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Abstract – Genomic resources for Platyhelminthes of the class Monogenea are scarce, despite the diversity of these
parasites, some species of which are highly pathogenic to their fish hosts. This work aimed to generate de novo-as-
sembled transcriptomes of two monogenean species, Scutogyrus longicornis (Dactylogyridae) and Rhabdosynochus
viridisi (Diplectanidae), providing a protocol for cDNA library preparation with low input samples used in single cell
transcriptomics. This allowed us to work with sub-microgram amounts of total RNA with success. These transcrip-
tomes consist of 25,696 and 47,187 putative proteins, respectively, which were further annotated according to the
Swiss-Prot, Pfam, GO, KEGG, and COG databases. The completeness values of these transcriptomes evaluated with
BUSCO against Metazoa databases were 54.1% and 73%, respectively, which is in the range of other monogenean
species. Among the annotations, a large number of terms related to G-protein-coupled receptors (GPCRs) were found.
We identified 109 GPCR-like sequences in R. viridisi, and 102 in S. longicornis, including family members specific for
Platyhelminthes. Rhodopsin was the largest family according to GRAFS classification. Two putative melatonin recep-
tors found in S. longicornis represent the first record of this group of proteins in parasitic Platyhelminthes. Forty
GPCRs of R. viridisi and 32 of S. longicornis that were absent in Vertebrata might be potential drug targets. The pre-
sent study provides the first publicly available transcriptomes for monogeneans of the subclass Monopisthocotylea,
which can serve as useful genomic datasets for functional genomic research of this important group of parasites.
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Résumé – Assemblage de novo du transcriptome et identification des récepteurs couplés aux protéines
G (RCPG) chez deux espèces de Monogènes parasites de poissons. Les ressources génomiques pour les
Plathelminthes de la classe Monogenea sont rares, malgré la diversité de ces parasites dont certaines espèces sont
hautement pathogènes pour leurs hôtes poissons. Ce travail visait à générer des transcriptomes assemblés de novo pour
deux espèces de monogènes, Scutogyrus longicornis (Dactylogyridae) et Rhabdosynochus viridisi (Diplectanidae),
fournissant un protocole pour la préparation de la bibliothèque d’ADNc avec des échantillons à faible apport utilisés
en transcriptomique unicellulaire, ce qui a permis de travailler avec des quantités inférieures au microgramme d’ARN
total avec succès. Ces transcriptomes se composent de 25 696 et 47 187 protéines putatives, respectivement, qui ont
ensuite été annotées selon les bases de données Swiss-Prot, Pfam, GO, KEGG et COG. L’exhaustivité de ces
transcriptomes évaluée avec BUSCO par rapport aux bases de données des Métazoaires était respectivement de 54,1 %
et 73 %, ce qui est dans la gamme des autres espèces de monogènes. Parmi les annotations, un grand nombre de
termes liés aux récepteurs couplés aux protéines G (RCPG) ont été trouvés. Nous avons identifié 109 séquences
de type RCPG chez R. viridisi et 102 chez S. longicornis, y compris des membres de la famille spécifiques de
Platyhelminthes. La rhodopsine était la plus grande famille selon la classification GRAFS. Deux récepteurs putatifs de
la mélatonine trouvés chez S. longicornis représentent le premier signalement de ce groupe de protéines chez les
Plathelminthes parasites. Quarante RCPG de R. viridisi et 32 de S. longicornis, qui sont absents chez les Vertébrés,
pourraient être des cibles médicamenteuses potentielles. La présente sont fournit les premiers transcriptomes
accessibles au public pour les monogènes de la sous-classe Monopisthocotylea, qui peuvent servir d’ensembles de
données génomiques utiles pour la recherche génomique fonctionnelle de cet important groupe de parasites.
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Introduction

Monogenea is one of three classes of parasitic Platy-
helminthes. The other two are Trematoda and Cestoda. All
these are united under the monophyletic Neodermata, whereas
the free-living platyhelminths, commonly termed planarians
or turbellarians, are distributed in several other subtaxa [1].
There are two subclasses of monogeneans, Monopisthocotylea
and Polyopisthocotylea, whose members are commonly
ectoparasites of freshwater and marine fishes, but there are also
members infecting internal organs of aquatic or semi-aquatic
tetrapods. Between 3000 and 4000 species of monogeneans
have been described [23], some of which have acquired
economic relevance owing to their negative impact on finfish
aquaculture [88]. Therefore, there is growing interest in increas-
ing our understanding of the molecular mechanisms involved in
host-parasite interactions.

A modern understanding of biology has come to rely on
comparative approaches using genomic resources. In the case
of trematodes and cestodes, genomes and transcriptomes have
provided new and valuable insights into anthelmintic resistance
and host–parasite interactions [79]. Unfortunately, the same
level of progress has not beenmade with monogeneans. To date,
the genomes of only three monogenean species (Gyrodactylus
bullatarudis, G. salaris, and Protopolystoma xenopodis) have
been published [21, 41, 61]. Transcriptomic data are scarcer still:
the recently reported transcriptome of Eudiplozoon nipponicum,
belonging to Polyopisthocotylea [104], is the sole example. This
could be partly due to technical challenges, such as the small
size of the organism (in the range of hundreds of micrometers)
and the difficulty to obtain sufficient numbers of live individuals
to purify the required amount of DNA or RNA. For instance, to
assemble the genomes of Gyrodactylus, which has body lengths
of 0.5–1 mm, Hahn et al. [41] used approximately 15,000 indi-
viduals and Konczal et al. [61] used 2000–3000 individuals. For
the transcriptome of E. nipponicum, which has a much larger
body than Gyrodactylus, Vorel et al. [104] required only 10
individuals.

The genes encoding G-protein-coupled receptors (GPCRs)
are the largest family of genes in animal genomes. In fact, geno-
mic studies on G. bullatarudis revealed that among duplicated
genes, the most abundant group of Gene Ontology (GO) terms
relate to GPCR signaling pathways [61]. GPCRs are evolution-
arily conserved seven-transmembrane (TM) proteins with
immense structural and functional diversity. Upon activation
by various extracellular signals, they mediate many biological
processes, including reproduction, locomotion and behavior
[59, 69]. Some GPCRs are specific to platyhelminths and,
therefore, their synthetic ligands have the potential to be para-
site-selective anthelmintics [81]. Research in this area is of
considerable significance because GPCRs are attractive and
well-established drug targets. Of note, there are 475 drugs
(~34% of all drugs approved by the FDA) that act on 108 unique
GPCR targets [42].

