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Abstract: The prevalence of cephalosporine-resistant (3GC-R) strains among United States community-
related research samples ranged from 5.6 to 10.8%, while, in the European countries, it was 1.2%
to 10.1%. Several studies suggest that meat of animal origin could be one of the reservoirs of
3GC-R bacteria. Here, 86 raw meat samples (turkey, pork, chicken and beef) were collected ran-
domly and verified for the presence of 3GC-R bacteria. The 3GC-R bacteria were isolated, identified
and characterized phenotypically (antibiotic resistance, motility and biofilm) and genotypically
(repetitive-sequence-based rep-PCR) to elucidate any correlations with principal component anal-
ysis (PCA). From 28 3GC-R positive samples, 41 strains were isolated, from which the majority
belonged to Serratia fonticola (39%), followed by Escherichia coli (19.5%), Enterobacter cloacae (17.1%)
and Klebsiella pneumoniae (14.6%). The isolates of E. coli and S. fonticola presented diverse profiles in
rep-PCR. Generally, 3GC-R strains were more resistant to antibiotics used in veterinary medicine
than in human medicine. PCA derived from antibiotic resistance, motility and biofilm formation of
S. fonticola and E. coli strains showed that resistance to beta-lactams was separated from the resistance
to other antibiotic classes. Moreover, for the S. fonticola, E. coli and En. cloacae, the type of meat can
create a specific tendency towards antibiotic resistance and phenotypic characteristics for S. fonticola,
while these relationships were not found for other tested species.

Keywords: meat; ESBL Escherichia coli; Serratia fonticola; principal component analysis

1. Introduction

Antimicrobial resistance is recognized as one of the most important global health
challenges because of the high risk of decreasing effective treatment of bacterial infections
in both human and veterinary medicine [1–3], as well as increasing treatment costs [4,5].
Antibiotic-resistant infections are estimated to be responsible for approximately 2 million
cases and 23,000 deaths in the United States each year [6,7]. Additionally, worldwide data
indicate that 700,000 people a year die from bacterial diseases caused by the bacteria which
acquired resistance genes [8,9]. Moreover, the World Health Organization (WHO) also
warns that, by 2050, as many as 10 million people a year will be dying from infectious
diseases caused by drug-resistant microorganisms [10,11].

The phenomenon of the antimicrobial resistance is closely correlated with the intro-
duction of broad-spectrum cephalosporins and carbapenem antibiotics, the use of which
has significantly increased the effectiveness of antimicrobial therapies in both human and
veterinary medicine [12] but, at the same time, caused increasing resistance to these active
substances. One of the most common resistance mechanisms in Gram-negative bacteria
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is enzymatic inactivation of beta-lactam antibiotics by beta-lactamases, such as extended
spectrum beta-lactamases (ESBL) [13] or carbapenemases (CR) [14].

Beta-lactamases confer resistance to a variety of antibiotics, such as third- and fourth-
generation cephalosporins, which are listed as “Critically Important Antimicrobials” by
the WHO, as these two groups of antimicrobials provide first-line therapy for invasive
Gram-negative infections in people. The encoding genes of resistance are often found in
plasmids and, therefore, can be transferred horizontally, even between different species of
bacteria [15]. Moreover, ESBL and CR strains often carry further resistance genes on the
same plasmid, conferring resistance to several classes of antibiotics [4]. It should also be
noted that ESBL and/or CR-producing Enterobacteriaceae were initially mainly observed in
healthcare settings, including hospitals [5], but, in recent years, the number of community-
acquired infections has significantly increased [16]. For example, it was noted that the
prevalence of CRE strains among US community-related research samples ranged from 5.6
to 10.8% [17], while, in European countries, it ranged from 1.2% in the Czech Republic [18]
to 10.1% in the Netherlands [19]. ESBL and CR genes are common in Enterobacteriaceae,
such as Salmonella spp., Klebsiella pneumoniae, Escherichia coli (E. coli), Enterobacter cloacae
(En. cloacae), Citrobacter spp. and Serratia fonticola [8,20–22]. Currently, they are increasingly
often found in farm animals [23], in raw meat [24], eggs [25], and food [26,27], which
confirms the exchange of organisms or genes between different reservoirs [28,29]. Thus,
the data suggest that farm animals and meat of animal origin are among the reservoirs of
ESBL and CR bacteria [30–40].

