B).
This peak at plume onset is not reported by the raw
sensor signal (Supplementary Figure 1A) or by the PID signal

(Supplementary Figure 1C) and is likely an artifact of the
deconvolution. Since these experiments focus on how well MT
activity follows odor concentration dynamics during plume
encounters, the first and last seconds of the 10 s plume are
omitted when analyzing neural responses to plume dynamics.
The only exception is for the analysis of responsivity, which is
based on the percentage of timepoints for which a significant
response is observed and so this thresholded measure does
not directly consider signal magnitude. Therefore, any artifact
of plume onset dynamics in the sensor signal due to the
deconvolution of its slower dynamics do not affect correlations
reported between stimulus and response.

2.8. Defining Dynamic Flow
Dynamic flow was calculated within each session. In the
experimental setup, flow condition is defined by wind speed.
Intermittency was measured within a trial during the middle
8 s of the 10 s plume presentation by calculating asymmetry
or by using the 3rd moment of the sampled distribution (the
distribution odor concentration magnitude as measured for
each time point across the window) (Figure 1E). Low and high
flow trials were separable using either of these measures. As
determined by these measures, intermittency increased with
airflow moving from low to high flow conditions. The PID signal
from the paired odor recording session shows this difference
in dynamics as the concentration plotted across high flow trials
exhibits increased intermittency as compared to that for low flow
trials (Supplementary Figure 1C).

To see if there was a main effect of flow condition on these
stimulus properties, skewness and asymmetry, a one-way analysis
of variance (ANOVA) test was conducted for each parameter. For
each ANOVA, multiple comparisons using a Tukey’s test were
performed to look for significant differences of the parameter
between flow where comparisons were considered significant
for p < 0.01. These tests indicated that both skewness and
asymmetry vary significantly across flow condition [F(2, 155) =

52.7, p < 0.001 and F(2, 155) = 54.9, p < 0.001, respectively].
Multiple comparison tests examining the differential effect of
flow on these parameters showed that, for both, there was
a significant difference between low and medium flow and a
significant difference between low and high flow. No significant
difference was found between medium and high flow. Therefore,
only low and high flow conditions were selected when examining
the effect of air flow on neural parameters.

2.9. Measuring Glomerular Responses to
Plume Dynamics
Widefield imaging of the dorsal surface of the OB in Thy1-
GCaMP6f-GP5.11 mice was used to capture MT cell activity
at the glomerular level (Figure 2B). Thy1 mice exhibit fast
kinetics and strong expression in MT cells within the OB (Dana
et al., 2014). Global MT activity is clustered into dendritic
complexes known as glomeruli. Widespread activity of secondary
dendrites in the external plexiform layer (EPL) of the dorsal OB
causes diffuse fluorescence across the imaging field. Therefore,
CaImAn, a constrained non-negative matrix factorization
(CNMF) algorithm, was used on each FOV to find regions of
interest (ROIs) (FOV 1, FOV 2, and FOV 3 from mouse 1,
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n = 27, 17, and 6 glomeruli, respectively; FOV 4 from mouse 2,
n = 35; FOV 5 from mouse 3, n = 26) and their activity traces
(Pnevmatikakis et al., 2016). Thus, the spatial decomposition of
CNMF provided the ROI for each glomerulus, and the temporal
decomposition provided its corresponding denoised activity
trace. The denoising of the CNMF temporal decomposition helps
to remove correlated signals between neighboring glomeruli,
accounts for calcium drift within recording sessions, and
separates glomeruli overlapping in the dorsal-ventral dimension.
The change in the distribution of correlation coefficients between
ROIs before and after denoising (Supplementary Figure 3)
shows a decorrelation of glomerular signals. A two-sample
Kolmogorov-Smirnoff test shows the distributions of correlation
coefficients between the pixel averaged ROI traces, 0.87 ± 0.07
(mean ± st. dev), and the CNMF ROI traces, 0.36 ± 0.28 (mean
± st. dev), are significantly different (D = 0.86, p < 0.001).

To protect against over-segmenting a single glomerulus into
multiple ROIs, neighboring ROIs whose baseline CNMF activity
was correlated above 0.75 were selected as candidates for ROI
merging (Supplementary Figure 4). The baseline period was
examined as criteria for possible merging since glomeruli might
have similar response profiles to the stimulus dynamics during
plume presentations. The baseline activity of the neighboring
ROIs was then binarized using a threshold of ±1 st. dev. If
the correlation of the binarized activity between neighboring
ROIs exceeded 0.75, the ROI with the lower mean activity
(presumably encompassing less of the glomerulus) was dropped
from the analysis.