In order to contribute to the genomics of monogeneans,
the present work provides the de novo transcriptome analyses
of two monogenean species, Scutogyrus longicornis (Dactylo-
gyridae family) and Rhabdosynochus viridisi (Diplectanidae
family), the first publicly available transcriptomes from

Monopisthocotylea. Furthermore, the present work provides
the first description of GPCRs in monogeneans. Dactylogyridae
is the most diverse group of monogeneans in freshwater fishes.
The dactylogyrid S. longicornis has mainly been observed in the
freshwater Nile tilapia Oreochromis niloticus and other fish
hosts such as O. mortimeri, O. aureus, and Sarotherodon
galilaeus from different regions of the world [112]. Although
this species has not been reported as pathogenic, S. longicornis
and other dactylogyrids (Cichlidogyrus spp.) are frequently
found in farmed tilapia [2, 52]. Members of the Diplectanidae
family are commonly found to infect marine fishes, and some
species are considered serious pathogens of farmed fish
[3, 25]. In particular, R. viridisi is considered a threat to the pro-
duction of the Pacific white snook, Centropomus viridis
[17, 84]. The present study provides a comparative genomics
framework for Diplectanidae monogeneans that should facilitate
further studies aimed at testing evolutionary hypotheses in this
underrepresented phylum.

Materials and methods

Parasite material

Adult individuals of S. longicornis were collected from the
gills of tilapia (Oreochromis niloticus) cultured on a fish farm in
the state of Sinaloa, northwestern Mexico. Adult individuals of
R. viridisi were collected from the gills of snooks (C. viridis)
reared in the marine fish hatchery at the Centro de Investigación
en Alimentación y Desarrollo, Mazatlán, Sinaloa. The methods
used for parasite sampling and species identification have
already been described in detail by Caña-Bozada et al. [17, 18].

RNA amplification and sequencing

RNA was extracted from 10 and 40 individuals of
S. longicornis and R. viridisi, respectively. The methods used
for RNA extraction, amplification, and sequencing are
described in detail by Caña-Bozada et al. [17, 18]. The BioSam-
ples accession numbers for R. viridisi and S. longicornis are
SAMN17210467 and SAMN14607874, respectively. Briefly,
for each species, individuals were rinsed in pure water, pooled,
homogenized in 500 lL of 1� RNAshield (Zymo Research,
Irvine, CA, USA), and vortexed with 100 mg of 200 lm glass
with beads. RNA was extracted from pooled homogenates
using a Quick-DNA/RNA Miniprep Kit (Zymo Research,
Irvine, CA, USA), according to the manufacturer’s instructions.
The obtained RNA fractions were below the limit of quantifica-
tion (<1 ng/lL) when measured in a Qubit fluorometer using
the HS dsDNA kit (Life Technologies, Carlsbad, CA, USA).
Therefore, to obtain double-stranded full-length cDNA, 3 lL
of purified total RNA was used for reamplification using a
SMART-Seq v4 Ultra Low Input RNA Kit for sequencing
(Takara Bio USA, Inc., San Jose, CA, USA), according to
the manufacturer’s protocol. In addition, the cDNA was
enriched over 12 cycles of PCR and then ultrasonically sheared
into 300–500 bp fragments using a Covaris S220 ultrasonicator
(Covaris, Woburn, MA, USA). The genomic libraries with
multiplex adapters were prepared using a TruSeq Nano DNA
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Sample Preparation Kit (Illumina, San Diego, CA, USA), and
run on a NextSeq500 Illumina platform (2 � 75 paired-end
chemistry).

De novo assembly and removal of nontarget
sequences

The raw reads were processed in Trimmomatic v. 0.35 [10]
to remove both low-quality reads and adapters (AVGQUAL:
20, MINLEN: 40). The cDNA paired reads were assembled
using Trinity v. 2.8.6 [37] with default parameters (–kmer_size:
25), including the normalization step. The average coverage of
the assembly was obtained with Bowtie2 v. 2.3.4 [66] and
SamTools v. 1.7 [70].

Each assembly was aligned using BLASTx [15] against a
database of protein sequences from bacteria, virus and fungi
(downloaded from UniProt/Swiss-Prot; [4]), and reference
proteins from the monogeneans Gyrodactylus salaris and
E. nipponicum, the cestode Hymenolepis microstoma, the
trematode Schistosoma mansoni, and the turbellarian Schmidtea
mediterranea [46, 104] (https://github.com/jirivorel/Eudiplo-
zoon-nipponicum-transcriptome-secretome). The contigs that
were the best hits (e-values < 1e�5) with bacteria, virus or fungi
were considered contaminant sequences and were discarded
from the assemblies. Finally, to eliminate host contaminant
sequences, each assembly was aligned using BLASTx against
a database that included predicted proteins of the fish hosts
C. viridis (NCBI SRA: SRP165941) and O. niloticus (NCBI
Assembly: GCA_001858045.2), as well as the proteins of the
aforementioned Platyhelminthes. The contigs that were best hits
(e-values < 1e�20) with fish sequences were discarded from the
assemblies. The filtered transcriptomes were used to predict
ORFs and putative proteins.

ORF prediction

The predicted ORFs were extracted from the assembled
transcriptomes using TransDecoder 5.5.0 (http://transdecoder.
github.io) [40], in combination with Swiss-Prot and Pfam
searches (options: –retain_pfam_hits, –retain_blastp_hits) to
predict and retain putative proteins longer than 100 amino
acids. TransDecoder-predicted putative proteins with 100%
identity were clustered using the CD-HIT 4.6 software [34] to
reduce redundant sequences.

The putative proteins were filtered to eliminate possible con-
tamination of bacteria, virus, fungi, and fish sequences. To this
end, the predicted ORFs were compared against the EggNOG
database [49] using the TRAPID tool [102]. EggNOG is a data-
base containing information about orthologous relationships of
prokaryotic, eukaryotic, and viral genomes. Hits with e-values
< 1e�5 were considered significant. Some ORFs showed signif-
icant similarity with bacteria and fish sequences. In the case of
R. viridisi, the bacterial ORFs belonged to Vibrio spp. There-
fore, decontamination was performed: using BLASTp (e-values
< 1e�5), the putative proteins of R. viridisi were aligned against
proteins of Vibrio sinaloensis, V. harveyi, V. brasiliensis,
V. tubiashii (NCBI Assembly IDs GCA_000189275.2,
GCA_001558435.2, GCA_000189255.1, GCA_000772105.1,

respectively), C. viridis, and the platyhelminths mentioned in
the previous section. The putative proteins of S. longicornis
were aligned using BLASTp (e-values < 1e�5) against protein
sequences of O. niloticus and platyhelminths, and proteins of
bacteria downloaded from the UniProt/Swiss-Prot database.
Protein sequences for which the best hits were contaminant
sequences were discarded.

In addition, stricter filtering was performed by aligning the
translated proteins against the UniRef90 database using
Diamond [12] with default parameters. The sequences that were
best hits with Protostomia (taxid: 33317) were retrieved, and
the remaining sequences were considered contaminants.