The above-mentioned factors led the European Medicines Agency (EMA) to propose a
new categorization of antimicrobials (EMA/Committee for Medicinal Products for Veteri-
nary Use (CVMP)/Committee for Medicinal Product for Human Use (CHMP), 2019), which
established four different categories of pharmaceuticals, from A to D. It is noteworthy that,
in the category A (“Avoid”), there were included antibiotics, such as monobactams or
fosfomycin, which are not authorized for use in veterinary medicine but reserved only for
use in treating humans in the European Union. In the category B (“Restrict”), EMA has
included antibiotics that should be restricted in animal treatment to reduce the risk for
public health. In this category, quinolones, third- and fourth-generation cephalosporins
and polymyxins were included [41]. These two categories of antimicrobials have also been
identified as the ones most urgently in need of managing the risk of antimicrobial resistance.

On the other hand, these new categorizations and restricted use of antibiotics have not
yet brought significant reduction in drug-resistant bacteria occurrence, since ESBL strains
have been isolated from chicken meat in multiple places, such as Portugal, Spain, USA,
the United Kingdom and Germany [42–45]. Recently, a similar distribution of the ESBL
drug resistance genes has been demonstrated among raw meat isolates and the ones that
were found in the samples obtained from infected humans in the Netherlands [46,47], and
also in Germany [48,49]. The presence of ESBL-producing Enterobacteriaceae was mainly
confirmed in poultry farms [50–53], but there were also reports showing their presence in
pork or beef meat [54–56]. It should be noted that ESBL-producing Enterobacteriaceae can be
consumed directly with raw or undercooked meat or other raw foods and cookware can act
as a vector when handling contaminated meat [57]. Therefore, antimicrobial resistance may
be spread by transmission of the ESBL genes to strains of human intestinal microbiota or
by direct colonization of the human gut by ESBL strains [46,58]. This, in turn, may lead to
an increase in infections, e.g., urinary tract infections, accounting for 75–85% of parenteral
infections with pathogenic Escherichia coli and Klebsiella pneumoniae [15,33,59,60]. This is
especially dangerous for patients with acquired or congenital immunosuppression and for
onco-hematological patients.

So far, there are few data on the quantitative load of ESBL-producing Enterobacteriaceae
in meat of various origins available for sale in Poland despite the fact that this country
exports large amounts of raw meat to the EU and other countries in the world (1.8 million t
of poultry, 744,000 t of pork and 471,000 t of beef in 2019) [61]. Moreover, the data reported
by the Supreme Audit Office (NIK) show that only in five years (2011–2015) in Poland,
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sales of veterinary antibiotics increased by 23%; thus, Poland became one of the European
countries using the largest amounts of antibiotics in animal husbandry [62,63]. Accordingly,
our goal was to assess the degree of contamination with ESBL-producing Gram-negative
bacteria in poultry, pork and beef meat samples that were purchased from local fresh food
markets located in the territory of Gdansk (Poland). We checked whether the meat had
come from local slaughterhouses or it had been supplied from other regions of Poland,
and then we isolated ESBL strains which had grown from meat samples. Moreover, we
conducted drug resistance tests against selected antibiotics, swimming and swarming
motility and biofilm formation, as well as PCR profiles to determine a potential risk of
antimicrobial resistance for consumers as the consequence of contact with the above-
mentioned types of bacteria isolated in poultry, pork and beef meat. Additionally, both
statistical and chemometric analyses of the obtained data based on principal component
analysis (PCA) were performed to obtain a deeper understanding of relationships between
the type of meat, antimicrobial resistance and results of phenotypic traits established for
isolated bacterial strains.

