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Abstract

Existing models about the dynamics of COVID-19 transmission often assume the

mechanism of virus transmission and the form of the differential equations. These

assumptions are hard to verify. Due to the biases of country-level data, it is inaccurate

to construct the global dynamic of COVID-19. This research aims to provide a robust

data-driven global model of the transmission dynamics.We apply sparse identification

of nonlinear dynamics (SINDy) to model the dynamics of COVID-19 global transmis-

sion. One advantage is that we can discover the nonlinear dynamics from data with-

out assumptions in the form of the governing equations. To overcome the problem of

biased country-level data on the number of reported cases, we propose a robust global

model of the dynamics by usingmaximin aggregation. Real data analysis shows the effi-

ciency of our model.
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1 INTRODUCTION

The outbreak of a new virus named SARS-CoV-2 was initially identi-

fied in mid-December 2019 inWuhan, Hubei Province, China. COVID-

19, the disease caused by this coronavirus, was characterized as a pan-

demic by WHO on 11 March 2020. As of 5 April 2021, the number of

confirmed cases rose to 131,419,173 worldwide, and the number of

deaths reached 2,854,842.

Research on the epidemic has sprung up in the past year. Prediction

of the infectious cases, modelling the dynamics including differential

equations and identifying relationships between the infectious cases

andother factors, suchas environmental factors, are themain concerns

of statisticians. Studying the patterns of transmission can simulate the

development of the current epidemic and predict the trend of the epi-

demic in the future, further, help governments make a decision. We

focus on mechanistic equations for disease dynamics from case noti-

fication data for COVID-19 in this paper.

It is a huge challenge to discover the governing equations from real

data. The data on major communicable diseases are more open, and

the dynamicmodel of its transmission is relatively traditional and fixed.

Classical mathematical models describing the spread of infectious dis-

eases include the susceptible, infective, and recovered (SIR) model

(Beretta & Takeuchi, 1995), susceptible, exposed, infective, and recov-

ered (SEIR) model (Ma et al., 2004), susceptible, exposed, infective,

diagnosed, and recovered model (C. Liu et al., 2004) and susceptible,

infective, recovered and dead model (Rui & Tian, 2021), etc. The idea

is to divide the population into susceptible (S), exposed (E), infected

(I), confirmed (C) and recovered (R) populations, then reveal the law

of epidemic transmission through the infection mechanism that how

individuals move between the compartments. And these models are

used to study the spread of infectious diseases such as measles, small-

pox, rabies, Ebola viruses, etc. Due to the characteristic that COVID-

19 has a relatively long incubation period and quarantine measures

are implemented, it is hard to describe with the existing epidemic

models. Researchers have been expanded these models in many ways

to account for observed epidemic patterns (Chowdhury et al., 2020;

Frenkel&Schwartz, 2021;Mandal et al., 2020;Paiva et al., 2020;Rajen-

dran & Jayagopal, 2021; Zhao &Chen, 2020).

The above models all prespecify assumptions of the mechanism of

dynamic transmission of COVID-19. These assumptions are hard to

verify, which reduces the possibility to receive accurate results. So

we hope the dynamic transmission mechanism of COVID-19 is not
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assumed in advance, and the governing equations are determined by

the statistical method according to recorded time series data. Hor-

rocks and Bauch (2020) showed that sparse identification of nonlinear

dynamics (SINDy) can be applied to epidemiological data to yield mod-

els that describe observed epidemic patterns. The SINDy framework

was proposed by Brunton et al. (2016) to extract governing equations

from data. SINDy can be used for the discovery of new models (see

Kaiser et al., 2017;Manganet al., 2016, 2017;Markus et al., 2018;Rudy

et al., 2016; Tran &Ward, 2017). So far, SINDy has not yet been tested

inmodel discovery fromempirical data onCOVID19dynamics. For one

specific country or region, we can use SINDy as in Horrocks and Bauch

(2020). But one difficulty we face is that country-level or regional-level

data are heterogeneous, if we fit a regression model using global data

with a mixture of all country or regional level data, there would be a

significant error. Estimating regressions over the pool of all available

data are likely to estimate effects that might be strong for one coun-

try but very weak for another country, resulting in too many effects

that are not replicable. For example, L. Liu et al. (2021) used a dynamic

panel datamodel to generate density forecasts for daily active COVID-

19 infections for a panel of countries/regions. Siwiak et al. (2020) pro-

vided a high-resolution global model of the pandemic but prespecified

assumptions of themechanism.