Functional annotation

SignalP 4.1 [92] and TMHMM 2.0 [63] were used to
predict signal peptides and TM domains in the putative pro-
teins. Annotation of signal peptides, TM domains, and Swiss-
Prot and Pfam data were loaded into Trinotate 3.1.1 (http://
trinotate.github.io) [11]. Kyoto Encyclopedia of Genes and
Genomes (KEGG) [54], Clusters of Orthologous Groups
(COG) [101], and GO [35] IDs were retrieved. To avoid redun-
dancy, in the Results section we show only the annotation of
the longest protein for each gene, which was extracted using
the script “get_longest_isoform_seq_per_trinity_gene.pl” in
Trinity. Thus, each protein was considered a collection of
expressed sequences of a putative gene [83]. In addition, the
number of phenotypes (across worm model organisms) and
UniProt keywords were determined with dcGO Predictor [31]
using the Swiss-Prot IDs.

Transcriptome quality assessment

Analysis of the completeness of assembly was performed
using Benchmarking Universal Single-Copy Orthologs
(BUSCO) v. 3.0.2 [106], using the core metazoan dataset, which
contains 978 genes. The completeness of assembly was also ver-
ified with the TRAPID tool (conservation threshold = 0.9) using
the core gene families of metazoans from the EggNOG database.
Finally, we checked again for contamination using the EggNOG
database and the TRAPID tool, as described above. As no refer-
ence genomes of R. viridisi and S. longicornis were available,
BUSCO analyses were also performed on publicly available
genomes or transcriptomes from other monogenean species
(G. salaris, E. nipponicum, and P. xenopodis), and from other
widely studied species of platyhelminths (S. mansoni,
H. microstoma, Macrostomum lignano, and S. mediterranea).
The obtained completeness values were used as references to
evaluate the completeness of assembly for R. viridisi and
S. longicornis.

G-protein-coupled receptors

GPCR identification

To identify GPCRs, proteins were scanned against con-
served domains of the different GPCR families obtained from
the Pfam database (PF00001, PF00002, PF00003, PF01534,

V. Caña-Bozada et al.: Parasite 2022, 29, 51 3

https://github.com/jirivorel/Eudiplozoon-nipponicum-transcriptome-secretome
https://github.com/jirivorel/Eudiplozoon-nipponicum-transcriptome-secretome
http://transdecoder.github.io
http://transdecoder.github.io
http://trinotate.github.io
http://trinotate.github.io


PF10320, PF10324, and PF10328), using HMMER 3.1b1 [32]
with e-values < 1e�5. Then, TMHMM was used to detect TM
domains; proteins with 3–15 TM domains were retained.
Subsequently, the TM proteins were aligned using BLASTp
(e-values < 1e�4) against annotated proteins from databases
specific to platyhelminth species. To avoid overrepresentation
of genes by their number of isoforms, the longest isoform
for each gene was extracted using the Trinity helper script
“get_longest_isoform_seq_per_trinity_gene.pl”. For compara-
tive purposes, these analyses were also performed for the mono-
geneans G. bullatarudis, G. salaris, E. nipponicum, and
P. xenopodis; the cestodes T. asiatica and E. multilocularis;
the trematodes Schistosoma japonicum, S. mansoni, and
F. hepatica; and the turbellarians S. mediterranea and Bothrio-
plana semperi. The reference proteins were obtained from the
WormBase ParaSite database, except for E. nipponicum and
B. semperi. The proteins of E. nipponicum were downloaded
from https://github.com/jirivorel/Eudiplozoon-nipponicum-
transcriptome-secretome [104]. The proteins of B. semperi were
obtained using TransDecoder, with the options “–retain_
pfam_hits” and “–retain_blastp_hits” from the assembly pro-
vided by Laumer et al. [67]. In addition, to remove possible
remaining contaminant sequences and non-GPCR sequences,
the GPCRs of R. viridisi and S. longicornis were aligned
against the NCBI nonredundant protein database, including
and excluding the phylum Platyhelminthes. For an initial anno-
tation, the sequences of each predicted GPCR of R. viridisi and
S. longicornis were aligned against reference sequences of
GPCRs of Caenorhabditis elegans, Bombyx mori, Homo
sapiens, Lottia gigantea, Drosophila melanogaster, Daphnia
pulex, Dictyostelium discoideum, Platynereis dumerilii,
Anopheles gambiae, Lymnaea stagnalis, S. mediterranea, and
S. mansoni, using BLASTp. We classified GPCRs according
to the GRAFS (glutamate, rhodopsin, adhesion, frizzled, secre-
tin) system of classification [33], which groups receptors with
shared evolutionary ancestry present in the Bilateria [111].
The rhodopsin family was further classified into the a subfam-
ily, which contains amine, opsin-like, and melatonin receptors;
and the b subfamily, which contains peptide and peptide
hormone receptors.

To identify lineage-specific GPCRs, the predicted GPCRs
of R. viridisi and S. longicornis were aligned against the NCBI
nonredundant protein databases and limited by the option
“Organism”, which included the sister classes Cestoda (taxid:
6199) and Trematoda (taxid: 6178), the basal class Rhabdi-
tophora (taxid: 147100), and the taxa Lophotrochozoa (taxid:
1206795; exclude: Platyhelminthes), Spiralia (taxid: 2697495;
exclude: Lophotrochozoa), Protostomia (taxid: 33317; exclude:
Spiralia), Bilateria (taxid: 33213; exclude: Protostomia), and
Vertebrata (taxid: 7742). Predicted GPCRs with e-values
> 1e�5 were considered to be specific for Monogenea, and were
represented by heatmaps using the ggtree library in R (version
4.0.4). According to Kerfeld and Scott [60]
“sequences with a recent shared ancestry will have a high
degree of similarity; their alignments will have many
identical residues, few substitutions and gaps, and tiny
e-values. Conversely, sequences with an ancient common
ancestor will be deeply divergent, with few shared
sequence identities, many gaps, and larger e-values.”

Thus, considering that hit sequences can be interpreted as
sequences sharing evolutionary history, the log10-transformed
e-values were correlated between different taxa using a
Spearman analysis (Supplementary File S1). Correlation val-
ues close to 1 might indicate that monogenean GPCRs have
similar evolutionary changes between the two respective taxa.