2. Results
2.1. Most of the Third-Generation Cephalosporine-Resistant Strains Were Isolated from Turkey Meat

During 2020, a total of 86 meat samples were collected in five different fresh produce
markets in Gdansk (Poland) (Table 1, Figure 1, Table S1). The samples were taken from
the meat randomly bought by the family of four throughout the year. The family mostly
ate at home. The samples comprised mostly of the turkey meat (40.7%), followed by
pork (22.1%), chicken (19.8%) and beef (17.4%). All meat samples came from animals
bred on the territory of Poland. The meat was packed in two different ways, either in
boxes that were air vacuumed/modified (VAC) (65%) or in polystyrene trays wrapped
in transparent foil (35%). The turkey and pork meat were most frequently packed in
VAC packaging (33/35 and 15/19, respectively), while chicken and pork meat were most
often packed on polystyrene trays (13/17 and 11/15, respectively). The analyzed meat
samples were purchased in five different markets in Gdansk, where the meat was mostly
delivered (70.9%) or less frequently portioned and packed in the market (16.3%). Eleven
samples (12.8%) were assigned as the market’s own brand. The place where the meat was
processed could be tracked with a veterinary identification number, apart from 10 samples
(mostly shops’ own brands). The meat sold in Gdansk came from 10 out of 16 voivodeships
of Poland (Figure 1). The majority of the samples came from Pomeranian voivodeship
(26.7%), then from Warmia-Masuria Voivodeship (16.3%), Masovian (15.1%) and Lublin
(11.6%) voivodeships.

Table 1. Overview of the meat samples obtained from 5 markets in Gdansk, Poland, during 2020.

Meat Type

Packaging
Summary

Vacuum Tray

Samples % Samples % Samples %

turkey 33 38.4% 2 2.3% 35 40.7%

chicken 4 4.7% 13 15.1% 17 19.8%

pork 15 17.4% 4 4.7% 19 22.1%

beef 4 4.7% 11 12.8% 15 17.4%

SUM 56 30 86
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Figure 1. Localization of plants processing meat, from which the meat was sampled in Gdansk
markets (black dot). (A) Turkey (n = 35); (B) chicken (n = 17); (C) pork (n = 19); (D) beef (15). In case
of 11 samples of unknown producer, they were assigned to Pomorskie voivodeship.

Since we wanted to mimic home conditions of handling meat, the raw meat surface
was examined for bacteria contamination coming from all stages of meat processing, such as
animals themselves, their breeding, as well as stages of meat processing. Among the tested
samples, mostly lactose-negative bacteria were detected on MacConkey media, on average
21 ± 27 CFU/cm2, followed by lactose-positive bacteria at 17 ± 29 CFU/cm2 and mannitol-
positive bacteria grown on MSA media at 10 ± 20 CFU/cm2 (Table 2, Table S1). The MSA
mannitol-positive bacteria were mostly observed on turkey and chicken (14.9 ± 25.5 and
14.0 ± 25.5 cfu/cm2, respectively), while, on pork and beef, there were approximately
3–5 times less MSA mannitol-positive bacteria (5.2 ± 7.3 and 3.8 ± 6.1 cfu/cm2, respec-
tively). The largest abundance of lactose-positive bacteria on MacConkey medium was
observed for chicken meat samples (27.0 ± 40.1 cfu/cm2), while, for other meat types, it was
small. In case of lactose-negative bacteria, the meat from birds (turkey and chicken) was
contaminated 60% more than the meat from mammals (pork and beef) (Table 2). When look-
ing at bacterial contamination in the context of packaging type, no significant differences
could be observed (23.4 ± 27.4 and 17.5 ± 34.0 cfu/cm2 for vacuum and tray, respectively).

In order to isolate third-generation cephalosporine-resistant bacteria (3GC-R), the meat
samples were examined with ChromAgar ESBL medium, allowing for isolation of either
E. coli or bacteria from KESC group (Klebsiella spp., Enterobacter spp., Serratia spp. and
Citrobacter spp.) that are resistant to these antibiotics. In total, the average number of E. coli
strains grown on ChromAgar ESBL was 0.4 ± 1.2 cfu/cm2, while the average number of
KESC grown on the same medium was 5.6 ± 16.9 cfu/cm2. From 86 meat samples that
were examined, 28 (32.5%) were positive for 3GC-R strains’ presence. The majority of the
3GC-R strains were isolated from turkey meat (15/35), which was contaminated with such
strains in 43% cases. Other meat types were less contaminated with 3GC-R strains (5/15,
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4/17 and 4/19 for beef, chicken and pork, respectively), but still as many as 33% to 21% of
the meat samples were contaminated.

