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The most prevalent primary headaches tension-type headache and migraine are

frequently associated with neck pain. A wide variety of treatment options is

available for people with headache and neck pain. Some of these interventions are

recommended in guidelines on headache: self-management strategies, pharmacological

and non-pharmacological interventions. Physical treatment is a frequently applied

treatment for headache. Although this treatment for headache is predominantly

targeted on the cervical spine, the neurophysiological background of this intervention

remains unclear. Recent knowledge from neuroscience will enhance clinical reasoning

in physical treatment of headache. Therefore, we summarize the neuro- anatomical

and—physiological findings on headache and neck pain from experimental research

in both animals and humans. Several neurophysiological models (referred pain, central

sensitization) are proposed to understand the co-occurrence of headache and neck pain.

This information can be of added value in understanding the use of physical treatment

as a treatment option for patients with headache and neck pain.
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INTRODUCTION

Headache causes substantial pain and disability in people’s daily life and delivers a high burden
and cost to society that is estimated only in Europe at 173 billion Euro per year (1). The most
prevalent primary headaches worldwide are tension-type headache (TTH) and migraine. These
types of headache are frequently associated with neck pain (2, 3). A recent open population
study reported a 1-year prevalence of neck pain of 68.4% and more in people with primary
headache compared to people without primary headache (85.7 vs. 56.7%; OR 3.0, 95% CI 2.0–4.4).
After adjusting for age, gender, education and poor self-rated health, the prevalence of neck pain
(56.7%) was still significantly higher in people with only migraine (76.2%), migraine ánd TTH
(89.3%), and only TTH (88.4%) in comparison with people without headaches (4). People with
headache and neck pain frequently visit health care providers such as medical doctors (general
practitioners, neurologists) and physical therapists in their quest for diagnosis and treatment (5).
A broad pallet of treatment options is available, including reassurance, self-management strategies,
pharmacological, and non-pharmacological treatments. Evidence for the effectiveness of physical
therapy for headache is limited (6, 7). Despite this lack of solid scientific back-up, physical therapy
is worldwide a frequently used alternative or complementary treatment and included in several
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clinical guidelines as an alternative treatment option (The
European Federation of Neurological Societies (EFNS)
guideline, Italian guideline for primary headaches) (5, 8, 9).
In daily practice, a combination of treatment options is
often used, and the combination of pharmacological (acute
and prophylactic drugs) and non-pharmacological (education,
physical therapies, exercises, biofeedback) interventions is indeed
considered to be an efficient approach in headache disorders
(10). Additional research concerning non-pharmacological
prophylactic treatment strategies of headache is however
urgently needed (11). For disciplines that target the cervical
spine in order to decrease headache, it is pivotal for clinical
reasoning to understand the neuro-physiological background
of headache and neck pain (12). Recently, new insights have
emerged on the relation between extracranial input from the
(upper) cervical spine and headache from experimental research
in both animals and humans (13). This recent information
can be of great value to understand and to (re)design physical
approaches for different types of headache in combination with
neck pain. In this review we first describe the neuro-anatomical
and neuro-physiological findings from experimental studies
on the trigemino-cervical complex (TCC). We then discuss
neurophysiological models to explain the co-occurrence of
headache and neck pain such as referred pain and generalized
hyperexcitability. We further present the relation of cervical
spine dysfunction and headache and research on modulation of
nociception at the TCC. Finally, we describe physical treatment
as an option to treat headache and neck pain.

TRIGEMINO-CERVICAL COMPLEX, THE
ANATOMICAL BASIS

Experimental research has contributed to further neuro-
physiological insights in the relation of headache and neck
pain. Knowledge of the neuro-anatomical structures and neural
activity within the TCC seems paramount. The frequent co-
occurrence of headache and neck pain is attributed to common
nociceptive innervation of the head and neck in the dorsal horn
C1-2, located in the trigemino-cervical complex. Animal (14, 15)
and human (15) anatomical studies have shown that the TCC
extends from the medulla (pars oralis and pars interpolaris) to
the first and second cervical segments (pars caudalis) (Figure 1).
In the TCC, the pars caudalis receive first order nociceptive
Aδ- and C afferent neurons of the ophthalmic nerve together
with first order Aδ- and C nociceptive afferent neurons from
predominantly the dorsal root C2. These afferent neurons are
directly or indirectly connected via wide dynamic range neurons
to second-order neurons (16). The ophthalmic nerve delivers
nociceptive input via small diameter Aδ- and C afferent nerve
fibers to nociceptive second-order neurons in the superficial
and deep layers of the medullary dorsal horn C1 and 2 in the
TCC (17, 18). The upper cervical root C2 represents Aδ- and
C nociceptive afferent information of vessels and dura mater
of the posterior fossa, and myofascial structures of the upper
cervical segments. This nociceptive input from the upper cervical
nerve root C2 is well-documented and has a structural overlap