Phylogenetic analyses

To refine the GPCR annotation process for R. viridisi and
S. longicornis, phylogenetic trees were constructed for each
GPCR family with sequences used in the initial annotation. To
this end, the proteins were aligned using MAFFT 7.31 [55] with
the parameter “-genafpair” (E-INS-i), which is particularly useful
for aligning proteins with conserved regions. The proteins
belonging to the rhodopsin family, given their high number,
were additionally trimmed with Trimal [19], using the parameter
“-gappyout”, and their alignments refined in MUSCLE 3.8.31
[29]. The phylogenetic analysis was conducted with IQ-TREE
[86], which performs a first step for the selection of the evolu-
tionary model using the ModelFinder program [53] and subse-
quently the construction of the phylogenetic tree. The trees
were constructed using 1000 replicates of the approximate like-
lihood ratio test, which is similar to the Shimodaira–Hasegawa
test. Trees were visualized and annotated with FigTree 1.4.2
(available from http://tree.bio.ed.ac.uk/software/figtree/) and
the ggtree library [110] using R. Proteins yielding contradictory
results in different analyses were designated unclassified.
Rhodopsin-family proteins that formed non-concordant groups
were designated orphans. Information about the sequences used
for the phylogenetic analysis of each GPCR family is presented
in theMendeley Data repository (DOI: https://doi.org/10.17632/
2wvnwn4d7p.1), under the folder “phylogeny_secuences”.

Results

Raw sequencing reads of R. viridisi and S. longicornis were
deposited in the NCBI Sequence Read Archive (SRA) database
under accession numbers SRR16891876 and SRR16889716,
respectively (BioProjects PRJNA689569 and PRJNA625740).
The de novo transcriptome assemblies and conceptual transla-
tions of R. viridisi and S. longicornis are available in the
Mendeley Data repository (DOI:10.17632/2wvnwn4d7p.1)
under the folder “assemblies_CDS_and_ORFs”.

RNA samples and sequencing

A total of 271,701,941 and 80,972,372 raw paired-end
reads of 75 bp were generated from R. viridisi and S. longicor-
nis RNA samples, respectively. After removing low-quality
reads (Q scores < 30) and adapters, 263,800,117 and
76,472,690 high-quality reads were obtained for the assemblies
of R. viridisi and S. longicornis, respectively.

De novo transcriptome assembly

For R. viridisi, a total of 392,252 contigs were assembled
with an average coverage of 37.33� (SD = 172.693 bp),
N50 of 3567 bp, and GC content of 45.72% (Table 1).
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The average contig length was 1235.85 bp. After the various
decontamination procedures had been applied, 335,689 contigs
with average length of 982 bp were retained in the assembly
(N50 of 2132 bp, GC content 44.92%). This assembly con-
tained 329,849,780 bp and 277,651 genes.

For S. longicornis, a total of 82,366 contigs were assembled
with an average coverage of 43.43� (SD = 197.105 bp), N50
of 2906 bp, and GC content of 42.56% (Table 1). The average
contig length was 1359.37 bp. After decontamination, 65,835
contigs with an average length of 1003.56 bp were retained
in the assembly (N50 of 2114 bp, GC content 42.46%). This
assembly contained 66,069,113 bp and 45,194 genes.

ORF prediction

We generated 64,637 ORFs for R. viridisi and 29,315 for
S. longicornis (Table 1). The alignment of putative proteins
of R. viridisi against Vibrio spp. and C. viridis sequences
filtered out 9513 proteins (Table 2). The alignment of putative
proteins of S. longicornis against bacteria and tilapia sequences
filtered out 1165 proteins (Table 2). Finally, after alignment
against sequences from Protostomia, 47,187 R. viridisi proteins
encoded by 23,857 genes, and 25,696 S. longicornis proteins
encoded by 12,020 genes, were retained. Information on the
hits obtained from TRAPID is shown in Table 3.

The average length of ORFs was 600 bp in R. viridisi and
813 bp in S. longicornis, in which 6128 (12.9%) and 6405
ORFs (24.9%) were longer than 1000 bp, respectively (Table 1).
The distributions of ORF length are shown in Figures 1A–1B.

Transcriptome quality assessment

BUSCO analysis of the putative proteins revealed 54.1%
(46.6% completed, 7.5% fragmented) and 73% (63% com-
pleted, 10% fragmented) core metazoan genes for the de novo
transcriptomes of R. viridisi and S. longicornis, respectively.
The BUSCO completeness for the reference monogeneans
was 57.3% for P. xenopodis, 78.1% for G. salaris, and
85.8% for E. nipponicum, whereas completeness for the other
Platyhelminthes ranged between 81% and 92% (Fig. 1C).
The TRAPID tool applied to the EggNOG database uncovered
54.9% and 73.6% core gene families in R. viridisi and
S. longicornis, respectively.

Functional annotation

Although all the putative proteins were annotated, we pre-
sent results for the longest, nonredundant proteins to avoid
overrepresentation of sequences. Complete results are shown
in Supplementary Tables S1–S3. After removing redundant
sequences (isoforms), the representative proteins were reduced
in number from 47,187 to 23,857 in R. viridisi, and from
25,696 to 12,020 in S. longicornis. For R. viridisi, 3214,
2761, 2798, 2114, and 1205 protein sequences were aligned
to the Swiss-Prot, Pfam, GO, KEGG, and COG databases,
respectively. In addition, 6824 proteins were predicted to
contain a TM domain, and 2823 a signal peptide. For
S. longicornis, 5849, 5422, 5647, 4132, and 2074 proteins were
aligned to the Swiss-Prot, Pfam, GO, KEGG, and COGT
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databases, respectively. In addition, 2579 proteins were pre-
dicted to contain a TM region, and 1098 a signal peptide. A
general overview of the functional and ontological representa-
tion is presented in Supplementary File S1 and Supplementary
Figs. S1–S4.

G-protein-coupled receptors

GO terms relating to GPCRs were among the most abun-
dant in both Biological Process and Molecular Function terms
(Supplementary Figs. S1, S2). We identified 109 GPCR-like
sequences in R. viridisi and 102 in S. longicornis, of which at
least 40% contained seven-TM domains. An analysis of all
sequences with at least three domains revealed that the putative
GPCRs comprised one glutamate, 99 rhodopsin, two adhesion,
six frizzled, and one secretin in R. viridisi; and three glutamate,
94 rhodopsin, one adhesion, three frizzled, and one secretin in
S. longicornis. Fifteen and nine putative GPCRs presented sig-
nal peptides in R. viridisi and S. longicornis, respectively;
mainly, these were proteins with seven-TM domains. Informa-
tion about GPCR identification in R. viridisi and S. longicornis
is presented in Supplementary Figs. S1, S2. In addition, for
comparative purposes, we predicted the GPCRs of other species
of monogeneans, trematodes, cestodes, and turbellarians.
Ninety GPCRs were identified in G. bullatarudis, 98 in
G. salaris, 85 in P. xenopodis, 23 in E. nipponicum, 105 in
F. hepatica, 117 in S. japonicum, 118 in S. mansoni, 70
in E. multilocularis, 79 in T. asiatica, 67 in B. semperi, and
384 in S. mediterranea (Table 4). Information about GPCR
identification in these platyhelminths is provided in Supplemen-
tary Table S5.