To validate the use of CNMF for ROI selection, results were
compared to a hand-drawn ROI analysis conducted on one of
the fields of view (FOV 5) in ImageJ (Supplementary Figure 5).
Using this standard, manual ROI selection, we show CNMF
decomposition and denoising does not qualitatively change the
interpretation of the data. Rather, CNMF recovers spatial and
temporal resolution of MT activity by increasing the number
of ROIs detected per field and decreasing pairwise correlation
between ROIs. This decrease in pairwise correlation between
ROIs suggests CNMF reduces common global signal, such as
that from neuropil activity where secondary dendrites and global
centrifugal feedback in the OB produce diffuse excitation across
the dorsal surface of the OB. Hand-drawn ROIs were selected
after viewing footage and reviewing standard deviation and
maximum value projections of activity from the FOV within
each trial. The activity averaged from within hand-drawn ROIs
has higher pairwise correlations than denoised CNMF activity
traces. This mirrors what is seen when pixel-averaged activity
from within CNMF ROIs (without denoising) is compared to
the denoised traces. Thus, the denoising of CNMF recovers the
spatiotemporal resolution of glomerular activity observed in the
dorsal OB recordings in both types of analyses. A two-sample
Kolmogorov-Smirnoff test shows the distributions of correlation
coefficients between the deconvoled hand-drawn ROIs, 0.81 ±

0.08 (mean± st. dev), and the deconvolved CNMF traces, 0.1935
± 0.3471 (mean ± st. dev), are significantly different (D =

0.86, p < 0.001). Results of the hand-drawn ROI analysis
(power and correlation analyses, Supplementary Figures 5D,E,
respectively) were qualitatively similar to those found using

CNMF corroborating the ability of glomerular networks to
resolve odor concentration dynamics. Cross-correlations show
a relation between glomerular and ethanol signals during odor
presentation with all glomeruli having significant correlation
with the plume during odor presentation as compared to
their respective null distributions from trial shuffled correlation
analyses. In addition, a strong correlation between glomerular
response power (0–5 Hz) and ability to track odor concentration
dynamics is also present in the hand-drawn ROIs (r = 0.80,
p =< 0.001). Thus, we find that CNMF captures the relationship
between glomeruli and plume dynamics while improving the
resolution of glomerular network activity and inter-glomerular
temporal dynamics.

The CNMF activity traces from the identified glomeruli were
baseline normalized using the mean and standard deviation of
a 5 s baseline activity period prior to stimulus onset. Traces for
each glomerulus were then deconvolved in the style of Stern et al.
(2020) to recover the average activity rate of each glomerulus.
To find the optimal penalty parameter, λ, for deconvolution, λ

was optimized within each glomerulus. Then the median of this
optimized distribution was used as the λ in the deconvolution
for all glomeruli. After deconvolution, traces were standardized
using the standard deviation of the glomerulus’s entire trace.
Deconvolved signals were standardized in this way since the
florescence range of a glomerulus’s response depends on the
number of expressing MT cells, the depth of the glomerulus from
the dorsal surface, and other methodological factors unrelated to
the magnitude of the response.

2.10. Testing for Responsive Glomeruli
A glomerulus was considered to be responsive to odor if its
deconvolved trace exceeded threshold more time points than
expected by chance during plume presentations as compared to
its activity level during odorless baseline periods (Figure 6). Since
this preliminary measure does not rely on stimulus dynamics,
it captures glomeruli that respond to the plume even if their
response is unrelated to odor concentration dynamics or only
present for part of the plume.

First, the deconvolved trace of a single glomerulus was split
into two periods: baseline activity and odor response. The
baseline period is a 5 s period at the beginning of each trial
prior to plume onset. The odor response period is the time
during which the plume is present as well as 1 s immediately
following the plume since inhibition has been shown to induce
excitatory rebound responses in tufted cells (Cavarretta et al.,
2018). The signal is first baseline normalized by subtracting
the mean and dividing by the st. dev of the baseline activity
within each trial. Next, it is binarized, thresholding for time
points where activity exceeded the 95% confidence interval
of the glomerulus’s original baseline activity (thresholded at
±1.96 baseline mean). In this way, each time point that crossed
the threshold was considered an event. Within each trial’s
plume presentation, if the number of events exceeded the null
expectation (5% of the total number of time points during plume
presentation rounded up to the nearest integer), the glomerulus
was considered to be responsive to the plume during that trial.
The proportion of trials to which the glomerulus responded was
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calculated within three sets of flow conditions (all flows, low
flow, and high flow). To illustrate responsivity scores within
and between glomeruli simultaneously, scores are plotted as a
stacked bar graph (Figure 6A, cumulative scores are not used for
analytic purposes).

2.11. Cross-Correlation Between Plume
Dynamics and Corresponding Neural
Responses
To understand the relation between stimulus and response
time series, a preliminary analysis was conducted by calculating
the correlation coefficients between the two signals for each
glomerulus. In the future, more sophisticated techniques will be
used to establish how much of the neural representations can be
explained by high-fidelity odor concentration encoding.

Due to the stochastic nature of plume onset and offset times,
the correlation is only calculated for the middle 8 s of the 10 s
plume so that onset and offset dynamics are not included and the
correlation measure represents the magnitude of plume tracking
during plume encounters. The cross-correlation coefficient of
a glomerulus rg is calculated between the ethanol e and
calcium c deconvolutions during plume presentations. For a
single glomerulus, the correlation coefficient between the two
deconvolutions within a single trial n is calculated at all possible
lags l. Using the xcorr() function in Matlab to compute the
coefficients, both signals are mean subtracted prior to calculating
the cross-correlations such that the correlation coefficients are
synonymous with calculating the Pearson correlation coefficient
between the two signals at each respective lag value.

rg,n,l = corr(en,l, cn,l) (3)

The mean coefficient for each glomerulus, rg,l, is calculated by
averaging across all trials within the session (n = 40 for 3 FOVs,
and n = 39 for 2 FOVs) at each possible lag. The maximum
coefficient mean is selected from all lags within a 500 ms window
w of the neural activity following the ethanol signal.

rg = max
0<l≤w

rg,l (4)

This is considered to be a window of sufficient size to account for
variable delays in glomerular processing. The average time lag of
rg was 130 ms± 100 (mean± st. dev).

