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A B S T R A C T   

In clinical trials with the objective to evaluate the treatment effect on time to recovery, such as investigational 
trials on therapies for COVID-19 hospitalized patients, the patients may face a mortality risk that competes with 
the opportunity to recover (e.g., be discharged from the hospital). Therefore, an appropriate analytical strategy 
to account for death is particularly important due to its potential impact on the estimation of the treatment effect. 
To address this challenge, we conducted a thorough evaluation and comparison of nine survival analysis methods 
with different strategies to account for death, including standard survival analysis methods with different 
censoring strategies and competing risk analysis methods. We report results of a comprehensive simulation study 
that employed design parameters commonly seen in COVID-19 trials and case studies using reconstructed data 
from a published COVID-19 clinical trial. Our research results demonstrate that, when there is a moderate to 
large proportion of patients who died before observing their recovery, competing risk analyses and survival 
analyses with the strategy to censor death at the maximum follow-up timepoint would be able to better detect a 
treatment effect on recovery than the standard survival analysis that treat death as a non-informative censoring 
event. The aim of this research is to raise awareness of the importance of handling death appropriately in the 
time-to-recovery analysis when planning current and future COVID-19 treatment trials.   

1. Introduction 

With the ongoing pandemic of coronavirus disease 2019 (COVID- 
19), investigating treatments for COVID-19 has remained a major task in 
drug development. In COVID-19 trials in hospitalized patients, key study 
objectives typically include investigating whether a treatment helps 
patients recover more quickly than standard of care, as measured by 
time to hospital discharge over a short duration (e.g., 28 days after 
randomization). In this type of trial, hospitalized patients also face a 
mortality risk competing with the opportunity to recover from the dis-
ease and be discharged from hospital. In other words, the event of death 
prevents the opportunity to observe hospital discharge because a 
deceased patient would never be able to recover and be discharged. 
Therefore, the competing risk of death must be properly accounted for in 
the analysis of recovery-based endpoints. Failure to appropriately ac-
count for death in the analysis could potentially underestimate a real 
treatment effect (risking an effective drug being withheld from patients) 

or overestimate the treatment effect (risking an ineffective drug 
becoming recommended treatment). 

Recognizing the important impact of death on recovery-based end-
points, the US Food and Drug Administration (FDA) recommended in 
their published guidance on COVID-19 drug and biological products 
development that “death should not be considered a form of missing 
data” and should be handled via a composite variable strategy “with 
death taking a sufficiently unfavourable value” [1]. Prior to publication 
of this guidance, however, not all clinical trials had employed analysis 
strategies in compliance with this recommendation. Time-to-recovery 
was typically analyzed with standard survival analysis methods such 
as Kaplan-Meier (K-M) survival plots [2], log-rank test [3], Cox pro-
portional hazards (PH) model [4], and restricted mean survival analysis 
[5,6], with death either treated as a non-informative censoring event [7] 
or imputed to be censored at the maximum follow-up timepoint (here-
after, “maximum time censoring” approach) [8]. Several works [9–16] 
have recommended applying competing risk models to address the 
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impact of death on the recovery-like event, including cumulative inci-
dence function [9] [16,17], subdistribution hazard model [18], and 
cause-specific hazard model [19]. On the topic of COVID-19 clinical 
trials, one paper criticized that standard survival analysis methods like 
K-M methods and Cox PH models may lead to biased estimates and 
conclusions [11]. Ghosh (2021) [13] compared three competing risk 
regression approaches with application to COVID-19 survival data. 
However, no previous research has comprehensively investigated the 
performance of both parametric and non-parametric survival analysis 
methods with different censoring strategies versus parametric and non- 
parametric competing risk analysis approaches in the setting of COVID- 
19 trials. 

Our research examined tests of the treatment effect for a time-to- 
recovery endpoint using nine survival analysis methods with different 
censoring schemes and modelling approaches through a simulation 
study and case studies using reconstructed data from a published clinical 
trial. Given the rapidly shifting landscape of COVID-19 treatment 
research, our work will increase awareness of the importance of 
appropriately handling death in the time-to-recovery analysis for cur-
rent and future COVID-19 trials. Our research will be particularly 
helpful to address some key questions during study design and analysis 
planning, including whether standard survival analysis incorporating an 
appropriate censoring strategy is acceptable in trials of different settings 
(e.g., severely ill hospitalized patients vs. less ill patients with lower 
death rates), how different mortality risks between treatment groups 
may impact the opportunity of claiming a significant treatment effect on 
recovery, and how to construct a robust survival analysis in such 
settings. 