with nociceptive nerve endings from the ophthalmic nerve root
at the first and second cervical dorsal horn in the TCC (19–
27). An extracranial origin of meningeal nociception is suggested
by Schueler et al. by demonstrating in vitro that collaterals of
trigeminal afferents form functional connections between intra-
and extracranial tissues in rats and humans. So, information
from pericranial muscles can reach the dura mater by ortho-
and antidromic conduction through axon collaterals and possibly
influence meningeal functions and the generation of headache in
humans (28, 29). This finding on collateral afferent connections
matches with the anatomical (30) and functional relation (31)
of the dura and suboccipital muscles in the upper cervical
region in humans. Therefore, the neuro-anatomical connection
of ophthalmic and cervical nociceptive afferents on second order
neurons at the pars caudalis of the TCC, is pivotal to understand
the occurrence of headache and neck pain.

REFERRED PAIN

The convergence of cervical ánd trigeminal nociceptive small
diameter Aδ- and C fibers on the C1 and C2 dorsal horn provides
a neuro-anatomical basis for the clinical phenomenon of referred
pain. The co-occurrence of headache and neck pain can be
explained by referred pain: pain originating from the neck is
perceived as originating from the head and vice versa.

EVIDENCE FROM ANIMAL STUDIES

Animal-experimental neuro-physiological studies recording
input of nociceptive afferent fibers at the C1-2 dorsal horn in
animals contributed to the understanding of referred pain in both
directions, i.e., from the neck to the head (20) and from the head
to the neck (21). Vernon et al. described the increased activity
in C1/C2 dorsal horns in rats after injection of inflammatory
mustard oil in deep paraspinal tissues at the level of the left C1-
C2 joint. Activation of trigeminal afferents of the supratentorial
dura mater by mustard oil (MO) showed an enlargement of
cervical cutaneous mechanoreceptive fields together with a
significant (p < 0.001) increase in the excitability to electrical
stimulation of the greater occipital nerve in C-fiber responses
(21). Unilateral electric stimulation of the greater occipital nerve
in cats increased metabolic activity in the dorsal horn C1 and
C2. Stimulation of trigeminally-innervated structures showed a
similar distribution to the trigeminal nucleus caudalis (32). Based
on these findings, the well-recognized clinical phenomenon of
head pain that is perceived frontal and occipital and in the upper
neck may be the result of overlap of nociceptive information at
the level of second order neurons.

Headache during a migraine attack seems to be primarily
based on activation of the trigeminovascular pathways by
increased visceral nociceptive Aδ- and C fibers input of the dura
and intracranial vessels on the TCC. This input is frequently
restricted to the territory of the ophthalmic nerve, butmay extend
as pain to the occipital region of the head which is innervated
by the greater occipital nerve C2 (33). These results indicate that
headache as well as neck pain can be perceived as referred pain.
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FIGURE 1 | Trigeminal Cervical Complex (TCC).

EVIDENCE FROM HUMAN STUDIES

Clinical evidence of referred pain based on convergence of
cervical- and ophthalmic nociceptive Aδ- and C afferent input
originating from different structures has been observed in human
studies. Clinical observations have shown that intracranial
nociceptive input of arteries, but also extracranial nociceptive
input originating from the vertebral artery is able to provoke
painful sensations in the area of the forehead (34, 35).
Provocation of headache by applying experimental nociceptive
stimuli to upper cervical structures has been reported in several
studies. Injection of saline in the neck and suboccipital region
(36), sterile water (37) and low-frequency nerve stimulation
(38) over the upper cervical dorsal roots have shown to
provoke headache. In a narrative review on the diagnosis
and treatment of cervicogenic headache, Bogduk has described
several experimental studies on humans reporting referred pain
patterns on the head caused by stimulation of nociceptive afferent
input from myofascial structures of the upper cervical spine
(39). In 23 out of 32 patients with cervicogenic headache the
pain in the head was relieved completely after a diagnostic
anesthetic block at the lateral atlanto-axial joints (C1-2) (40).
Mechanical nociceptive afferent stimuli -by giving a firm
pressure to myofascial structures of upper cervical segments
(C0-3)- also provoke the patient’s typical headache in patients
with cervicogenic headache (41), TTH, and migraine (42, 43).
Extensive research is available on trigger points in cervical
and suboccipital muscles eliciting headache (44). In summary,
convergence of cervical and trigeminal nociceptive afferents
on second order neurons at the TCC can cause headache as
referred pain via stimulation of cervical nociceptive input of the

upper cervical segments by administration of fluid-irritants or
mechanical pressure.