Within flow cross-correlations are calculated in the same
manner but averaged only across trials within the specified
flow condition.

For plotting of tracking ability (Figures 5A,B), rg is compared
to a single trial shuffled analysis using the same method as
detailed above. The difference between the matched and shuffled
coefficients suggest correlations are not solely a result of plume
structure, but are driven by the temporal dynamics unique
to each trial. Trials were shuffled within each glomerulus by
calculating the correlations between en and c 6=n. In this way,
any relation dependent on the dynamics of the stochastic
fluctuations within each plume presentation is lost, but other
statistical features of the plume presentation are preserved,

yielding a baseline value for the cross-correlation. Glomeruli are
plotted in Figures 5A,B if their correlation coefficient from the
matched analysis exceeds ±2 standard deviations (st. dev of the
coefficient distribution from the shuffled analysis) of the shuffled
mean coefficient. Since correlation varies significantly within a
glomerulus across flow conditions, a glomerulus is considered to
exceed the shuffled mean if it does so in at least one of the three
defined conditions, all flows, low flow, or high flow.

Using the same shuffled correlation, a bootstrap analysis
was conducted (10,000 iterations) creating a null distribution
of the shuffled mean correlation coefficients to test for
significance (Supplementary Figure 7C). The mean correlations
are compared to their respective 95% confidence interval for
the null distribution. Glomeruli are considered to respond
significantly to plume dynamics when their mean coefficients
exceed their null expectation. Non-significantly responding
glomeruli are depicted in stacked bar graphs using gray hues
(Figures 5C, 6A).

Comparison of correlation coefficients in the matched
vs. shuffled cross-correlations does not naturally divide the
glomeruli into two subpopulations, but rather the strength of
this relationship varies continuously across glomeruli. Therefore,
instead of dividing glomeruli into subpopulations of tracking
vs. non-tracking, our analyses consider how the strength of
odor concentration tracking compares to other properties of the
glomerulus and its response.

3. RESULTS

3.1. Measuring Glomerular Responses to
Plume Dynamics
Using a modified, commercially available odor sensor combined
with widefield calcium imaging techniques in head-fixed mice,
we reliably tracked plume dynamics and investigated glomerular
responses to this fluctuating input. Imaging was conducted
in Thy1-GCaMP6f-GP5.11 mice which have fast kinetics and
expression in mitral and tufted (MT) cells within the olfactory
bulb (OB) (Dana et al., 2014) (Figure 2A). Widefield imaging
of the dorsal surface of the OB allows for glomerular level
resolution of the neural response (Figure 2B) (Fletcher et al.,
2009). To explore a range of plume dynamics an animal may
encounter in its natural environment, we changed the airspeed
in the wind tunnel to create stochastic plumes with different
odor concentration dynamics (Figures 1D–H). Odor identity,
concentration and volume released from the odor port remained
constant across all flow conditions, making the plume dynamics
the only source of variation (Figures 2C–E).

3.2. Mitral and Tufted Population Activity
Correlates With Plume Dynamics
At the bulbar level, imaging of MT cell activity shows activation
of glomerular networks during odor exposure (Figure 3A).
The global MT activity for a given field of view (FOV) was
subjected to principal component analysis (PCA) and compared
to the simultaneously recorded plume dynamics (Figure 3B).
The FOV’s were aligned prior to PCA, but no segmentation
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FIGURE 3 | Population response of MT cells in dorsal OB respond to changes in odor concentration during plume presentations. (A) Simultaneously recorded

deconvolved ethanol plume (top) and imaging of calcium signals from MT cell activity in an example FOV of a Thy1-GCaMP6f (GP5.11) mouse (bottom). Baseline and

odorless periods (black) and odor plume input (red) are shown from the indicated time points. Fluctuations in the odor plume elicit repeatable activation of specific

glomerular networks in response to whiffs of odor during plume presentations. (B) (Left) An image of the principal component loadings corresponding to the

odor-evoked activity [principal component 2 (PC2)]. (Right) Time series of PC2 (top, red) aligned to the simultaneous ethanol signal (bottom, black). Scale bar indicates

2 s. (C) Cross-correlogram between the two signals in (B). Red line indicates a slight offset from 0 for the peak correlation (∼ 250 ms mean lag across FOVs from

sensor to OB response). Gray plots average the null correlation ± SEM (correlation of neural activity from the example trial with odor signal from all non-matched trials

in session). (D) Cross-correlations (mean ± SEM) between odor evoked population activity (principal component) and ethanol sensor signal are strong across 3

Thy1-GCaMP6f (GP5.11) mice (r = 0.54± 0.07).

or denoising was performed. To search for component activity
responsive to plume dynamics, the correlation between each
principal component and the odor concentration dynamics
was calculated. There exists a high ranking component for
each mouse that correlates strongly with plume dynamics
(Figures 3C,D). Plotting the loading weights of the maximally
correlated component shows dense clusters of high variance
resembling partial spatial maps of glomerular activity. These
findings demonstrate that MT population activity recorded in
the first relay of olfactory processing is correlated to odor
concentration dynamics during plume presentations. In order
to establish whether individual glomeruli are correlated to odor
cues, we sought to segment the MT activity into glomerular
units to determine their respective contributions to the observed
tracking of plume fluctuations by population activity.