2. Methods 

2.1. Cumulative incidence function 

The cumulative incidence function (CIF) of recovery, denoted as 
CIFe(t), is defined as the marginal probability of occurrence of recovery 
up to time t, while accounting for competing risks (such as death) which 
may occur in the same observation period. For the sake of simplicity, we 
consider a recovery-based endpoint as the event of interest, and death as 
the only competing risk event, although one may extend the competing 
risk to multiple events. The event of interest, recovery or hospital 
discharge, may be referenced interchangeably. 

In the presence of competing risk of death, the incidence function is 
formulated as the product of the hazard function of the event of interest 
and the overall survival. It is worth noting that overall survival repre-
sents the probability of patients surviving from both the event of interest 
(i.e., recovery) and the competing event (i.e., death). Thus, overall 
survival incorporates the effects of the hazard function of the event of 
interest and the hazard function of the competing risk. In other words, in 
our motivating example, overall survival acknowledges that a patient 
must have remained alive in order to experience recovery. 

Standard survival analysis approaches, such as Kaplan-Meier and 
Cox PH model, generally result in upward bias in the estimation of the 
incidence function in the presence of competing risk(s) [20–22]. The 
problem is that, in standard approaches, overall survival does not ac-
count for the contribution of the hazard function from the competing 
risk and is simply attributed to the hazard function of the event of in-
terest only. Thus, it leads to an upward biased overall survival, which in 
turn leads to an upward biased CIFe. For this reason, careful forethought 
should be given to employ an appropriate analysis method to analyze 
event onset in the presence of a competing risk. 

2.2. Non-parametric test of cumulative incidence functions in two 
treatment groups 

The overall survival probability of being ‘event-free’ can be esti-
mated using the Kaplan-Meier method, where an event refers to the 

onset of either recovery or competing death. The cumulative incidences 
in different treatment groups can then be compared using a modified 
log-rank Chi-square test [17]. 

An alternative summary of the cumulative recovery cases over time 
is the area under the cumulative incidence curve (CIF AUC) up to a 
specified timepoint post-baseline [9], such as the end of a 28-day 
treatment or observation period in a COVID-19 trial. It has an intui-
tive clinical interpretation that the CIF AUC is the average post-recovery 
time that patients spent across the 28 days of follow-up. Therefore, a 
greater CIF AUC implies better treatment efficacy. The between- 
treatment group comparison can be quantified by assessing the differ-
ence or ratio of the CIF AUCs. 

2.3. Semi-parametric subdistribution hazard model 

The subdistribution hazard function is defined as an instantaneous 
risk of recovery in the risk set of patients who have not yet experienced 
recovery. The risk set includes the patients who are not yet recovered as 
well as patients who died. The subdistribution hazard model is one of the 
most popular approaches to analyze time-to-event data in the context of 
competing risks as it explicitly bridges the subdistribution hazard 
function of the event to the CIF. Fine and Gray (1999) developed a Cox 
regression (semi-parametric) approach for handling the subdistribution 
hazards, assuming proportional subdistribution hazard rates [18]. The 
subdistribution hazard model allows one to directly estimate the effect 
of covariates on the CIF of the event of interest. In our case, the ratio of 
subdistribution hazards between the treatment groups can be inter-
preted as the treatment effect on the cumulative incidence of recovery. 
In prognostic research, the subdistribution hazard model is generally 
recommended over another competing risk method, the cause-specific 
hazard model, due to its feature of a direct relationship to the CIF 
[23]. As a side note, the Cox PH model censoring death at death time 
(further discussed in the Section 2.4) will provide an estimate of the 
cause-specific hazard ratio of recovery. 