The alignments of monogenean GPCRs against those of
Trematoda, Cestoda, and Rhabditophora gave lower e-values
than with other taxa. According to the Spearman analysis, the
e-values were highly correlated between non-platyhelminth taxa
(r > 0.834, p < 0.001) but were less correlated between platy-
helminth taxa (r < 0.677, p < 0.001) (Fig. 2 and Supplementary
Table S5).

Nine and four putative proteins (peptide and orphan) of
R. viridisi and S. longicornis, respectively were found to be

specific to the Platyhelminthes (e-values � 1e�5). Of these,
six peptides and one orphan receptor were specific to parasitic
taxa. Five peptide receptors of R. viridisi and one orphan
receptor of S. longicornis were specific to Monogenea. We
also found that of the R. viridisi and S. longicornis GPCRs,
23 were specific to Lophotrochozoa, 31 to Spiralia, and 64 to
Protostomia. Thirty-seven (37) R. viridisi and 27 S. longicornis
proteins (peptide and orphan) were absent in Bilateria; 40 and
32 from the respective species were absent in Vertebrata.
Heatmaps showing monogenean-specific GPCRs are presented
in Figures 3–6 and Supplementary Figs. S7–S8.

Rhabdosynochus viridisi and S. longicornis shared 100 and
99 GPCRs, respectively with Trematoda, 96 and 92 with
Cestoda, 85 and 88 with free-living Platyhelminthes, and 98
and 97 with Lophotrochozoa. Furthermore, we found that four
proteins (peptide and adhesion) of R. viridisi and S. longicornis
were absent in parasitic platyhelminths but present in their free-
living counterparts.

Rhodopsin family

Rhodopsins formed the largest family of the GRAFS clas-
sifications in all the species (Table 4). We identified 99 and 94
rhodopsin members in R. viridisi and S. longicornis, respec-
tively. Thus, rhodopsin represented >90% of the putative
GPCR proteins. The phylogenetic analysis revealed two
subfamilies (a and b) and four subgroups (amine, opsin, peptide
and melatonin receptors) of rhodopsins (Supplementary
Figs. S5 and S6). In R. viridisi, the a subfamily com-
prised 15 amine receptors, three opsins and one melatonin;
the b subfamily contained 72 peptide receptors. In S. longicor-
nis, the a subfamily comprised 14 amine receptors, nine opsins
and two melatonins; the b subfamily contained 62 peptide
receptors. Eight receptors of R. viridisi and seven of S. longi-
cornis could not be grouped into any subfamily and were
considered orphan receptors. Nucleotide-activated receptors
(c subfamily) and olfactory receptors (d subfamily) were absent
in both species.

A separate phylogenetic analysis was performed for amine
and peptide receptors and included reference proteins from

Table 2. Information on contaminating sequences in the transcriptomes of Rhabdosynochus viridisi and Scutogyrus longicornis.

Filter Contaminant
taxa

Number of contaminant
sequences

% GC Average
sequence

Number
of bases

First filtering
(assembly)

S. longicornis contigs
(first filtering)

Bacteria 292 47.77 1362.50 397,850
Tilapia 3285 43.16 1776.21 5,834,843

Viruses and fungi 195 48.27 1319.91 258,703
R. viridisi contigs

(first filtering)
Bacteria 11,284 45.25 2085.79 23,536,059
Snooks 27,133 45.50 1364.26 37,016,466

Viruses and fungi 469 49.28 3112.80 1,459,904
Second filtering

(ORF)
S. longicornis ORF

(second filtering)
Bacteria 55 45.80 682.80 37,554
Tilapia 1110 44.66 706.24 783,927

R. viridisi ORF Vibrio spp. 2071 45.99 621.04 1,286,169
Snooks and tilapia 7442 51.93 754.36 5,613,963

Third filtering
(ORF)

S. longicornis ORF
(third filtering)

Non-Protostomia 2454 45.81 762.06 1,870,089

R. viridisi ORF
(third filtering)

Non-Protostomia 7937 50.9 714.58 5,671,620
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other organisms (Fig. 3; Supplementary Figs. S7 and S8). The
analysis of the amine receptor group showed that proteins of
both R. viridisi and S. longicornis clustered with octopamine
(OCT1/2/3 of Drosophila melanogaster), dopamine (DOP4 of
C. elegans), G-protein-coupled acetylcholine receptor (GAR1/
2 of C. elegans, SmGAR of S. mansoni), tyramine (TYR2 of
C. elegans), and serotonin (SmSER5HT-1 of S. mansoni,
SER1 and SER4 of C. elegans); and a protein of S. longicornis
clustered with dopamine (SmD2 of S. mansoni) (Fig. 3).
Analysis of the peptide receptor group identified clusters with
allatostatin B (AstB of L. gigantea and D. melanogaster),
FMRFamide (FMRFa of D. melanogaster), luqin/RYamide
(Luq/RYamide of P. dumerilii, L. stagnalis, L. gigantea, and
D. melanogaster), myosupressin/myomodulin (MS/MM of
P. dumerilii, B. mori, and D. melanogaster), neuropeptide
KY (NKY of P. dumerilii), neuropeptide Y (NPY of
P. dumerilii, H. sapiens, L. gigantea, and D. melanogaster),
and thyrotropin-releasing hormone/EFLG family (TRH-EFLG
of P. dumerilii, H. sapiens, L. gigantea, and D. pulex) in
R. viridisi and S. longicornis. Within NPY, a group of six pro-
teins clustered with NPYR-1 of S. mediterranea. Allatotropin/
orexin (AT/orexin of B. mori, H. sapiens, and L. gigantea),
neuromedin U family (NMU of H. sapiens, L. gigantea, and
D. melanogaster), SIFamide/neuropeptide FF (SIFa-NPFF of
H. sapiens, L. gigantea, and D. melanogaster), and tachykinin
(TK of H. sapiens, L. gigantea, and D. melanogaster) receptors
were found only in R. viridisi.

Adhesion and secretin families

Phylogenetic analysis of the adhesion and secretin families
showed that R. viridisi and S. longicornis have non-orthologous
receptors in humans. Nonetheless, the GPCRs were classified
into adhesion and secretin receptors, with two adhesion recep-
tors in R. viridisi and one in S. longicornis, and one secretin in
each species (Fig. 4).

Glutamate family

The glutamate family included one protein of R. viridisi and
three of S. longicornis, which were clustered with metabotropic
glutamate receptors (mGluRs) and mGluR-like proteins of
H. sapiens, D. melanogaster, and A. gambiae. One protein of
S. longicornis grouped with GABA B of H. sapiens,
D. melanogaster, and D. discoideum, and another clustered
with a mGluR of S. mediterranea (SmGluR) (Fig. 5).