Table 2. Overview of the microbial abundance on different meat samples collected in Gdansk, Poland,
2020. The results are expressed as mean CFU/cm2 of the tested meat with standard deviation. Lactose
utilization was tested on MacConkey media, while mannitol utilization was tested on MSA media.
The ESBL strains were enumerated on ChromAgar ESBL media.

Samples Lactose
+

Lactose
− E. coli ESBL KESC

ESBL
Mannitol

+

CT-R

Samples %

Meat type

Turkey 35 16.6 ± 27.5 27.3 ± 32.3 0.4 ± 0.8 6 ± 17.1 14.9 ± 25.5 15 43%
Chicken 17 27 ± 40 25 ± 43.5 0.9 ± 2.4 9 ± 24.6 13.9 ± 23.5 5 33%

Pork 19 14.76 ± 29 15.2 ± 16.3 0.05 ± 0.2 1.9 ± 3.6 5.2 ± 7.2 4 24%
Beef 15 13.4 ± 24.8 15.8 ± 23.8 0.06 ± 0.2 5.8 ± 15.5 3.8 ± 6 4 21%

Packaging Vacuum 56 23.4 ± 27.3 27.5 ± 26.9 0.7 ± 0.5 3.9 ± 19.3 15.1 ± 13.6 16 57%
Tray 30 17.4 ± 33.9 21.3 ± 30.1 0.3 ± 1.9 5.6 ± 11.2 10.5 ± 27.7 12 43%

Total 86 17.4 ± 29.8 21.3 ± 27.9 0.3 ± 1.2 5.6 ± 16.9 10.5 ± 20 28 nd

From 28 3GC-R-positive samples of raw meat, 41 strains were isolated. The strains
were identified with MALDI-TOF MS analysis. The isolated strains belonged to six species
and four genera. The majority of the 3GC-R strains belonged to Serratia fonticola (39%),
followed by Escherichia coli (19.5%), Enterobacter cloacae (17.1%), Klebsiella pneumoniae (14.6%),
Serratia liquefaciens (7.3%) and Serratia marcescens (7.3%) (Table 3). The majority of S. fonticola
isolates were found on turkey and chicken meat (six and four isolates, respectively), while
most of the E. coli and K. pneumoniae strains were isolated from turkey meat (seven and
five strains, respectively). More E. coli and S. fonticola strains were isolated from meat
packed with VAC system than that on trays (nine and seven strains, respectively). For 63%
of isolated strains, the phenotypic confirmation of ESBL mechanism was positive in the
double-disk synergy (DDS) test, while, for 37% (15 strains), these mechanisms could not be
verified. Among S. fonticola and E. coli strains, 12/16 and 6/8 strains were ESBL-positive,
respectively. For S. liquefaciens, two out of three strains scored positive in DDS test, while,
for En. cloacae, two out of six were positive.

Table 3. Cephalosporin-resistant strains isolated from meat samples (n = 86) collected from markets
in Gdansk. In a few cases, multiple strains were isolated from 1 sample.

Species
Meat Type Packaging Total

Turkey (n = 35) Chicken (n = 17) Pork
(n = 19)

Beef
(n = 15)

Vacuum
(n = 56)

Tray
(n = 30) Isolates %

En. cloacae 2 1 2 2 4 3 7 17
E. coli 7 1 0 0 7 1 8 19.5

K. pneumoniae 5 0 1 0 3 3 6 14.6
S. fonticola 6 4 3 3 9 7 16 39

S. liquefaciens 2 0 1 0 3 0 3 7.3
S. marcescens 0 0 0 1 0 1 1 2.4

Total 22 6 7 6 26 15 41

The antibiotics that were the most active against the tested strains were beta-lactams
from the carbapenem group, as only for imipenem and meropenem the tested strains were
not fully sensitive (7.3% and 12.2%, respectively).