2.4. Standard survival analysis methods with different censoring 
strategies 

The log-rank test [3], Cox PH model [4], and restricted mean survival 
time (RMST) approach [5,6] are widely used to analyze time-to-event 
data without incorporating the competing risk. If using a default 
censoring mechanism, patients who died would be censored at the time 
of death (which, for the Cox PH model, will provide an estimate of the 
cause-specific hazard ratio as briefly mentioned in Section 2.3). Alter-
natively, one could modify the censoring rules to account for the po-
tential impact of competing death to the event of recovery such that 
death takes a sufficiently unfavourable value. For example, in the ACTT- 
1 trial [8], patients who died were censored at the end of the efficacy 
evaluation period. In our simulations in the next section, all three 
standard survival analysis methods with both censoring strategies (i.e., 
non-informatively censoring death at death time, or informatively 
imputing censoring time to the maximum follow up) are examined in 
comparison with the competing risk analysis methods. 

2.5. Simulation 

To evaluate the performance of competing risk survival analysis and 
standard survival analysis methods with different censoring strategies, a 
simulation study was conducted using settings from COVID-19 clinical 
trials so that the findings could be easily generalized to real trials and 
enlighten planning of robust statistical analyses. Note that the statistics 
in each of the examined analysis methods are different. Therefore, it is 
not possible to make a direct comparison of all these methods based on a 
common effect size or treatment effect estimate. Furthermore, for 
composite endpoints, certain operating characteristics (like bias) are 
challenging to compute directly. In this simulation study, the probability 
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of observing a significant treatment effect was used to compare different 
analysis approaches with different statistics. This criterion is also easily 
interpretable to the research community since it straightforwardly 
evaluates which methods best demonstrate treatment efficacy when 
there is indeed a treatment benefit. Details are further described in 
Section 3.1, Claim of significance of treatment effects. 

Simulation settings and analysis R/SAS packages are described in 
Supplementary Methods. 

3. Results 

3.1. Simulation study results 

3.1.1. Claim of significance of treatment effects 
In a typical randomized clinical trial, the primary objective is to test 

the hypothesis of treatment effect for an experimental treatment 
compared to control. In this simulation study, we analyzed the endpoint 

of time-to-recovery (e.g., hospital discharge) with various statistical 
analysis approaches. We estimated the empirical probability of 
declaring a “statistically significant” treatment effect, Pr(significance), 
in each setting to evaluate performance. For the significance criterion, 
we used one-sided alpha of 0.025. 

The simulation study evaluated 9 statistical analysis approaches, 
denoted as: Method 1a and 1b: Cox PH hazard model; Method 2a and 2b: 
Log rank test; Method 3a and 3b: Test of the RMST ratio between 
treatment groups; in Methods 1a, 2a, and 3a, patients who died would be 
censored at the time of death; in Methods 1b, 2b, and 3b, patients who 
died were censored at the end of the study evaluation period (Study Day 
28); Method 4: Subdistribution hazard model; Method 5: Test of CIF 
difference between treatment groups using a modified log-rank Chi- 
square test [17]; Method 6: Test of the ratio of the CIF AUC up to 28 days 
post-baseline [9]. 

In sections 3.1.2 and 3.1.3, we evaluated Pr(significance) for each of 
the 9 statistical analysis approaches in 135 settings from combinations 

Fig. 1. Pr(significance) for each analysis approach in settings where the median time-to-recovery in the control arm is 8 days. 
The empirical probability of declaring statistical significance, Pr(Significance), when the median time to discharge in the control arm is 8 days. In each panel, the y- 
axis is the Pr(Significance) as measured by the proportion of simulations claiming the significant treatment effect with one-sided alpha <0.025. The x-axis plots the 
hazard ratio for death, with increasing magnitude of effect size from left to right. The death rate in the control arm is 5%, 15% and 25% for the first, second and third 
column, respectively. A) the hazard ratio of discharge equals 1. B) the hazard ratio of discharge equals 1.3. C) the hazard ratio of discharge equals 1.45. 
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of recovery and death rates (see Supplementary Methods for details), 
when latent times-to-event for recovery and death were simulated from 
independent or correlated exponential distributions and independent 
Weibull distributions. For clarity, we use the term “scenario” to describe 
the distributional forms within each section and “setting” to refer to a 
unique combination of the four parameters which vary within the 
scenario. 