For inhomogeneous data, Bühlmann and Meinshausen (2015)

showed a different type of aggregation can still lead to consistent esti-

mation of the effects which are common in all heterogeneous data,

the so-called maximin effects (Meinshausen & Bühlmann, 2015). The

maximin aggregation, also calledmagging, is simple and general. Apply-

ing maximin effects to the SINDy framework, we can provide a robust

global transmissionmodel.

In this article, we apply SINDy to time series data from COVID-19

to discover dynamic models that govern its epidemic patterns on each

grouped data, then use maximin aggregation to get a global dynamic

model. One advantage of this research is we create a global model of

the early stages of the pandemic that would overcome the problem of

the heterogeneous data on the number of notification cases; the other

advantage is we determine governing equations according to recorded

time series data.

The remainder of this paper is structured as follows. In Section 2, we

introduce SINDy and magging estimating procedures. In Section 3, we

do some descriptive analysis of the data of the Johns Hopkins Univer-

sity dataset. In Section 4, a systematical analysis based on SINdy and

magging is carried out. Finally, in Section 5, we give concluding remarks

and future research proposals.

2 MATERIALS AND METHODS

For given time t, t = 1,… , T and Nt, St, It, Rt, Dt represent the cumula-

tive number of the total population, the number of the susceptible indi-

viduals, the number of the infected cases, the cumulative number of the

recovery cases and the cumulative number of the death cases at time t,

respectively.

The SINDy algorithm (Brunton et al., 2016) performs the intractable

brute force search for all possible model functional terms. The his-

torical data x(t), which are sampled at several times t1, t2,… , tn, are

arranged into two largematrices:

X =

⎡⎢⎢⎢⎢⎢⎣

xT (t1)

xT (t2)

⋮

xT (tn)

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

x1 (t1) x2 (t1)

x1 (t2) x2 (t2)

⋯ xp (t1)

⋯ xp (t2)

⋮ ⋮

x1 (tn) x2 (tn)

⋱ ⋯

⋯ xp (tn)

⎤⎥⎥⎥⎥⎥⎦
,

Ẋ =

⎡⎢⎢⎢⎢⎢⎣

ẋT (t1)

ẋT (t2)

⋮

ẋT (tn)

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

ẋ1 (t1) ẋ2 (t1)

ẋ1 (t2) ẋ2 (t2)

⋯ ẋp (t1)

⋯ ẋp (t2)

⋮ ⋮

ẋ1 (tn) ẋ2 (tn)

⋱ ⋯

⋯ ẋp (tn)

⎤⎥⎥⎥⎥⎥⎦
,

where ẋ(t) is the derivative of x(t).

Then, we construct an augmented library Θ(X) consisting of candi-

date nonlinear functions of the columns of X. For example, Θ(X) may

consist of constant, polynomial and trigonometric terms

Θ (X) =

⎡⎢⎢⎢⎣
|
1|

|
X|

|
XP2|

|
XP3| ⋯

|
sin (X)|

|
cos (X)|

|
sin (2X)|

|
cos (2X)| ⋯

⎤⎥⎥⎥⎦
.

Here, higher polynomials are denoted as XP2 , XP3 , etc. For exam-

ple, XP2 denotes the quadratic nonlinearities in the state variable x,

given by

XP2 =

⎡⎢⎢⎢⎢⎢⎣

x2
1 (t1) x1 (t1) x2 (t1) ⋯

x2
1 (t2) x1 (t2) x2 (t2) ⋯

x2
2 (t1) x2 (t1) x3 (t1) ⋯

x2
2 (t2) x2 (t2) x3 (t2) ⋯

⋮ ⋮ ⋱

x2
1 (tn) x1 (tn) x2 (tn) ⋯

⋮ ⋮ ⋯

x2
2 (tn) x2 (tn) x3 (tn) ⋯

⎤⎥⎥⎥⎥⎥⎦
.