3.3. Neural Activity of Glomeruli
CNMF decomposition provided locations of glomeruli and
their corresponding denoised traces (Figure 4). To recover the
average activity of synaptic complexes of MT activity known
as glomeruli, CNMF traces were deconvolved in the style of
Stern et al. (2020) (see methods). The mean deconvolved trace
across trials was calculated for each glomerulus during plume
presentations (Figure 4E). The mean response of a deconvolved
trace (Figure 4F) was only considered during the middle 8 s of
the 10 s odor plume to concentrate on glomerular responses to
odor concentration dynamics during plume presentations and
avoid responses to onset or offset plume dynamics.

For each glomerulus, the mean response across plumes was
also calculated within low and high flow conditions. A paired
samples t-test found that glomerular response means varied
significantly across low and high flow conditions [t(110) =

9.71, p < 0.001]. Mean responses were higher in low flow
conditions, during which lower airspeed resulted in plume
dynamics that were less intermittent, as shown by lower skewness
and asymmetry in the deconvolved odor signals of low flow
trials as compared to high flow trials [F(2, 155) = 52.7,
p < 0.001 and F(2, 155) = 54.9, p < 0.001, respectively]
(Figures 1E–H). In high flow conditions, increased intermittency
produced more brief, high concentration fluctuations followed
by blanks, or periods without odor signal. This decreased
response observed across high flow conditions could be due to
a decrease in odor concentration means as plumes had lower
concentration means in high flow. PID recordings from the
paired recording experiment show a significant 50% decrease
of the mean concentration in high flow as compared to low
flow (z = 6.65, p < 0.001). Thus, the mean MT activity
increased in low flow trials following the increase in stimulus
mean, but activity became less correlated with plume dynamics,
suggesting the response of glomerular populations aremoderated
by plume dynamics.

3.4. Correlation Between Stimulus and
Glomerular Activity
To determine if plume dynamics could be moderating the
glomerular population response, cross-correlation was used
to quantify the relation between odor concentration dynamics
and simultaneously recorded glomerular activity (Figure 5).
Most glomeruli significantly followed plume dynamics when
correlation between neural activity and odor activity was
calculated across all trials (100/111), across low flow (97/111)
trials, or across high flow (100/111) trials. Significant tracking
of the stochastic changes in odor concentration across plume
presentations is determined by comparing mean correlation
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FIGURE 4 | The spatial and temporal decomposition of CNMF identifies glomeruli and denoises their traces. (A) The white box outlines the FOV used for analysis as it

relates to the larger recording window. The image shows the standard deviation projection of the aligned recording during a single odor presentation. (B) Mean

subtracted maximum projection of the same trial overlaid with ROIs from CNMF spatial decomposition shows segmentation of glomeruli for a single FOV using CNMF

spatial decomposition. The spatial decomposition of the FOV results in 26 glomeruli (four dropped units after merge analysis not pictured) as outlined and numbered.

(C) Shows the mean traces of each glomerulus’s CNMF temporal decomposition within each flow condition (left to right : all trials, low flow, high flow). Trials sorted by

magnitude of normalized mean deconvolved response (E) during odor exposure. (D) The deconvolved CNMF response of a single glomerulus [pink fill (B)] to all low

(gray) and high (black) flow trials across the recording session shows glomerular responses vary due to the unique odor concentration dynamics of each plume. (E)

Deconvolution accelerates dynamics of glomerular responses as shown by the mean deconvolved traces of the corresponding glomeruli depicted in (C). (F) The

cumulative mean, a sum of the mean responses for each glomerulus in low and high flow, are plotted as a stacked bar graph so that comparisons between mean

responses can be made within and across glomeruli simultaneously. Mean responses are calculated for the deconvolution (E) within each flow condition during the

plume release and vary significantly between conditions [t(110) = 11.43, p < 0.001] with higher average responses in low flow.

coefficients to a null distribution created using a trial shuffled
bootstrap analysis (see methods) (Supplementary Figure 7C).
Within glomeruli that significantly responded to plume
dynamics, the degree of tracking (the strength of the correlation
between plume dynamics and a glomerulus’s response) varied
along a continuum such that some glomeruli were more

responsive to fluctuations in odor concentration than others
(Figures 5C,D). Higher correlation coefficients are not observed
when glomerular responses are trial shuffled and ethanol
recordings are no longer compared to the glomerular responses
they elicited (Figures 5A,B, Supplementary Figure 7C). This
shows that it is not the statistics of stimulus presentations that
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FIGURE 5 | Glomerular population activity follows odor concentration dynamics across plume encounters. (Left) The cross-correlation between the deconvolved

ethanol trace and each glomerulus’s deconvolved activity trace is calculated within each trial and then averaged across trials. Each row is a glomeruli and each time

point represents the cross-correlation at the indicated lag. Glomeruli are sorted in order of decreasing magnitude of correlation coefficient (see methods). (Right) Same