3.1.2. Scenario 1: independent exponential distributions 
In the first scenario, latent times-to-event for recovery and death 

were simulated from independent exponential distributions. The haz-
ards for both events (recovery and death) are constant in both treatment 
arms. 

Fig. 1 plots the empirical probability of a study declaring a statisti-
cally significant treatment effect. The y-axis is the Pr(Significance) as 
measured by the proportion of simulations claiming the significant 
treatment effect with one-sided alpha <0.025. The x-axis plots the 
hazard ratio for death, with values ranging from 1 to 1/4. As shown in 
Fig. 1A, when the HR of recovery equals 1 (i.e., no difference between 
groups to directly improve recovery) and the death rate in the control 
arm is low (5%; left panel), there is almost no difference between ap-
proaches in detecting a treatment effect on recovery, regardless of the 
magnitude of the treatment effect on mortality (HR of death on the x- 
axis). On the other hand, when the HR of recovery equals 1 and the 
death rate is moderate (15%) to large (25%) (Fig. 1A, middle and right 
panels), there may be a substantial difference between statistical anal-
ysis approaches in Pr(significance) when the treatment effect has the 
benefit to reduce mortality (HR of death <1). For instance, when the HR 
of death =1/4 and HR of recovery = 1, the difference in Pr(significance) 
was as large as 18% vs. 2.5% if the death rate was 25% in the control 
group. Specifically, the competing risk methods (Methods 4, 5, 6) and 
standard methods using the maximum time censoring approach 
(Method 1b, 2b, 3b) have notably larger Pr(significance) (i.e., greater 
chance to claim treatment efficacy) than the standard methods that 
censor death at the time of death (Methods 1a, 2a, 3a). Note that, for the 
composite endpoint that incorporates both recovery and death, a true 
treatment effect exists when there is a treatment effect on either re-
covery itself or on death. And thus, only the setting furthest to the left in 
each panel of Fig. 1A (HR of recovery = 1 and HR of death = 1) reflects 
the null hypothesis of no treatment, and the Pr(significance) at that 
specific setting represents Type I error rates. 

Fig. 1B and C show Pr(significance) by analysis approach when the 
HR of recovery equals 1.3 and 1.45, respectively. In both cases, there is 
little difference between the analysis approaches in Pr(significance) for 
the recovery endpoint when the death rate is low (left panels in Fig. 1B 
and C), with the difference never more than 10 percentage points. 
However, when the death rate is moderate to large (15% or 25%; middle 
and right panels of Fig. 1B and C), the Pr(significance) can vary sub-
stantially between the analysis approaches. When there is no reduction 
in mortality under experimental treatment (HR of death = 1 in the 
middle and right panels of Fig. 1B and C), the competing risk methods 
and the maximum time censoring approaches (Methods 4, 5, 6, 1b, 2b, 
3b) actually have slightly lower Pr(significance) than standard methods 
treating death as non-informative censoring (Methods 1a, 2a, 3a). This 
phenomenon occurs because deceased patients are placed into the risk 
set with an immortal time using the competing risk methods (Methods 4, 
5, 6) and the maximum time censoring approaches (Method 1b, 2b, 3b). 
When there is little to no difference in mortality rates between the 
treatment groups, the larger risk set in these methods will attenuate 
hazard estimates, resulting in slower separation in the survival curves 
and less power to detect treatment difference for these approaches 
compared to the standard methods censoring death at the time of death. 
On the other hand, when there is a moderate to large treatment effect in 
reducing mortality (HR of death <1), the competing risk methods and 
maximum timepoint censoring approaches have considerably larger Pr 
(significance) than the standard methods censoring deaths at the time of 

death. In these settings, the smaller number of deceased patients in the 
treatment group will compensate for the ‘inflated’ risk set caused by a 
high death rate. This explains why the competing risk methods and the 
maximum time censoring approaches have considerably larger Pr(sig-
nificance) than the standard methods beyond a crossing point in the 
middle and right panels of Fig. 1B and C. 

The median time-to-recovery in the control group is 8 days in Fig. 1, 
and 12 days and 16 days in Supplementary Materials Fig. S1. Similar 
findings were observed across settings. 