Asparse regressionproblem is set upwith the sparsevectorsof coef-

ficientsΞ = [𝜉1 𝜉2 … 𝜉p] ,

Ẋ = Θ (X)Ξ + 𝜂Z.

where Z is modelled as a matrix of independent identically distributed

Gaussian entries with zero mean, and noise magnitude 𝜂. The matrix

Θ(X) has dimensions n ×m, where m is the number of candidate non-

linear functions (n≫ m). AndΞ has dimensionsm × p.

Sparse regression techniques, such as LASSO (Tibshirani, 1996),

adaptive LASSO ((Hui, 2006)), smoothly clipped absolute deviation

(Fan & Li, 2001), elastic-net (Hui & Hastie, 2005), etc have been

researched in a large number of studies. In this article, we use sequen-

tial least-squares proposed inBrunton et al. (2016); e algorithm is given

below.

The kth row of the dynamical system is reconstructed as follows:

ẋk = Θ
(
x⊤k

)
𝜉k, k = 1… , p.
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ALGORITHM1 SINDy algorithm

Input: Ẋ, X, λ is a sparsification knob.
1. Initial guess: ̂̈ = (Θ(X))+Ẋ.

2. Find small coefficients and threshold and regress dynam-

ics onto remaining terms to find sparse Ξ̂.

3. Repeat step 2 until convergence.

Output: Ξ̂.

Applying SINDy to discover a continuous-time model involves

determining the derivative vector ẋt . Using the discrete system, the

response vector is ẋt = xt − xt−1. Take the SIR model for an example, in

itsmost elementary version it canbewritten indiscrete timeas follows:

Ṡt = St − St−1 = 𝛽St−1 (It−1∕N) ,

İt = It − It−1 = 𝛽St−1 (It−1∕N) − 𝛾It−1,

Ṙt = Rt − Rt−1 = 𝛾It−1,

whereN is the (fixed) size of the population, 𝛽 is the average number of

contacts per person per time and 𝛾 is the rate of recovery or mortality.

Now we add country or regional level g, g = 1… , G. The kth row of

the dynamical system is as follows:

ẋgk = Θ
(
x⊤gk

)
= 𝜉gk, g = 1,… , G, k = 1… , p.

As estimates for the 𝜉gk , we use the sequential threshold least-

squares estimator

𝜉̂gk = arg min𝜉gk∈Rm
‖‖‖‖ẋgk − Θ

(
x⊤gk

)
𝜉gk

‖‖‖‖
2

2
,

s.t. ||𝜉gkj|| > 𝜆, j = 1,… , m,

where 𝜆 is a tuning parameter, the calculating process is illustrated in

Algorithm 1, and Akaike’s information criterion (AIC; Bozdogan, 1987)

is used to select 𝜆. Otherwise, the sparse regression technique as we

mentioned above is also a good choice.

Here, let

Σg = n−1g

(
Θ
(
x⊤gk

)⊤
g
Θ
(
x⊤gk

)
g

)
,

the empirical explained variance in group g is

V̂g
𝜉gk

:=
2
ng
𝜉⊤gkΘ(x

⊤
gk)

⊤
g ẋgk − 𝜉⊤gk

∑̂
g𝜉gk

. (1)

So the estimator for 𝜉kmaximin according toBühlmann andMeinshausen

(2015) is

𝜉kmaximin = arg min 𝜉gk∈Rm maxg = 1, …, G(−V̂
g
𝜉k
).

𝜉kmaximin is approximately a combination of theweighted estimators

of each group, and the weights are computed by quadratic program-

ming. The optimization and computation can be implemented in a very

efficient way; refer to Bühlmann and Meinshausen (2015) for more

details. The steps in theMatlab environment are as follows:

Step 1. Calculate the empirical covariance matrix ˚ =
1

n
Θ(X)⊤ Θ(X), n = n1 +⋯+ nG.

Step 2.H = 𝜉⊤k Σ𝜉k, 𝜉k = (𝜉
1k,… , 𝜉Gk).