as left but glomerular responses are trial shuffled so that the signals compared are not from the same trial. Glomeruli are sorted to match their corresponding

unshuffled cross-correlation in the right panel. (B) Scatterplot of the correlation coefficient of all glomeruli if compared to their respective shuffled coefficient. Glomeruli

plotted in (A) are marked in black if their coefficient exceeds their shuffled coefficient from a single trial shuffled comparison by 2 standard deviations. (C) The

cumulative correlation, a sum of correlation coefficients for each glomerulus in low and high flow, are plotted as a stacked bar graph so that comparisons between

mean responses can be made within and across glomeruli simultaneously. The cumulative plotting shows variation in ability to detect changes in odor concentration

dynamics across glomeruli both within and across flow conditions. On average, a glomerulus’s tracking ability varies significantly between conditions [t(110) = 12.81,

p < 0.001], with most glomeruli having stronger correlation coefficients in high flow trials. Glomeruli that significantly correlate with plume dynamics in at least one

condition are plotted in blues (*) while those that do not are plotted in grays. (D) Binary cross-correlation. Top: Simultaneously recorded signals shown for two example

glomeruli responding to the same example trial’s odor plume. Odor and glomerular activity traces plotted with their respective thresholds (dotted, odor threshold:

mean during plume presentation, neural threshold: ±2 st. dev of baseline). Bottom: Resulting binarized traces plotted for each trial illustrate the magnitude of

concurrent activity as events (stars) between the plume and the response of each glomerulus across the experimental session.

drive this correlation, but rather the plume’s temporal dynamics
unique to each trial.

Correlation coefficients (tracking) increased from the null
expectations by 0.13 ± 0.08 (mean ± st. dev) across all flow
conditions, 0.08 ± 0.07 within low flow, and 0.16 ± 0.11 within
high flow. Glomeruli were significantly better at tracking plume
dynamics in high flow than they were in low [t(110) = 12.81,
p < 0.001] (Figure 5C) with average correlation coefficients
increasing by 0.11 ± 0.09 (mean ± st. dev). We wondered if
this increase in correlation could result from increased sparsity.
Indeed correlation between two signals where the values are
constant or zero for most of the time is automatically high,
even if the peaks are entirely uncorrelated. If this was the case,
the shuffled correlations in high flow should be significantly
higher than in low flow, but this is not observed when looking
at the confidence intervals for the null correlation coefficients
computed within flow conditions (Supplementary Figure 7C).
Thus, a large fraction of the glomerular population follows
fluctuations during plume encounters, and the degree of dynamic
tracking is moderated by plume dynamics, becoming stronger
on average during plumes with higher levels of intermittency (as
measured by increased skewness in high flow trials).

A second set of experiments, an odor panel, was used to
assess whether the tracking behavior seen in the flow experiments
is generalizable beyond the benzaldehyde mixture used. We
recorded MT activity as it responded to plumes of three different
odors within a single session. Plumes consisted of either ethanol
(without a mixed odorant), benzaldehyde, or isoamyl acetate.
For all trials, flow stayed constant and was set to the high
flow condition. Results corroborated the ability of MT activity
to respond to odor concentration dynamics and show tracking
behavior generalizes beyond the benzaldehyde mixture used in
the flow experiments. Glomeruli that significantly responded to
odor concentration dynamics were found in the ethanol only
condition (41/59 glomeruli), the benzaldehyde/ethanol condition
(38/59), and the isoamyl acetate/ethanol condition (41/59)
(Supplementary Figure 8A), and the majority of glomeruli
reached significance in at least one odor condition (54/59).

3.5. Plume Fluctuations Structure
Glomerular Network Dynamics
We measured glomerular responsivity and response power to
see the effect of flow condition on these measures and whether
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these measures were related to how well a glomerulus followed
plume dynamics.

We found that there was a significant effect of flow condition
on glomerular responsivity. Responsivity is defined as the
proportion of trials to which a glomerulus responded to the odor
(see methods). Glomeruli had significantly higher responsivity
during low flow trials (t = 12.1, p < 0.001), with responsivity
scores increasing by 0.21 ± 0.18 (mean ± st. dev) as compared
to high flow (Figure 6). Therefore, glomeruli responded to low
flow trials more reliably than they responded to high flow trials.
As noted previously, the average correlation between plume
dynamics and MT activity increased in high flow conditions, so
although glomerular responses became less reliable as airflow
increased, they became more correlated with plume dynamics
(Figure 6B).

Responsivity is a thresholded measure that determines if a
glomerulus is more active than expected by chance during a
plume presentation and does not capture the dynamics present
in the response. The strength of the dynamic activity of glomeruli
was determined by measuring the change in cumulative response
power between baseline periods and plume presentations (see
methods) (Supplementary Figure 6). Fast Fourier transform was
used to measure response power within 0–5 Hz, a frequency
range relative to the stimulus dynamics (Figure 7). Response
power (0–5 Hz) increased significantly from baseline during
plume presentations [t(110) = 20, p < 0.001] by 5.7 ± 3.0
a.u. (mean ± st. dev), a 448% increase (Figure 7). On average
86.7 ± 4.9% (mean ± st. dev) of cumulative stimulus power for
each session was within 0–5 Hz. Stimulus power was measured
using the deconvolved odor signal of the plumes to which MT
cell responses were recorded (experimental flow sessions only).
The majority of cumulative response power for each glomerulus,
88.5 ± 7.9% (mean ± st. dev), was also found to be within this
range. Thus, the majority of response power for each glomerulus
was measured to be within a relative frequency range of the
stimulus (Figures 7A,B). Across all glomeruli recorded, response
power was not significantly different between flow conditions.
To examine the effect of flow conditions on the response power
of cells that most strongly responded to the odor, we next
analyzed only glomeruli whose mean response was above the
75th percentile. Within this group of glomeruli, response power
did change significantly between flow [t(27) = 5.52, p <