GENERALIZED HYPEREXCITABILITY

Hyperexcitability of second order neurons in the TCC as a
result of a continuous increased peripheral somatic and vascular
nociceptive activity (45–48), a decrease of supraspinal inhibition
(49) or a combination of both mechanisms can cause headache
(50, 51). Activation of the trigeminovascular pathways increased
by vascular nociceptive Aδ- and C fibers input of the dura
and intracranial vessels on the TCC seems to be typical for
migraine (47). Still, at present there is an ongoing debate what
is causing the hyperexcitability of second order neurons in the
TCC during migraine. Levy et al noticed that sensory innervation
of the cranial meninges and immune and vascular cells may
have a major role, but evidence for neurogenic inflammation
during migraine and its contribution to meningeal nociception
is limited (52). Prolonged or ongoing peripheral nociceptive
input via trigger points in pericranial or cervical myofascial
structures may contribute to hyperexcitability of second-order
neurons at the C1 and C2 dorsal horn of the TCC in TTH,
but evidence for this hypothesis is limited (53). Hyperexcitability
of nociceptive second order neurons in the dorsal horn of C1-
2 can also be caused by a decrease of endogeneous driven
supraspinal descending inhibition of the periaqueductal gray
(PAG), nucleus raphe magnus, or rostroventral medulla. This
can lead to clinical signs such as hypersensitivity, allodynia and
reduced pain thresholds in the cranio-cervical region and even
in extra- cephalic regions. In patients with chronic TTH, but not
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with episodic TTH, most studies report lower pressure, thermal
and electrical pain thresholds in the cephalic region (54). In
patients with migraine pain threshold to pressure, cold and heat
stimuli in the cephalic region are found to be lower during
the ictal phase than during the interictal phase of migraine or
healthy controls (55). For pain pressure thresholds in the cranio-
cervical region a significant decrease is described in research on
patients with migraine and CTTH compared to healthy controls
(56). The interaction between supraspinal descending inhibitory
systems and peripheral nociceptive input in the TCC seems to be
a prerequisite for the characteristics as well as in the development
of episodic to chronic headache syndromes (57). Thus, trigger
points or tender, painful myofascial structures at the upper
cervical segments in headache patients can either emerge or be
a source of hyperexcitability of second-order neurons C1-C2.

CERVICAL MUSCULOSKELETAL
DYSFUNCTIONS IN HEADACHE

Cervical musculoskeletal dysfunctions of joints and muscles have
been observed in patients with migraine, TTH and cervicogenic
headache (58–62). In the context of the neurophysiological
interconnection between the dorsal root of C2 (greater occipital
nerve) and the TCC, it may be not surprising that in participants
with headache most cervical musculoskeletal dysfunctions are
present in the upper cervical spine. Palpation of trigger points
in suboccipital muscles and trapezius (63–66), restricted motion
of the cervical segments C0-3 (43, 67), and stress on joints in
the upper cervical spine (41, 42) are related to different types of
headache. Although there seems to be a relation between (upper)
cervical musculoskeletal dysfunctions and headache, these are
documented in studies with a case–control design. Thus, no
causal relation can be determined, nor solid conclusions can be
drawn on this relation.

MODULATION OF NOCICEPTION AT THE
TCC: EVIDENCE FROM ANIMAL STUDIES

Evidence is emerging that addressing the cervical spine can
modulate pain at the TCC. Nöbel et al. reported that injection of a
nociceptive stimulant (α,β-meATP) into the temporal muscle in
rats induces ongoing activity of spinal trigeminal neurons with
meningeal receptive fields. In the same study local anesthesia
of single neck muscles, but not of the musculus temporalis,
shows a significant decrease of the provoked central trigeminal
activity (68). This supports the modulation of pain in the TCC
by reduction of peripheral cervical muscular nociceptive afferent
input. Supraspinal diffuse noxious inhibitory control (DNIC) on
convergent neurons in the trigeminal nucleus caudalis in rats
can be initiated by activation of Aδ- and C fibers. Villaneuva
et al. and Bouhassira et al. demonstrated that induced activity
of convergent neurons in the trigeminal nucleus caudalis was
decreased up to 80% by activation of Aδ- and C fibers (69, 70).
Afferent Aδ- and C input originating from the neck is not
restricted to the TCC. Local administration of nerve growth
factor into semispinal neck muscles in anesthetized mice shows

not only stronger Fos immunoreactivity in the superficial layers
I and II of the of cervical spinal dorsal horns C1, C2, and
C3, but also in supraspinal structures such as the PAG and
the medullary lateral reticular nucleus (71–76). Nearly 50% of
all ventro-lateral PAG-projecting spinal neurons were found in
the upper cervical segments and these segments are thereby
potentially an important source to activate the ventrolateral PAG
(71, 77). Activation of the ventrolateral PAG by deep somatic
(deep neck muscles) and visceral pain not only leads to a resting
state, but also to inhibition of trigeminal afferents (76, 78). The
participation of this phenomenon in inhibition of trigeminal
afferents is proposed (79, 80).