Step 3. Use ‘quadprog’ to calculate the weight vector x.

[x,fval,exitflag,output,lambda] = quadprog(H,d,[],[],Aeq,beq,lb),

d= zeros(G,1); Aeq= ones(1,G);beq= 1; lb= zeros(G,1).

Step 4. The combination of the weighted estimators is 𝜉kmaximin =

x1 ∗ 𝜉1k +⋯+ xG ∗ 𝜉Gk .

3 DATA DESCRIPTION

The datawe use in this paperwere collected by the Center for Systems

Science and Engineering (CSSE) at Johns Hopkins University. Original

global data are updated once a day. The reported time series started

on 22 January 2020. The infected population is calculated as It = Ct −

Rt − Dt , whereCt represents the cumulative confirmed patients at time

t, Rt is the cumulative recovered patients at time t and Dt denotes the

cumulative deaths cases at time t. Adding up regional data from the

same country except for ‘Diamond Princess’, there are 191 countries in

the global daily reports. There is a comparison between the numbers of

cumulative confirmed cases on 10March 2020, and 10March 2021, as

illustrated in Figure 1. The global epidemic is getting worse andworse.

By 10March 2021, the top 10 countries with the largest number of

confirmed cases are shown in Figure 2.

The susceptible population means more easily infected group and

is an indispensable part of compartment models. But original dataset

does not include susceptible cases. Here we add an assumption that

the total population Nt is fixed with constraint Nt = St + It + Rt + Dt ,

which results inNt = St + Ct . So we can replace Stwith Ct in construct-

ing differential equations.

Accordingly, xt = (Ct, It, Rt, Dt) holds in our real data analysis. SINDy

was then applied to the CSSE dataset using a function library consist-

ing of all polynomials involving Ct, It, Rt , and Dt up to second order.

That is

Θ (xt) =
[
1, Ct, It, Rt, Dt, C

2
t , CtIt, CtRt, CtDt, I

2
t , ItRt, ItDt, R

2
t , RtDt, D

2
t

]
,

which is 15 dimensional. And the discrete system is as follows:

Ct − Ct−1 = Θ (xt) 𝜉1,

It − It−1 = Θ (xt) 𝜉2,

Rt − Rt−1 = Θ (xt) 𝜉3,

Dt − Dt−1 = Θ (xt) 𝜉4.
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F IGURE 1 Bubble plot of numbers of cumulative confirmed cases on 10March 2020, and 10March 2021. The larger the bubble, the severer
the situation
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F IGURE 2 Number of cumulative confirmed cases for selected
top ten countries on 10March 2021

Remark: Polynomial terms often appear in traditional compartmen-

tal epidemic models, so we choose polynomials as library functions.

When a third-order library is used instead, the results will be differ-

ent due to the number of increasing parameters. Furthermore, there

are severe noises and errors in the CSSE dataset, the final estimation is

terrible.Weonly showour baseline analysis using a second-order poly-

nomial library.

The AIC criterion is used to choose the optimal tuning parameter 𝜆,

whichbalances sparsity andoverfitting.Models yielding the lowestAIC

score across the grid will finally be selected.

The evaluation of the global transmission of COVID-19 is based on

the top 10 countries with the largest number of confirmed cases. We

choose dates ti, i = 1,… ,10, whose deaths number are greater than

20 as the start of the event time and dates ti + 56, i = 1,… ,10 as the

end in our analysis.

Another way to group the global population is according to belong-

ing to continents. As we know, the world is divided into seven con-

tinents, namely Asia, Europe, Africa, North America South America,

Oceania, and Antarctica. No Antarctic data are reported in the table.

Summing up data of the same continent, we get six summary data of

continents, respectively. Different from country-level data, the start of

the event time ti, i = 1,… ,6 is when deaths number exceeds 350, and

the end is ti + 56, i = 1,… ,6.