Frizzled family

We identified nine frizzled family receptors (six in
R. viridisi, three in S. longicornis), seven of which presented
signal peptides. The phylogenetic analysis clustered these pro-
teins with fzd2a/b of C. elegans and D. melanogaster, and
fzf5/8 of H. sapiens (Fig. 6). Other clusters were formed by
one frizzled protein from R. viridisi and S. longicornis and
fzd1/2/3/6/7 of C. elegans, H. sapiens, and D. melanogaster.
The remainder of the proteins showed discordance between
phylogenetic analysis and alignment with BLAST, and they
were therefore not classified.T
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Discussion

The present study provides the first publicly available tran-
scriptomes for monogeneans of the subclass Monopistho-
cotylea. These parasites are typically small: adult worms of
R. viridisi and S. longicornis have a body length of approxi-
mately 400 lm. Thus, one of the main challenges of the present
study was to obtain enough genomic material for sequencing.
This difficulty might explain why genomic data for monoge-
neans are scarce. Another challenge was the filtering-out of
contaminant sequences that belong mainly to bacteria and fish.
Contaminant sequences were removed using multiple filtering
steps that involved the use of tools such as TRAPID. This pro-
gram validated our decontamination strategy, because most
ORFs matched with sequences of S. mansoni. Similar results
were observed when we used TRAPID on protein-coding
sequences of G. salaris, E. nipponicum, P. xenopodis, S. man-
soni, H. microstoma, M. lignano, and S. mediterranea. It is
important to note that our filtering strategy included data from
the monogeneans G. salaris, P. xenopodis, and E. nipponicum,
which allowed us to reduce the incidence of false negatives.
Most of the putative proteins of R. viridisi and S. longicornis
have not been characterized previously, which is consistent

with the transcriptome of E. nipponicum [104]. Among the
few annotated proteins, we found abundant terms related to
GPCRs, as well as terms related to other membrane proteins,
proteases, and kinases.

The quality of our assemblies can be considered adequate,
because for non-model organisms the reported completeness is
typically between 50% and 95%, whereas for model organisms
it is higher than 95% [98]. In addition, we verified that the com-
pleteness of the transcriptomes or publicly available genomes of
other monogeneans was between 57.3% and 85.8%, which is a
similar range to that for R. viridisi and S. longicornis.

G-protein-coupled receptors

Phylogenetic analysis and inspection of each sequence
allowed us to predict and classify the GPCRs of R. viridisi
and S. longicornis with a high degree of confidence. Monoge-
nean GPCRs presented higher sequence similarity with other
parasitic Platyhelminthes, mainly trematodes, than with other
taxa. However, most receptors are present in non-platyhelminth
ancestral taxa. This is consistent with the findings of
Koziol et al. [62], who argued that most GPCRs in one taxon

Figure 1. Sequence length distributions and assessment of completeness of R. viridisi and S. longicornis ORFs. (A–B) Sequence length
distributions. (C) ORF completeness for R. viridisi, S. longicornis and other platyhelminths as determined by Benchmarking Universal Single-
Copy Orthologous (BUSCO).
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are orthologs of GPCRs from ancestral taxa. According to
McVeigh et al. [82], the majority of GPCRs are expressed
and found in the RNA-Seq datasets. For instance, with the sup-
port of RNA-Seq data, Campos et al. [16] identified 65 of the
70 identified GPCRs in the genome of Schistosoma haemato-
bium, and 56 of the 68 in the genome of S. mansoni. In the pre-
sent study, RNA-Seq was performed on adult parasites.
Therefore, the identification of GPCRs represents an approxi-
mation of the GPCRs present in the genomes of monogeneans.
In addition, the numbers of putative GPCRs in R. viridisi and S.
longicornis are comparable to those predicted for the other
monopisthocotylean monogeneans and trematodes that we ana-
lyzed (Table 4). Konczal et al. [61] also found that GPCR sig-
naling pathways were among the most represented terms in the
monogenean G. bullatarudis. In general, GPCRs act in neuro-
muscular signaling, chemosensation, and development [9, 76].
However, to the best of our admittedly limited knowledge on
GPCRs in flatworms, only 11 flatworm receptors have been
deorphanized and the functionality of even fewer has been
determined [81].

By aligning GPCRs of monogeneans with other platy-
helminth and non-platyhelminth taxa, a higher correlation
was expected between e-values of Platyhelminthes; however,
the correlation was higher between non-Platyhelminthes. This
might indicate that the GPCRs are more diverse within Platy-
helminthes. That is consistent with the work of Koziol et al.
[62], who reported that most GPCRs from parasitic flatworms
are quite diverse in comparison with those in other bilaterians.
Such divergence might pose a problem for classifying these
GPCRs [111]. Therefore, in addition to robust classification
studies, experimental validation through the identification of
ligands is recommended. However, in silico analysis can help
us further understand the evolution of these receptors.

The dominance of rhodopsin receptors found in the present
study, including members specific to monogeneans or Platy-
helminthes, is consistent with findings in species from different
phyla [33, 82, 111, 113]. McVeigh et al. [82] noted that the
rhodopsin family includes highly diverse flatworm-specific
receptors. In parasitic platyhelminths, these receptors might
have key roles, such as in determining virulence and in host
finding [71, 111]. Rhodopsin receptors are stimulated by light,
odorant molecules, and neurotransmitters, and perform func-
tions in vision and olfaction [71]. The rhodopsin family was
mostly represented by the b subfamily, predominantly peptide
receptors. Some ligands of peptide receptors are neuropeptides
– intercellular signaling molecules that act as neurotransmitters,
neuromodulators, or neurohormones [30]. Neuropeptide signal-
ing systems in flatworms are associated with locomotion, repro-
duction, feeding, and larval host finding [78, 80]. The two
putative melatonin receptors found in S. longicornis represent
the first record of this group of proteins in parasitic platy-
helminths. These receptors were orthologous to the melatonin
receptors of S. mediterranea. In free-living freshwater flat-
worms, melatonin receptors have been implicated in the control
of biological rhythms, with neoblast proliferation processes,
and posttraumatic regeneration [85, 109]. It is possible that
melatonin receptors regulate egg-laying rhythms in monoge-
neans, which leads to increased egg production in periods of
darkness [44, 75].T
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There were some members of the glutamate family in
R. viridisi and S. longicornis. This family is associated with
the modulation of glutamate responses for a variety of central
nervous system functions [8]. In vertebrates, the glutamate
GPCRs comprise subgroups with extremely divergent physio-
logical roles owing to expansion during vertebrate evolution.
However, some of these subgroups are missing in invertebrates
[8]. The mGluR and GABA receptors are two of the few
subgroups to be retained in invertebrates and in most bilateral
species [8]. The Platyhelminthes have mGluR; however,
GABA receptors have yet to be reported [82, 111]. Similar to

other platyhelminths, we found mGluR in R. viridisi and
S. longicornis. Although parasitic platyhelminths seem to have
lost receptors from their free-living ancestor, we found one
probable GABA receptor in S. longicornis. It is expected that
further studies will confirm the presence of GABA receptors
in monogeneans.