3.1.3. Scenarios 2 and 3: correlated exponential distributions and 
independent weibull distributions 

In the second and third scenarios, latent times-to-event for recovery 
and death were simulated from correlated exponential distributions and 
independent Weibull distributions, respectively. Largely, similar results 
to Scenario 1 were observed. Another important observation is that 
when latent times-to-event for recovery and death were simulated from 
negatively correlated distributions, the standard methods that censor 
death at the time of death actually showed deflation in Pr(significance) 
as the treatment effect on reducing mortality increases in magnitude 
(Fig. S2). This is likely due to violating the assumption of non- 
informative censoring, since in this setting patients with a propensity 
to experience early death also have a propensity to experience longer 
times-to-recovery. 

Results for these settings (including when hazards were non- 
proportional) are presented in Supplementary Results. 

3.2. Case studies 

Two case studies are presented using time-to-event data recon-
structed from the RECOVERY trial comparing dexamethasone with 
usual care in hospitalized COVID-19 patients [24]. The primary outcome 
of the trial, 28-day mortality, was significantly lower in the dexameth-
asone group (22.9%) than in the usual care group (25.7%) (rate 
ratio = 0.83, P < 0.001), with a smaller benefit for the secondary 
outcome of time-to-hospital discharge still favouring dexamethasone 
(rate ratio = 1.10; 95% CI = 1.03–1.17). It provides a representative real 
study example to reflect the scenario that the treatment has relatively 
small benefit to improve hospital discharge with a larger effect in 
reducing mortality. Dexamethasone also demonstrated a significant 
benefit in reducing time-to-removal of mechanical ventilation (MV) for 
the subset of patients on MV at baseline (rate ratio = 1.47; 95% 
CI = 1.20–1.78). 

4. Case Study 1: time-to-discharge 

For the first case study, we evaluated the 9 approaches in analyzing 
the time-to-hospital discharge, with statistics and p-values presented in 
Table 1. Although the statistics from these different methods are not 
directly comparable as previously described, the competing risk 
methods and the maximum time censoring approaches both yield lower 
p-values than the standard survival analysis methods that censor death 
at the time of death. Notably, the subdistribution hazards model, CIF- 
based chi-square test and the maximum time censoring approaches 
using Cox PH model and log-rank test (Methods 4, 5, 1b, 2b) all have 
p < 0.05. The AUC-based CIF test and maximum time censoring RMST 
test (Methods 6, 3b) have p-value <0.10. P-values from the standard 
methods (Methods 1a, 2a, 3a) are all non-significant. The results 
demonstrate the critical importance of the appropriate method selection 
for analyzing time-to-recovery in the presence of competing death: given 
the slight treatment benefit on hospital discharge, ignoring the reduced 
death rate in the treatment group may fail to claim a treatment effect. 
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5. Case study 2: time-to-successful-removal of invasive 
mechanical ventilation 

For the second case study, we evaluated the 9 statistical analysis 
approaches in analyzing the time-to- removal of MV among the subset of 
patients on MV at baseline using repeated samples from the recon-
structed data to mimic a small to moderate sized trial setting (see Sup-
plementary Methods for details). Table 2 summarizes for each method 

the empirical probability of detecting significant treatment effect with 
one-sided p-value <0.025 (and the average values of the statistics, which 
are not directly comparable). The competing risk methods and the 
maximum time censoring approaches (Methods 4, 5, 6, 1b, 2b, 3b) 
detected a treatment effect with a greater frequency than the standard 
methods (Methods 1a, 2a, 3a). The AUC-based CIF test (Method 6) and 
maximum time censoring RMST test (Method 3b) showed the largest 
chances to claim efficacy (each >95%). Thus, in a scenario with treat-
ment efficacy in both improving the hospital discharge and reducing 
mortality, methods ignoring competing death would lead to a lower 
chance to claim a significant treatment effect than the ones that incor-
porate the competing death. 

A summary of conclusions from comparative evaluation of the 9 
methods is provided in Table 3. 