We also analyze global summary data adding up all country and

regional data as a comparison. The period is from 18 February 2020 to

13 April 2020, a 56-day interval.
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TABLE 1 Coefficients comparison between three different models using a function library of polynomials up to second order

Methods Terms 1 C I R D C2 CI CR CD I2 IR ID R2 RD D2

Country

based

C Eq. 2722 −1.06 1.14 1.06 0.383 0 0 0 0 0 0 0 0 0 0

I Eq. 2399 0.0018 −0.0059 −0.0195 −0.0923 0 0 0 0 0 0 0 0 0 0

R Eq. 178.0 0.241 −0.233 −0.254 −0.217 0 0 0 0 0 0 0 0 0 0

D Eq. 0 0.0565 0.0565 0.0565 0.0565 0 0 0 0 0 0 0 0 0 0

Continent

based

C Eq. 2700 0.0069 −0.0147 −0.0218 0.0633 0 0 0 0 0 0 0 0 0 0

I Eq. −861.0 0.802 −0.81 −0.784 −0.32 0 0 0 0 0 0 0 0 0 0

R Eq. 1611.0 0.0041 −0.0036 −0.0121 0.0458 0 0 0 0 0 0 0 0 0 0

D Eq. 24.2 −0.0073 0.0082 0.0074 0.0186 0 0 0 0 0 0 0 0 0 0

Global

based

C Eq. 0 −0.397 0.488 0.39 0 0 0 0 0 0 0 0 0 0 0

I Eq. 0 −0.415 0.477 0.411 0 0 0 0 0 0 0 0 0 0 0

R Eq. 0 0.0267 0 −0.0286 0 0 0 0 0 0 0 0 0 0 0

D Eq. 0 −0.0127 0.0161 0.012 0 0 0 0 0 0 0 0 0 0 0

C, confirmed cases; CD, product of confirmed cases anddeath cases, C eq., equation of confirmed cases; CI, product of confirmed cases and infected cases; CR,

product of confirmed cases and recovered cases; D, death cases, D eq., equation of death cases; I, infected cases; I eq., equation of infected cases; ID, product

of infected cases and death cases; IR, product of infected cases and recovered cases; R, recovered cases; RD, product of recovered cases and death cases; R

eq., equation of recovered cases.

4 RESULTS

The calculating coefficients are illustrated in Table 1. Three models all

remain one order terms and second-order termsmake no difference.

To see the results more clearly, we predict the confirmed cases,

infected cases, recovered cases, and deaths cases in 30 days of the

early period. The confirmed cases, infected cases, recovered cases, and

death case on 18 January 2020, was 557, 510, 30, and 17, respec-

tively, which is the start point of the differential equations. Figure 3

displays the complete results. Global-based predictive cases are much

less than country-based and continent-based predictive cases. To bet-

ter illustrate the results, we use biaxial coordinates. Though the red

line and the green line are closer, global-based predictions deviate

most from true data because there is a mixture of all country-level

biases. Continent-based models perform better in earlier confirmed

and infected cases prediction, while country-based models perform

better in latter prediction. For both recovered and death cases pre-

diction, it is clear that country-based models are more accurate than

continent-basedmodels.

5 DISCUSSION

In this paper, we demonstrate that SINDy can discover dynamicalmod-

els fromCOVID-19 data.

The data have some limitations. Case notifications are typically

under-reported and biased even when they are available. Infectious

cases are measured with error because individuals who are asymp-

tomatic are not captured in the official statistics. It is hard to decide

whether death cases are dyingwith or dying of COVID-19. Also, counts

of the number of recovered individuals are often inaccurate.

Due to state policies towards the disease are different, country-

level data are heterogeneous. Fitting model curves on global data bear

a significant error, as these data are a mixture of all country-level

biases.

Estimating regressions over the pool of all available data is likely to

estimate effects that might be strong for one country but very weak

for another country, resulting in too many effects that are not replica-

ble. To overcome the problem of biased and heterogeneous country-

level data on the number of cases, we provide a robust global model

of the dynamics by using the maximin aggregation technique. This

model is simple and conservative, can reduce the complexity of data

sources and extract a structure with the common contribution to all

country data.

Regression algorithms and tuning parameter selection too influence

the final results.Our approach replaces the susceptible time serieswith

the confirmed time series based on the assumption. According to the

research from Eastin and Eastin (2020), almost everyone is susceptible

to COVID-19, which increases the difficulty for counts of accurate sus-

ceptible populations.