Furthermore, adhesion and secretin GPCRs were found in
R. viridisi and S. longicornis. The adhesion family has protein
domains in the extracellular region that participate in cell–cell
interactions and are present in almost every organ system with
physiological roles in development, immunity, reproduction,

Figure 2. Spearman analysis. e-values were highly correlated between non-platyhelminth taxa (r > 0.834, p < 0.001), whereas e-values
between platyhelminth taxa were less correlated (r < 0.677, p < 0.001).
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epithelial and neuronal function, and tumorigenesis [65].
Although in vertebrates this family has the second most mem-
bers, in invertebrates, especially parasitic platyhelminths, it has
few members [111]. The secretin GPCRs mediate important
hormonal functions through binding those hormones, and it
has been suggested that they originate from the adhesion
GPCRs [87], owing to the similarity of sequence and the large
number of proteins in this family. However, we found a simi-
larly low number of secretin and adhesion GPCR sequences
in Platyhelminthes, which indicates that adhesion GPCRs were
lost as this taxonomic group evolved.

Frizzled receptors in R. viridisi and S. longicornis were not
classified at the subfamily level. Pathways involving frizzled
receptors have important roles in adult tissues and developing
embryos in the regulation of cell polarity and formation of neu-
ral synapses; specifically, they interact with Wnt proteins and
other ligands [47]. In comparison with Platyhelminthes of the

classes Cestoda and Rhabditophora, in monogeneans no
smoothened receptors (SMOs) were found [82]. SMO is a
key signal transducer in the hedgehog (Hh) pathway, which
is important in development [5]. Although SMO is present in
both invertebrates and vertebrates, its domains are divergent
between lineages, which might explain the differences in
SMO signaling in different organisms [6].

GPCR drug targets

The 40 GPCRs of R. viridisi and the 32 of S. longicornis
that were absent in Vertebrata could be considered potential
drug targets. Given their role as mediators of signal transduction
involving a range of neurotransmitters, GPCRs have been
proposed as drug targets in parasitic platyhelminths [81].
We assumed that some functions of the monogenean GPCRs
are similar to those found in other helminths. The three

Figure 3. Phylogenetic analysis of Rhabdosynochus viridisi and Scutogyrus longicornis amine-subfamily GPCRs. The midpoint-rooted
phylogenetic tree was constructed using 1000 replicates of the approximate likelihood ratio test (similar to the Shimodaira–Hasegawa test).
The LG + F + G4 model was implemented. The colored boxes indicate the log10-transformed e-values obtained from the alignment of the
R. viridisi and S. longicornis sequences against sequences of different taxa using the NCBI database (Tre, Trematoda; Ces, Cestoda; Rha,
Rhabditophora; Lop, Lophotrochozoa; Spi, Spiralia; Pro, Protostomia; Bil, Bilateria; Ver, Vertebrata); the species to which the sequence
belongs (R. viridisi or S. longicornis); and the type of receptor inferred from phylogenetic similarity to reference sequences. Only nodes with
bootstrap support greater than 80 are shown.
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monogenean GPCRs clustered with NPYR-1 of S. mediter-
raneamight be involved in sexual maturation and germ cell dif-
ferentiation [96]. The monogenean GPCR that was orthologous
to the dopamine receptor SmD2 of S. mansoni might be a com-
ponent of the neuromuscular system [100]. The monogenean
GPCRs similar to SmSER5HT-1, expressed in nerve tissue,
and SmGAR of S. mansoni, and also those similar to DOP-1
of C. elegans, might be involved in motility [20, 74, 91]. The
monogenean GPCRs clustered with octamine in D. melanoga-
ster, as well as those clustered with SER-1 of C. elegans might
participate in the activation of multiple signaling pathways to
induce egg laying [20, 68, 72]. The potential of GPCRs as drug
targets has been shown in other parasites. For instance, Santos
et al. [97] showed that knockout of the GPCR-like PfSR25
increases the susceptibility of malaria parasites to antiparasitic
compounds. In the future, in the context of drug repurposing,
it would be necessary to examine the role of GPCRs in the sus-
ceptibility of monogeneans to existing drugs.

Other membrane proteins

In addition to GPCRs, we revealed the important presence
of putative proteins related to membrane trafficking and trans-
port. These proteins are necessary for exocytosis, endocytosis,
endosome–lysosome transport, endosome–Golgi transport,
endoplasmic reticulum–Golgi transport, autophagy, and so
forth. In parasitic platyhelminths, these functions are important
for host–parasite interactions as well as xenobiotic detoxifica-
tion. For instance, the excretory/secretory proteins released by
parasites facilitate feeding and modulation of host immune
responses [28, 71]. TM proteins such as the ABC transporters
play a principal role in the export of a wide spectrum of differ-
ent substrates. It has been suggested that in helminths, several
ABC transporters are involved in drug resistance and detoxifi-
cation processes to facilitate survival in the host [64].

Innexins were among the most abundant proteins in
R. viridisi and S. longicornis. Innexins are integral membrane

Figure 4. Phylogenetic analysis of Rhabdosynochus viridisi and Scutogyrus longicornis adhesion/secretin-subfamily GPCRs. The midpoint-
rooted phylogenetic tree was constructed using 1000 replicates of the approximate likelihood ratio test (similar to the Shimodaira–Hasegawa
test). The VT+R5 model was implemented. The colored boxes indicate the log10-transformed e-values obtained from the alignment of the
R. viridisi and S. longicornis sequences against sequences of different taxa using the NCBI database (Tre, Trematoda; Ces, Cestoda; Rha,
Rhabditophora; Lop, Lophotrochozoa; Spi, Spiralia; Pro, Protostomia; Bil, Bilateria; Ver, Vertebrata); the species to which the sequence
belongs (R. viridisi or S. longicornis); and the type of receptor inferred from phylogenetic similarity to reference sequences. Only nodes with
bootstrap support greater than 80 are shown.
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proteins that participate in cellular communication in inverte-
brates [24]. These proteins are bifunctional, that is, they can
form gap junctions and unpaired membrane channels (innex-
ons). Gap junctions allow the diffusion of second messengers
and other ions and small molecules between two adjacent cells,
whereas innexons allow the exchange of ions and metabolic
and signaling molecules between the cell interior and the extra-
cellular milieu [24, 39]. The number of innexins found herein is
similar with other species of platyhelminths: 24 in Taenia
solium, 25 in S. mansoni, 24 in S. japonicum, 17 in H. micros-
toma, 19 in E. multilocularis, and 20 in Echinococcus granulo-
sus [103]. This diversity of innexins reflects their involvement
in several biological processes, such as morphogenesis, neuro-
genesis, behavior, memory, and the immune response [39].
Some gap junction proteins might be lineage-specific. For
example, CX39.4 is a teleost lineage-specific gap junction pro-
tein involved in the formation of skin patterns [105]. Oviedo
et al. [90] reported the involvement of specific innexins in tissue
regeneration in planarians. Thus, the innexins found in monoge-
neans might become the focus for experiments aimed at discov-
ering lineage-specific functions.