6. Discussion and conclusion 

This research work focused on a comprehensive evaluation of the 
performance of nine survival analysis approaches, including popular 
competing risk analysis methods and standard survival analysis methods 
with multiple censoring strategies for death (time of death vs. maximum 
follow-up timepoint). Failure to appropriately account for death in 
analysis could potentially underestimate or overestimate the treatment 
effect. A key focus of this research was to evaluate the impact of the 
death rate and the hazard ratio of death on the performance of 
commonly used parametric and non-parametric survival analysis 
methods. Our simulations showed that, when the death rate is low, 
neglecting the unfavourable value associated with death in a non- 
informatively censoring manner may not have a substantial impact on 
the estimation or statistical inference. However, in the case of a mod-
erate to high death rate, competing risk analyses and survival analyses 
with the maximum time censoring approach may better detect a treat-
ment effect on recovery than the standard survival analysis that treat 
death as non-informative censoring if treatment also helps reduce 
mortality. The non-informative censoring in the paradigm of standard 
survival analysis methods may often yield ‘biased’ estimation of treat-
ment effects. Thus, our research suggests that both the event of death 
and event of recovery are important to the estimation of the treatment 
effect since disease recovery is innately coupled with survival in COVID- 
19 trials. Accordingly, treating death as a non-informative censoring 
event in the time-to-recovery analysis would ignore the negative impact 
of death to the modification of the probability of recovery. Furthermore, 

Table 1 
Comparison of statistics and p-values obtained by different analysis approaches 
(Case Study 1).  

Methods Statistics P 
value 

Standard 
Survival 
Analysis 

Censor 
death at 
the time 
of death 

1a: Cox PH 
Model 

Hazard ratio 1.035 0.289 

2a: Log Rank 
Test 

N/A 0.287 

3a: RMST Ratio of RMST 0.986 0.479 
Censor 
death at 
Day 28 

1b: Cox PH 
Model 

Hazard ratio 1.082 0.016 

2b: Log Rank 
Test 

N/A 0.015 

3b: RMST Ratio of RMST 0.968 0.067 
Competing Risk 

Analysis 
4: 
Subdistribution 
Hazard Model 

Subdistribution 
hazard ratio 

1.080 0.014 

5: CIF Chi-square N/A 0.014 
6: CIF AUC Ratio of CIF AUC 1.042 0.068 

Method 1a: Cox PH model, censor death at the time of death; 
Method 2a: Log rank test, censor death at the time of death; 
Method 3a: Test the Restricted Mean Survival Time (RMST) difference, censor 
death at the time of death; 
Method 1b: Cox PH model, censor death at Day 28; 
Method 2b: Log rank test, censor death at Day 28; 
Method 3b: Test the Restricted Mean Survival Time (RMST) difference, censor 
death at Day 28; 
Method 4: Subdistribution hazard model; 
Method 5: Test cumulative incidence function (CIF) difference using a modified 
log-rank Chi-square test; 
Method 6: Test the difference of the area under the cumulative incidence 
function (CIF) curve. 
Note: Hazard ratio > 1 in Methods 1a and 2a, Ratio of RMST<1 in Methods 2a 
and 2b, Subdistribution hazard ratio > 1 in Method 4, and Ratio of CIF AUC >1 
in Method 6 indicate treatment benefit. 

Table 2 
Comparison of average statistics and proportion of claiming significant treatment effect by different analysis approach (Case Study 2).  

Methods Statistics* Pr(Significance) 

Standard Survival Analysis Censor death at the time of death 1a: Cox PH Model Hazard ratio 1.344 63.0% 
2a: Log Rank Test N/A 63.8% 
3a: RMST Ratio of RMST 0.884 76.0% 

Censor death at Day 28 1b: Cox PH Model Hazard ratio 1.446 86.4% 
2b: Log Rank Test N/A 86.5% 
3b: RMST Ratio of RMST 0.875 95.7% 

Competing Risk Analysis 4: Subdistribution Hazard Model Subdistribution hazard ratio 1.440 85.7% 
5: CIF Chi-square N/A 86.6% 
6: CIF AUC Ratio of CIF AUC 1.464 95.6% 

Method 1a: Cox PH model, censor death at the time of death; 
Method 1b: Log rank test, censor death at the time of death; 
Method 1c: Test the Restricted Mean Survival Time (RMST) difference, censor death at the time of death; 
Method 2a: Cox PH model, censor death at Day 28; 
Method 2b: Log rank test, censor death at Day 28; 
Method 2c: Test the Restricted Mean Survival Time (RMST) difference, censor death at Day 28; 
Method 4: Subdistribution hazard model; 
Method 5: Test cumulative incidence function (CIF) difference using a modified log-rank Chi-square test; 
Method 6: Test the difference of the area under the cumulative incidence function (CIF) curve. 
Note: Hazard ratio > 1 in Methods 1a and 2a, Ratio of RMST<1 in Methods 2a and 2b, Subdistribution hazard ratio > 1 in Method 4, and Ratio of CIF AUC >1 in 
Method 6 indicate treatment benefit. 