One problem is how to construct a library of functions, we can incor-

porate domain knowledge and other related methods, for example,

compartmentmodels.Weselect polynomials functions as abasis due to

forms of compartmentmodels. Deepmethods (Long et al., 2018, 2019)

are another technique that can provide more flexible representations

to discover differential equations, but lack interpretations.

Regression coefficients in our model are fixed, they may be varying

due to seasonal factors, etc. In our future research, we will consider

regression coefficients are functions too.

In conclusion, we have shown that SINDy and maximin aggregation

can be applied to COVID-19 data to yield models that describe global

epidemic patterns.
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F IGURE 3 Comparison of the predictive number of confirmed
cases, infected cases, recovery cases and death cases, respectively, in
the first 30 days. Country based results (blue star line), continent
based results (black rhombus), global-based results (red ring line) and
true data (green dot line)

ACKNOWLEDGEMENTS

This work was supported by the Outstanding Innovative Talents Cul-

tivation Funded Programs 2020 of Renmin University of China. The

work of Man-Lai Tang was partially supported through grants from

the Research Grant Council of the Hong Kong Special Administrative

Region [UGC/FDS14/P01/16, UGC/FDS14/P02/18 and The Research

MatchingGrant Scheme (RMGS)] andagrant fromtheNationalNatural

Science Foundation of China (Grant 11871124). Professor Tian’s work

was partially supported by the National Natural Science Foundation

of China (No.11861042), and the China Statistical Research Project

(No.2020LZ25). The computing facilities/software were supported by

SAS Viya and the Big Data Intelligence Centre at the Hang Seng, Uni-

versity of Hong Kong.

CONFLICTS OF INTEREST

The authors declare no conflict of interestwith respect to the research,

authorship and/or publication of this article.

AUTHOR CONTRIBUTIONS

All authors conceived the study, carried out the analysis, discussed the

results, drafted the manuscript, critically read the manuscript. Specif-

ically, Dr. Jinwen Liang and Professor Xueliang Zhang contributed to

all of the following: (1) conception and design of the work, acquisition

of data; and (2) drafting the article or revising it critically for impor-

tant intellectual content; Professors Kai Wang, Manlai Tang and Tian

Maozai contributed to all of the following: data analysis and interpre-

tation of data; final approval of the version to be published and agree-

ment to be accountable for all aspects of the work.

ETHICAL STATEMENT

The data of daily reports were collected from CSSE at Johns Hopkins

University and thus neither ethical approval nor individual consentwas

not applicable.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from

CSSE at Johns Hopkins University online at https://github.com/

CSSEGISandData/COVID-19.

ORCID

Maozai Tian https://orcid.org/0000-0002-0515-4477

REFERENCES

Beretta, E., & Takeuchi, Y. (1995). Global stability of an sir epidemic model

with time delays. Journal of Mathematical Biology, 33, 250–260. https://
doi.org/10.1007/BF00169563

Bozdogan, H. (1987). Model selection and Akaike’s information criterion

(AIC): The general theory and its analytical extensions.Psychometrika,52,
345–370. https://doi.org/10.1007/BF02294361

Brunton, S. L., Proctor, J. L., &Kutz, J.N. (2016).Discovering governing equa-

tions from data by sparse identification of nonlinear dynamical systems.

Proceedings of theNational Academyof Sciences of theUnited States ofAmer-
ica, 113, 3932–3937. https://doi.org/10.1073/pnas.1517384113

Bühlmann, P., &Meinshausen, N. (2015). Magging:Maximin aggregation for

inhomogeneous large-scale data. Proceedings of the IEEE, 104, 126–135.

https://github.com/CSSEGISandData/COVID-19
https://github.com/CSSEGISandData/COVID-19
https://orcid.org/0000-0002-0515-4477
https://orcid.org/0000-0002-0515-4477
https://doi.org/10.1007/BF00169563
https://doi.org/10.1007/BF00169563
https://doi.org/10.1007/BF02294361
https://doi.org/10.1073/pnas.1517384113


e70 LIANG ET AL.

Chowdhury, R., Heng, K., Shawon, M., Goh, G., & Franco, O. H. (2020).