The ion channel pathways, principally those involving volt-
age-gated channels, were highly represented in both monoge-
neans studied. Ion channels are multimeric complexes of
membrane proteins involved in the passive diffusion of ions
across biological membranes. These proteins perform key func-
tions in the nervous system [48]. Platyhelminths have relatively
well-developed neuromuscular systems, which coordinate
many activities essential for parasite survival, such as motility,

feeding, excretion, and egg laying [94, 107]. The voltage-gated
potassium (Kv) and calcium (Cav) channels are well repre-
sented in the genomes of flatworms [107]. In schistosomes,
activated Cav channels initiate muscle contraction and are asso-
ciated with synaptic transmission, enzyme activity, and gene
expression. It is possible that these proteins perform similar
functions in monogeneans.

Proteases

Cysteine cathepsins, especially cathepsins L, were anno-
tated in S. longicornis and R. viridisi. It is thought that cathep-
sins L perform functions associated with the modulation or
impairment of host immune responses, given their ability to
degrade IgG and host Toll-like receptors [14, 22]. However,
proteases in general have been scarcely studied in monogeneans
[93]. Recently, Jedličková et al. [51] reported evidence for the
involvement of a variety of cathepsins L in several processes
requiring proteolysis in E. nipponicum. Furthermore, these
authors observed that some cathepsins L of this monogenean
can cleave immunoglobulins in vitro, which might form part
of the mechanism of host immune evasion. Other parasitic
platyhelminths have also been found to possess a variety of
cathepsins L. For instance, Robinson et al. [95] suggested that
the expansion of the cathepsin L family in F. hepatica is related
to its ability to infect and adapt to new hosts. A better under-
standing of the biology of monogeneans, including their inter-
actions with hosts, will likely require rigorous molecular and
biochemical characterization of their cysteine cathepsins.

Figure 5. Phylogenetic analysis of Rhabdosynochus viridisi and Scutogyrus longicornis glutamate-subfamily GPCRs. The midpoint-rooted
phylogenetic tree was constructed using 1000 replicates of the approximate likelihood ratio test (similar to the Shimodaira–Hasegawa test).
The LG+F+R5 model was implemented. The colored boxes indicate the log10-transformed e-values obtained from the alignment of the
R. viridisi and S. longicornis sequences against sequences of different taxa using the NCBI database (Tre, Trematoda; Ces, Cestoda; Rha,
Rhabditophora; Lop, Lophotrochozoa; Spi, Spiralia; Pro, Protostomia; Bil, Bilateria; Ver, Vertebrata); the species to which the sequence
belongs (R. viridisi or S. longicornis); and the type of receptor inferred from phylogenetic similarity to reference sequences. Only nodes with
bootstrap support greater than 80 are shown.
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Kinases

We found high representation of pathways involving kinase
activity, mainly that of serine/threonine kinases. Kinases medi-
ate most of the signal transduction occurring in cells and thus
control many cellular processes such as metabolism, transcrip-
tion, cell cycle progression, cytoskeletal rearrangement and cell
movement, apoptosis, and differentiation [77]. In helminths,
kinases, such as the serine/threonine kinases, have functions
associated with growth and development [27]. Nonetheless, this
group of proteins have scarcely been studied in platyhelminths.
Evidence that polo-like kinases participate in the regulation of
the cell cycle in both mitosis and meiosis in S. mansoni [26]
indicates a role at the schistosomula stage and association of
these kinases with rapid growth and body remodeling [38].
Members of the protein kinase C (PKC) family possibly have
a central function in secretion and larval transformation, and
influence the host’s response to the parasite by directly regulat-
ing interactions with host cells [7]. Furthermore, the differential
expression of kinases throughout the development of S. mansoni
and F. hepatica suggests they perform important functions [38,
45]. Kinases are well-known drug targets in humans [89] and are
now being investigated as targets for new anthelmintics [36].

Phenotype

The proteins of R. viridisi and S. longicornis participate
mainly in the following phenotypes: negative chemotaxis vari-
ant and chemotaxis, protein phosphorylation, egg-laying, and
drug-induced gene expression variants. Being ectoparasites,

monogeneans are directly affected by environmental changes,
so these parasites must respond effectively to these changes
to survive. In the context of medicine, the drug-induced gene
expression phenotype might be interesting to study in monoge-
neans because changes in genes or in gene expression in
response to anthelmintics can lead to drug resistance and sur-
vival of the parasite [50]. The development of drug resistance
has already been observed in helminths, including monoge-
neans [13, 108]. According to WormBase, the chemotaxis vari-
ant is related to the direct movement of an animal in response to
chemical repellents with pathways that involve GPCRs and
kinase, and calcium channel activity. In monogeneans, chemo-
taxis is essential for host finding and egg hatching [56, 58]. In
C. elegans, changes in chemical signals corresponding to food
levels and population density in the environment are either
directly received by GPCRs or interact with GPCR pathways,
and can thus regulate the stage of animal development [73,
99]. The egg-laying variant is associated with variations in
the stage at which eggs are laid, egg-laying cycle, number of
eggs laid, or egg laying in response to stimuli. This phenotype
involves cytoskeletal proteins. Monogeneans are highly prolific,
and they are able to maintain egg production in a wide range of
water temperatures [43, 57]. Studying the proteins involved in
egg laying in monogeneans might be useful to better understand
infection dynamics in the context of climate change.
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Figure 6. Phylogenetic analysis of Rhabdosynochus viridisi and Scutogyrus longicornis frizzled-subfamily GPCRs. The midpoint-rooted
phylogenetic tree was constructed using 1000 replicates of the approximate likelihood ratio test (similar to the Shimodaira–Hasegawa test).
The WAG + F + R5 model was implemented. The colored boxes indicate the log10-transformed e-values obtained from the alignment of the R.
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Rhabditophora; Lop, Lophotrochozoa; Spi, Spiralia; Pro, Protostomia; Bil, Bilateria; Ver, Vertebrata); the species to which the sequence
belongs (R. viridisi or S. longicornis); and the type of receptor inferred from phylogenetic similarity to reference sequences. Only nodes with
bootstrap support greater than 80 are shown.
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