0.001], with stronger response power during high flow conditions
(Figures 7D,E). This increase reflects the significant increase in
stimulus power (0–5 Hz) observed in high flow as compared
to low flow trials [t(116) = 31, p < 0.001] (Figure 7C). Thus,
the response power of glomeruli with the strongest signals was
significantly affected by flow condition.

There exists a relationship between each of these two response
features, responsivity and response power, and how well a
glomerulus follows plume dynamics. Across all trials, glomeruli
with higher responsivity to plume presentations were better
at following changes in odor concentration (r = 0.76, p <

0.001). Thus, the more reliably a glomerulus responded to
plume presentations, the more likely it was to better follow
changes in odor concentration (Figure 6C). These findings
were reflected in the supplementary odor panel study, where

glomeruli with higher responsivity to plumes had responses
that were more correlated with plume dynamics [F(2,116) =

8.06, p < 0.001] (Supplementary Figure 8E sorted bottom to
top by increasing correlation magnitude). This is not a perfect
relationship as glomeruli that are responsive to the plume but
not its dynamics exist (Figure 6A), but a glomerulus with higher
responsivity is more likely to be correlated to plume dynamics
than one with lower responsivity. As mentioned previously,
a glomerulus’s average responsivity level is also moderated by
flow condition. Thus, a glomerulus’s responsivity predicts its
ability to track plume dynamics and is moderated by changes in
dynamic regimes.

As for the second response feature, response power was also
correlated with how well the glomerulus followed changes in
odor concentration, when averaged across all trials glomeruli
with higher response power were significantly better at following
plume dynamics (r = 0.74, p < 0.001) (Figure 7E). When this
relationship was examined within flow conditions (Figure 7C),
high flow was significantly correlated (r = 0.73, p < 0.001),
but low flow was no longer significantly correlated (r = 0.19,
p = 0.05). This significant correlation in high flow was
driven by a subset of the strongest responding glomeruli (75th
percentile) whose response power was significantly moderated
by flow condition. This relationship between response power
and tracking ability (correlation with plume dynamics) was
also observed in the supplementary odor panel study where
higher average response power predicted higher correlations
between that response and plume dynamics [F(2,116) = 29.2,
p < 0.001] (Supplementary Figure 8C). Thus, a glomerulus’s
response power predicts its ability to track plume dynamics
and for stronger responders, this relationship is moderated by
changes in dynamic regimes.

These results suggest that both the reliability and the temporal
pattern of MT activity is significantly moderated by the odor
concentration dynamics of the incoming stimuli. Thus, the
spatiotemporal dynamics of plumes play a role in structuring
activity in the first olfactory relay of the mouse’s brain during
natural olfactory processing.

4. DISCUSSION

Mice are adept at olfactory guided search despite the
stochasticity and complexity of odor plumes used in navigation.
Spatiotemporal cues present in natural odor scenes are thought
to drive decision-making in olfactory search (Mafra-Neto and
Cardé, 1994; Vickers, 2006; Pang et al., 2018), but how they
moderate population activity in the olfactory bulb (OB) is
unknown. Releasing odor within a custom-built wind tunnel,
we were able to hold constant all properties of the odor
stimulus and the animal’s position relative to the source and
vary only the air velocity through which the plume traveled.
By using this approach we altered the Reynolds number of
the flow and created plumes with varying statistical structures
and odor concentration dynamics. In this way, the effect
of plume dynamics on MT population activity could be
examined using naturally evolving odor plumes. Recording
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FIGURE 6 | Glomeruli that respond more reliably to plumes are more correlated with their dynamics. (A) Responsivity scores plotted as a cumulative bar graph to

illustrate differences within and across glomeruli when responsivity is calculated across all conditions (lightest blue) or is calculated exclusively within low flow (medium

blue) or high flow (dark blue). Glomeruli are sorted top to bottom by decreasing average tracking ability (correlation magnitude) and glomeruli that significantly track

plume dynamics (as defined in methods) are plotted in blue hues(*) while those that do not are plotted in gray hues. The graph shows magnitude of odor concentration

tracking is correlated with (r = 0.76, p < 0.001), but is not strictly defined by response reliability as glomeruli exist that respond strongly to odor presence but not to

concentration dynamics. In addition, within flow comparisons show responsivity is significantly higher in low flow than high flow [t(110) = 12.1263, p < 0.001]. (B)

Within flow condition, responsivity is plotted against tracking ability (correlation magnitude) for each glomerulus (circle). To represent the population response, the

average responsivity across all glomeruli (low average = yellow dot, high average = red dot) is plotted against average correlation with plume dynamics within low (light

blue) and high (dark blue) flow conditions illustrating how flow moderates these relationships. Across glomeruli, responsivity is positively correlated with tracking ability

as is illustrated by the lines of best fit. On average, higher flow predicts a decrease in average responsivity level but also predicts an increase in tracking ability. (C)

Average responsivity in low and high flow is plotted for each glomerulus, and the change in mean responsivity between flows shown in (A) is explicitly plotted for each

glomerulus (red line) as well. Glomeruli are sorted by increasing tracking ability (from left to right) showing glomeruli with higher response reliability are more sensitive to

plume dynamics.