Dynamic interventions to control covid-19 pandemic: A multivariate

predictionmodelling study comparing 16worldwide countries. European
Journal of Epidemiology, 35, 389-399. https://doi.org/10.1007/s10654-
020-00649-w

Eastin, C., & Eastin, T. (2020). Clinical characteristics of coronavirus disease

2019 in china. Journal of Emergency Medicine, 58, 711–712. https://doi.
org/10.1016/j.jemermed.2020.04.004

Fan, J., & Li, R. (2001). Variable selection via nonconcave penalized likeli-

hood and its oracle properties. Journal of the American Statistical Associ-
ation, 96, 1348–1360. https://doi.org/10.1198/016214501753382273

Frenkel, G., & Schwartz, M. (2021). Modeling social distancing and “spon-

taneous” infection in an epidemic outbreak phase application to the

2020 pandemic. Physica A: Statistical Mechanics and its Applications, 567,
125727. https://doi.org/10.1016/j.physa.2020.125727

Horrocks, J., & Bauch, C. T. (2020). Algorithmic discovery of dynamicmodels

from infectious disease data. Scientific Reports, 10, 7061. https://doi.org/
10.1038/s41598-020-63877-w

Hui, Z. (2006). The adaptive lasso and its oracle properties. Journal of the
American Statistical Association, 101, 1418–1429.

Hui, Z., &Hastie, T. (2005). Regularizationandvariable selectionvia theelas-

tic net. Journal of the Royal Statistical Society: Series B (Statistical Methodol-
ogy), 67, 301–320.

Kaiser, E., Kutz, J. N., & Brunton, S. L. (2017). Sparse identification of nonlin-

ear dynamics for model predictive control in the low-data limit. Proceed-
ings of The Royal Society A Mathematical Physical and Engineering Sciences,
474, 20180335. https://doi.org/10.1098/rspa.2018.0335

Liu, C., Ding, G., Gong, J., L. Wang, Cheng, K., & Zhang, D. (2004). Studies on

mathematicalmodels for SARSoutbreakprediction andwarning.Chinese
Science Bulletin, 49, 2245–2251.

Liu, L.,Moon,H. R., & Schorfheide, F. (2021). Panel forecasts of country-level

Covid-19 infections. Journal of Econometrics, 220, 2–22. https://doi.org/
10.1016/j.jeconom.2020.08.010

Long, Z., Lu, Y., & Dong, B. (2019). Pde-net 2.0: Learning pdes from data

with a numeric-symbolic hybrid deep network. Journal of Computational
Physics, 399, 108925. https://doi.org/10.1016/j.jcp.2019.108925

Long, Z., Lu, Y., Ma, X., & Dong, B. (2018). Pde-net: Learning pdes from data.

In 35th International Conference on Machine Learning (ICML 2018) (pp.

5067–5078). Proceedings of Machine Learning Research, Vol. 80. Inter-

nationalMachine Learning Society.

Ma, E., W,W., Zhou, Y., & Jin, Z. (2004).Mathematical models and dynamics of
infectious diseases (1st edn.). China Science Press.

Mandal, M., Jana, S., Nandi, S. K., Khatua, A., & Kar, T. K. (2020). A model-

based study on the dynamics of covid-19: Prediction and control. Chaos
Solitons & Fractals, 136, 109889.

Mangan, N. M., Brunton, S. L., Proctor, J. L., & Kutz, J. N. (2016). Inferring

biological networks by sparse identification of nonlinear dynamics. IEEE

Transactions on Molecular, Biological and Multi-Scale Communications, 2,
52–63. https://doi.org/10.1109/TMBMC.2016.2633265

Mangan, N. M., Kutz, J. N., Brunton, S. L., & Proctor, J. L. (2017). Model

selection for dynamical systems via sparse regression and information

criteria. Proceedings Mathematical Physical & Engineering Sciences, 473,
2017009.

Markus, Q.,Markus, A., Nathan, K. J., & Brunton, S. L. (2018). Sparse identifi-

cation of nonlinear dynamics for rapidmodel recovery. Chaos An Interdis-
ciplinary Journal of Nonlinear Science, 28, 063116.