* Statistics calculated by taking the mean of statistics (on the log-scale) from 10,000 random samples. 
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as shown by simulations where the latent times-to-event for death and 
recovery were negatively correlated (reflecting the scenario where 
certain characteristics that increase the likelihood of death are also 
associated with longer times-to-recovery), standard survival analysis 
methods treating death as non-informative censoring may even lose 
power to detect a true treatment effect on recovery. 

With the implementation of the ICH E9 (R1) addendum [25], stra-
tegies for handling intercurrent events have received an unprecedented 
amount of attention from researchers and regulatory agencies for their 
substantial impact on the definition of the clinical question of interest. In 
the setting of a time-to-recovery analysis, our evaluations have 
demonstrated that a composite variable strategy would be more 
appropriate than other strategies to allow the impact of the intercurrent 
death to be incorporated into the estimation of the treatment effect on 
recovery. In both the simulations and case studies we explored, we 
consistently observed similar results between the standard methods with 
maximum time censoring approach and their analogous competing risk 
counterparts for semi-parametric (Cox PH vs. Subdistribution PH), non- 
parametric (log-rank vs. CIF chi-square test), and non-parametric area- 
based (RMST vs. CIF AUC) methods. Intuitively they should be similar, 
since patients who die experience “immortal time” for the event of re-
covery in the competing risk methods, while the maximum time 
censoring approaches assume that these patients have an indefinitely 
long time to achieve the endpoint of recovery. Our findings suggest that 
standard survival analysis methods with alternative censoring rules can 
serve as an alternative to more sophisticated competing risk approaches 
in a setting with a well-defined and restricted follow-up period. Our 
simulations and case studies also show that the strength of evidence for 
inference may differ between ‘area’-based methods (CIF AUC, RMST) 

and ‘slope’-based methods (subdistribution hazard, Cox PH, log rank) 
depending on the setting (e.g. short duration of follow-up, whether the 
proportional hazards assumption is met, etc.). 

In this work, the evaluation criteria for both simulations and case 
studies focused on the probability of (statistical) significance since the 
distinct statistics of different methods are not directly comparable. 
However, probability of significance should not be the sole criteria for 
selection of an appropriate statistical method, nor should researchers 
rely on a single analysis in evaluating treatment efficacy. Our compre-
hensive evaluation also did not suggest that any one method was su-
perior to the others across all scenarios. Therefore, selection of the 
appropriate analysis method should consider model assumptions (e.g., 
the proportionality assumption for use of Cox PH or Subdistribution 
Hazard models), the scientific objective being studied, and the clinical 
relevance of the interpretation of results. It is also recommended to 
examine supplementary survival analysis methods and censoring stra-
tegies to further evaluate robustness of results and the totality of 
evidence. 

This research was guided by the unique settings of COVID-19 clinical 
trials. In our simulations we have examined settings where the hazard 
ratio of death in the experimental group is less than or equal to 1 in 
reference to control. Settings with a hazard ratio of death greater than 1 
were not examined since a treatment effect on recovery loses clinical 
meaningfulness for an experimental treatment that increases mortality. 
Our simulations also assumed one competing risk event of death. This is 
motivated by COVID-19 trials where death is the major event that 
competes with the endpoint of recovery. However, the research can be 
easily generalized to multiple competing risk events. 

Our research demonstrated the importance of appropriate handling 
of death in time-to-recovery analysis and will be particularly beneficial 
to the researchers when planning current and future COVID-19 treat-
ment trials. This research framework can be applied to evaluate the 
impact of censoring strategies in other populations, endpoints, settings, 
or even in non-COVID-19 indications with appropriate adjustment of the 
parameters to reflect the study settings. 
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