MT activity in mice expressing GCaMP6f, we show that a
significant fraction of glomerular populations of MT cells
follow odor plume dynamics. Additionally, the strength
with which they do so is moderated by airflow, such that
increased flow velocity and turbulence (Reynolds number)
results in increased correlation of MT cell activity with plume
dynamics. This work shows that plume dynamics structure
the activity of the OB, the first relay of olfactory coding in the
mouse’s brain.

The recent history of an odor stimulus has been shown
to be present in olfactory encoding in both serial sampling
of odor concentration in mice (Parabucki et al., 2019) and
tracking of odor concentration in invertebrates (Geffen et al.,
2009), showing odor concentration changes influence olfactory
encoding. Although inter-sniff comparisons in mice show that
MT cells can detect the sign and magnitude of changes in odor
concentration (Parabucki et al., 2019), it is unknown whether
they are able to resolve the dynamics of natural plumes, which
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FIGURE 7 | Higher magnitude of glomerular response power (0–5 Hz) is associated with higher correlation with plume dynamics. (A) Ethanol signal from a single low

flow trial is plotted (top-left) and a corresponding Short-time Fourier transform (STFT) of the plume (time between red dotted lines) is shown below (bottom-left). STFTs

are also shown for a sample of glomeruli responding to the plume (right). STFTs show most response power of the glomeruli and odor signal is concentrated between

0 and 5 Hz. Glomeruli STFTs are sorted (top to bottom) by increasing correlation with plume dynamics. (B) Same as (A) but for a single high flow trial from another

example FOV. (C) Box plots for the distributions of stimulus power (0–5 Hz) for all trials within the demarcated flow condition are plotted for each session. On average,

high flow distribution means (dark blue) significantly exceeded low flow distribution means (light blue) [t(116) = 31,p < 0.001]. (D) Within both high and low flow

conditions, tracking (correlation magnitude of glomerular responses with plume dynamics) is plotted against response power (0–5 Hz power spectrum change

between “odor off” and “odor on” periods) for each glomerulus (blue hues, circles). Glomeruli with stronger tracking have a greater increase in response power during

plume presentations (r = 0.74, p < 0.001). When calculated within flow, this relationship is significant within high flow (r = 0.73, p < 0.001), but not within low flow

(r = 0.19, p = 0.05). The average response across all glomeruli is plotted (low average = yellow dot, high average = red dot) to represent the population response.

Mean response power of the glomerular population is not significantly different between low and high flow, except for when calculated with glomeruli whose mean

activity is in the 75th percentile (low average = yellow circle, high average = red circle). (E) Response power of each glomerulus is again plotted, but the change within

a glomerulus between low flow (light blue) and high flow (dark blue) is signified by the red line. Glomeruli are plotted sequentially along the x-axis and are sorted left to

right by increasing tracking ability. As tracking ability increases, so does the change in response power between flow conditions. This is consistent with the significant

change in mean response between flow condition observed in the 75th percentile [plotted as red/yellow circles in (D)].

span across a range of temporal scales. If odor concentration
dynamics are resolved, computational work has shown that
they are informative for olfactory search (Baker et al., 2018;
Gumaste et al., 2020). To avoid the complexity of stochastic odor
plumes, the averaging of odor concentration dynamics could be
an alternative strategy to navigate olfactory environments. Mean
odor concentration levels are moderated both by the distance
from an odor source and by how close an animal is to the central
stream of the plume (Crimaldi and Koseff, 2001). While this
measure is potentially informative, it does not by itself sufficiently
inform decision-making on the timescale observed in rodents
(Gumaste et al., 2020). Therefore, it is likely that the mouse relies
upon spatiotemporal features of the plume for olfactory search as

information can be extracted from odor concentration dynamics
(Baker et al., 2018).