Meinshausen,N., &Bühlmann, P. (2015).Maximin effects in inhomogeneous

large-scale data. Annals of Statistics, 43, 1801–1830. https://doi.org/10.
1214/15-AOS1325

Paiva, H. M., Afonso, R. J. M., de Oliveira, I. L., & Garcia, G. F. (2020). A

data-driven model to describe and forecast the dynamics of covid-19

transmission. Plos One, 15, 1–16. https://doi.org/10.1371/journal.pone.
0236386

Rajendran, S., & Jayagopal, P. (2021). Accessing Covid19 epidemic outbreak

in Tamil Nadu and the impact of lockdown through epidemiological mod-

els and dynamic systems.Measurement, 169, 108432. https://doi.org/10.
1016/j.measurement.2020.108432

Rudy, S. H., Brunton, S. L., Proctor, J. L., & Kutz, J. N. (2016). Data-driven dis-

covery of partial differential equations. Science Advances, 3.
Rui, R., & Tian,M. (2021). Joint estimation of case fatality rate of COVID-19

and power of quarantine strategy performed inWuhan, China. Biometri-
cal Journal, 63(1), 46–58. https://doi.org/10.1002/bimj.202000116

Siwiak, M., Szczesny, P., & Siwiak, M. (2020). From the index case to global

spread: The global mobility based modelling of the Covid-19 pandemic

implies higher infection rate and lower detection ratio than current esti-

mates. PeerJ, 8, e9548. https://doi.org/10.7717/peerj.9548
Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Jour-

nal of the Royal Statistical Society: Series B (Statistical Methodology), 58,
267–288.

Tran, G., & Ward, R. (2017). Exact recovery of chaotic systems from highly

corrupted data.Multiscale Modeling & Simulation, 15, 1108–1129.
Zhao, S., & Chen, H. (2020). Modeling the epidemic dynamics and control of

Covid-19 outbreak in China. Quantitative Biology 1–9. Advanced online

publication. https://doi.org/10.1007/s40484-020-0199-0

How to cite this article: Liang, J., Zhang, X.,Wang, K., Tang, M.,

& Tian, M. (2022). Discovering dynamic models of COVID-19

transmission. Transboundary and Emerging Diseases, 69,

e64–e70. https://doi.org/10.1111/tbed.14263

https://doi.org/10.1007/s10654-020-00649-w
https://doi.org/10.1007/s10654-020-00649-w
https://doi.org/10.1016/j.jemermed.2020.04.004
https://doi.org/10.1016/j.jemermed.2020.04.004
https://doi.org/10.1198/016214501753382273
https://doi.org/10.1016/j.physa.2020.125727
https://doi.org/10.1038/s41598-020-63877-w
https://doi.org/10.1038/s41598-020-63877-w
https://doi.org/10.1098/rspa.2018.0335
https://doi.org/10.1016/j.jeconom.2020.08.010
https://doi.org/10.1016/j.jeconom.2020.08.010
https://doi.org/10.1016/j.jcp.2019.108925
https://doi.org/10.1109/TMBMC.2016.2633265
https://doi.org/10.1214/15-AOS1325
https://doi.org/10.1214/15-AOS1325
https://doi.org/10.1371/journal.pone.0236386
https://doi.org/10.1371/journal.pone.0236386
https://doi.org/10.1016/j.measurement.2020.108432
https://doi.org/10.1016/j.measurement.2020.108432
https://doi.org/10.1002/bimj.202000116
https://doi.org/10.7717/peerj.9548
https://doi.org/10.1007/s40484-020-0199-0
https://doi.org/10.1111/tbed.14263

	Discovering dynamic models of COVID-19 transmission
	Abstract
	1 | INTRODUCTION
	2 | MATERIALS AND METHODS
	3 | DATA DESCRIPTION
	4 | RESULTS
	5 | DISCUSSION
	ACKNOWLEDGEMENTS
	CONFLICTS OF INTEREST
	AUTHOR CONTRIBUTIONS
	ETHICAL STATEMENT
	DATA AVAILABILITY STATEMENT

	ORCID
	REFERENCES