MODULATION OF NOCICEPTION AT THE
TCC: EVIDENCE FROM HUMAN STUDIES

In a clinical study, Busch et al established modulation of
nociception at the TCC by detecting a decrease of R2 response
areas (AUC) and significantly increased R2 latencies of the
nociceptive blink reflex only at the side of an anesthetic unilateral
nerve blockade of the greater occipital nerve with prilocaine
in healthy persons. These findings not only confirmed previous
results related to anatomical and functional convergence of
trigeminal and cervical afferent pathways, but also suggested that
modulation hereof could be beneficial in treatment of primary
headache disorders (81). In patients with headache, blocking
afferent nociceptive input by anesthesia of the GON (82, 83)
or in the facet joint C1-2 (40, 84) has proven to be effective
in reducing headache. Piovesan et al. described the decrease
of headache in a patient with migraine after light massage
of the greater occipital nerve (85). Another clinical study by
Watson and Drummond (42) reported the provocation as well
as the resolution of headache in migraine patients with sustained
manual pressure in the suboccipital region. The referred pain
during the provocation test was decreased in parallel with a
change in the trigeminal nociceptive blink reflex. This finding
supposes the previously proposed model that stimulation of
myofascial Aδ- and C fibers by manual pressure can activate
the supraspinal DNIC system that acts specifically on spinal
wide-dynamic-range (WDR) neurons and is able to modulate
nociception at the TCC (69, 86).

PHYSICAL TREATMENT OF HEADACHE
AND NECK PAIN

The neuro-anatomical and—physiological relation between
brainstem nuclei, the (upper) neck and trigeminal nerve has
to be incorporated in development of physical treatment for
headache targeted at the cervical spine, especially the upper
cervical region. According to the ‘gate-control’ hypothesis, the
relative high amount of proprioceptive afferent muscular input
of upper cervical segments (87) to the central nervous system
may alter nociceptive Aδ- and C fibers afferent input. Stimulation
of proprioceptive input by active exercises for neck muscles may
decrease the excitability of second order neurons at the TCC (11)
and activation of the supraspinal DNIC system by stimulation
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of myofascial Aδ- and C fibers by manual pressure techniques
at the upper cervical spine can be of added value (42). The
importance of an active treatment of neck muscles is supported
by the findings of a systematic review of Varatharajan et al. stating
that an active physical treatment including exercises shows
promising results on reduction of headache associated with
neck pain (7).

DISCUSSION

In the last decades experimental research in both animals
and humans on neuro-anatomy and neuro-physiology has
contributed to understand the co-occurrence of headache and
neck pain. Based on this information we further present a neuro-
physiological background for physical treatment of headache
and neck pain. Studies have gain new insights on the neuro-
anatomical and neuro-physiological relation between headache
and neck pain, but also raise questions if and how this relation
can be influenced by physical treatment. Headache (migraine,
tension-type headache, cervicogenic headache), neck pain, and
cervical musculoskeletal dysfunctions seem to be related in
case-control studies, although the strength, significance and
explanation of this relation varies per type of headache.

Clinicians have to consider, by sound clinical reasoning,
whether cervical musculoskeletal dysfunctions are related to the
patient’s headache and which neurophysiological mechanisms
could be involved. Therefore, we support the recommendation
to classify headache according to the ICHD III criteria and to
determine cervical musculoskeletal dysfunctions in patients with
migraine, tension-type headache and cervicogenic headache
(88). Additionally, tests on pain sensitivity can be included to

understand the underlying pathophysiological mechanism. In
their clinical judgement, clinicians have to consider all collected
patient data: headache symptoms and neck pain, related cervical
musculoskeletal dysfunction, tests on pain sensitivity in the
cervico-cephalic and extra-cervico-cephalic regions (pressure
pain thresholds) and reproduction of headache by pressure
or stretch on musculoskeletal structures (43). To understand
underlying neurophysiological mechanisms (local nociceptive
provocation, referred pain, generalized hyperexcitability)
remains challenging, but is necessary to identify patients who
may benefit of treatment of the neck (89). The presented
neurophysiological knowledge in this paper can be helpful to
guide clinicians in this clinical reasoning process.

It is a great challenge for clinicians and researchers to
develop effective treatment strategies for headache targeted on
modulation of cervical afferent input in order to decrease the
excitability of first- to second order neurons at the level of the
TCC. Experimental studies of the neurophysiological effect of
physical treatment and randomized clinical trial on this topic are
scarce and urgently warranted. Meanwhile, there is no standard
recipe for physical treatment on the neck for different types of
headache. But clinicians may be encouraged by recent evidence
and new insights on headache and neck pain and may use
this knowledge in clinical reasoning to provide a tailored and
evidence based neuro-physiological approach for patients with
headache and neck pain.
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