Our study found a correlation between MT activity and
odor concentration dynamics during plume presentations. The
temporal information conveyed by MT cells could support a
variety of navigation algorithms. For instance, two important
dynamic features are the length of odor encounters, whiffs, and
the timing between odor encounters, blanks. Whiff and blank
duration are moderated by the distance between an animal
and the odor source. As an animal approaches an odor source,
plume encounters become shorter and more frequent (Wright
and Thomson, 2005; Celani et al., 2014). Blank duration has
been shown to be particularly informative even when olfactory
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environments change. Computational modeling of olfactory
search in invertebrates (Park et al., 2016; Rapp and Nawrot, 2020)
as well as fluid dynamics modeling (Celani et al., 2014) shows
that the time between odor encounters, blank duration, is less
sensitive to environmental conditions, such as plume velocity or
potency of the odor source that are known to affect interpretation
of odor concentration dynamics (Webster and Weissburg, 2001;
Connor et al., 2018). Specifically, Park et al., found blank
duration to be amore efficient source of information for olfactory
search than instantaneous tracking of odor concentration. In
our study, we observed that MT activity was more correlated
with plume dynamics in high flow trials than low flow trials.
Odor concentration in low flow trials was less skewed, meaning
that these trials had lower intermittency and odor concentration
tended to fluctuate around a central value. Alternatively, high
flow trials were more skewed and were characterized by a whiff
and blank structure. The fact that correlations are higher in
high flow suggests MT activity may be more responsive to whiff
and blank features as opposed to tracking fine fluctuations in
odor concentration across more constant plume encounters.
One limitation of this study is that medium flow was not
statistically distinguishable from high flow, therefore, we were
unable to include intermediary intermittency levels between low
and high flow conditions in our analysis. Future studies exploring
the effect of a broader range of intermittency levels on MT
activity during plume encounters could help determine which
spatiotemporal features of intermittency are moderating MT
responses to plume dynamics.

A network where the majority of glomerular activity
responds to concentration dynamics could be considered to
be inefficient when the OB has to perform other tasks, such
as odor identification and segmentation. Glomerular spatial
maps, i.e., glomerular ensembles consistently responding to an
odor, are thought to be one of the primary means of odor
identification (Wachowiak and Shipley, 2006). Odors maps vary
with concentration (Xu et al., 2000; Wachowiak and Cohen,
2001), but are stable enough to reliably encode odor identity
(Belluscio and Katz, 2001). Although pulsed odors can be
rapidly discriminated (<200 ms, or a single sniff, Uchida and
Mainen, 2003), in a natural olfactory environment where odors
are intermittent (Murlis et al., 2000; Celani et al., 2014) and
mixed, identification becomes a much more complicated task
especially for identification of mixtures. Glomerular ensembles
reliably responding across odor encounters could aid odor
discrimination in mixed odor environments. Spatial maps of
odor identification will overlap in natural olfactory scenes where
an animal encounters signals from multiple odor sources as it
navigates a plume. Odors co-released travel together (Celani
et al., 2014), and therefore a mixture of odors emanating
from the same source will have correlated temporal dynamics
in the plume and will thus be experienced by a searcher as
having correlated encounters across whiffs. This means the
probability of the signal from separate sources arriving together
reliably across whiffs would be low if odors are released from
spatially separated sources. Grouping and demixing these odor
representations using the correlation, or lack thereof, in the

odor concentration dynamics could aid odor discrimination in
complex environments (Hopfield, 1991).

Since our studies are not recorded at the individual cell
level, the potential degree of heterogeneous tuning to different
features among MT cells within a single glomerulus was not
examined. It could be that observed correlations of glomerular
MT populations were a product of the collective activity of
heterogeneously tuned MT cells within a glomerulus, but MT
responses have been shown to linearly sum odor inputs (Gupta
et al., 2015), which contradict the idea that they are directly
tuned to different features of plume dynamics. At the same time,
this does not infer MT activity responding to plume dynamics
is homogeneous as the responsiveness (Adam et al., 2014) and
the response (Geramita and Urban, 2017) varies between MT
cells across concentration levels (Cleland and Borthakur, 2020).
Future research across a variety of odor concentration dynamic
regimes and odor mixtures at both the cellular and population
level are needed to further investigate the degree to which
bulbar responses are tuned to features of odor concentration
dynamics and how this tuning may impact optimal encoding of
odor information.

Sniff frequencies are known to influence bulbar oscillations,
and thus if sniffing behavior varied significantly between flow
conditions, this may have contributed to some of the observed
differences in tracking behavior between low and high flow trials.
For example, it could be that faster stimulus dynamics in high
flow may cause the mouse to miss features of the dynamics
due to an inability to resolve them with sufficient sampling
speed. However, recent work suggests sniff frequency does not
necessarily limit the resolution of plume frequencies in such a
manner (Dasgupta et al., 2020). Dasgupta et al. (2020) found
subthreshold MT activity was able to couple with frequencies of
odor pulsed at supra-sniff frequencies. Thus, if sniff frequency
was moderated significantly between flow conditions, it would
not necessarily set an absolute bound on the resolution of
plume dynamics. We believe it is important to monitor sniff
frequency in the future to observe how it affects inter-sniff
and intra-sniff activity, and consequently how these changes
relate to tracking behavior observed in MT populations across
flow conditions.

Our data show that MT activity in the OB of mice follows
the temporal dynamics of odor plumes. Additionally, we
demonstrate that this effect is stronger under conditions that
generate larger Reynolds numbers. Following odor concentration
dynamics within plumes could enable MT cells to convey
information useful for olfactory search. Following the temporal
dynamics of odor plumes may also be an efficient form of
multiplexing odor identity and source location for the first
olfactory relay in mice. Although MT activity responds to
changes in odor concentration, the observed correlations do
not suggest perfect tracking at the level of individual glomeruli
and indicate inter-individual differences in the degree to which
glomeruli follow plume dynamics. Future research focusing on
location encoding across a wide range of both intermittency
regimes and odor panels is needed to clarify the degree to which
bulbar activity is tuned to features of plume dynamics and how
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a balance between identity coding and concentration coding is
instrumental in supporting the wide variety of behaviors enabled
by olfaction.
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