The antibiotics from the aminoglycosides group were less effective against the tested
bacterial strains, as 19.5% strains were resistant to gentamycin and almost one third
were resistant to amikacin (AMK). The least effective were beta-lactam antibiotics from
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penicylin group with beta-lactam inhibitors (amoxicillin/clavulanic acid (AMC) and
piperacillin/tazobactam (TZP)), to which 78% and 43.9% of strains were resistant, respec-
tively (Figure 2). Surprisingly, not all strains that were isolated as 3CG-R were resistant to
all cephalosporins of third and fourth generation in the in vitro tests. Interestingly, among
S. fonticola strains, one strain was resistant to imipenem (IPM), two strains were resistant
to meropenem (MEM) and as many as five were resistant to ertapenem (ETP). Among
En. cloacae and K. pneumoniae isolates, there were single strains that were also less sensitive
to ETP. This unexpected resistance to the mentioned antibiotics needs further verification.
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Figure 2. The antibiotic resistance of the tested cephalosporine-resistant strains isolated from meat
samples (n = 41). All the strains were resistant to ampicillin (AMP) and cefuroxime (CXM); thus,
these antibiotics were excluded from the graph. In black: antibiotics used only in veterinary thera-
pies; in grey: antibiotics used only in human therapies; black-grey stripes: antibiotics used both in
veterinary and human therapies; AMC—amoxicillin/clavulanic acid; TZP—piperacillin/tazobactam;
CTX—cefotaxime; CAZ—ceftazidime; FEP—cefepime; IPM—imipenem; MEM—meropenem;
ETP—ertapenem; AMK—amikacin; CN—gentamycin; CIP—ciprofloxacin; SXT—co-trimoxazoles;
TGC—tigecycline; TE—tetracycline; DOX—doxycycline; S—streptomycin; SH—spectinomycin.

When taking into account antibiotics used for human and veterinary medicine, the
overall resistance to veterinary antibiotics was much higher than resistance to antibiotics
used for human treatment, apart from aminoglycosides (AMK—29% and gentamycin (CN)
20%). The tested strains were fully resistant to ampicillin and cefuroxime. Apart from these
two, the largest number of resistant strains observed was for AMC (78%), doxycycline
(DOX) (76%), spectinomycin (SH) (71%), ceftazidime (CAZ) (61%) and tetracycline (TE)
(51%) (Figure 2, Table S3).

2.2. 3CG-R Strains Isolated from Meat Express Diversity in Phenotypic Traits

The 3CG-R strains that were isolated from four types of meat samples (turkey, chicken,
pork and beef) were subjected to phenotypic analysis to determine differences in their
ability for survival and colonization. The strains were tested for their ability to swim and
swarm on LA plates with different amounts of agar, and their biofilm formation capability
was verified at two different temperatures. The results obtained for separate strains were
then used to compare the phenotypic traits for the separate species as well as to seek any
differences regarding the type of meat the strains were isolated from (Figures 3 and S1). As
regards the species, there could be no influence observed of the temperature of incubation
on the swarming motility of the strains. Moreover, swarming motility was similar for each
tested species, as well as for the two reference strains used in the study (S. marcescens C19
and E. coli C49). For swimming motility, a noticeable increase in the colony diameter could
be noticed for all tested species but K. pneumoniae and E. coli C49 reference strain. In the
case of S. fonticola, S. liquefaciens, En. cloacae and E. coli, the increase in swimming motility
at 37 ◦C was statistically significant. As to biofilm formation, a slight increase in biofilm
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formation ability at 37 ◦C could be observed; however, it was significant only in the case
of K. pneumoniae (Figure S1). As to the strains’ phenotypic traits in the view of meat type,
swarming ability did not depend on either the temperatures of incubation or different meat
types. As regards swimming ability at room temperature, the strains isolated from turkey
and chicken were least motile, while the strains isolated from beef were significantly more
motile than strains isolated from turkey and chicken. Similarly, the motility of all the strains
increased with temperature being significantly higher for strains isolated from all meat
types. At 37 ◦C, the strains isolated from beef were significantly more motile than strains
isolated from turkey, chicken and pork. Biofilm formation was increased for strains isolated
from each meat type; however, this increase was significant only for pork and beef isolates.
Similar to swimming ability, the biofilm formation capability of the strains isolated from
beef was the highest among the strains tested (Figure 3).
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Figure 3. Swarming (A), swimming (B) and biofilm formation (C) ability at room temperature (black)
and at 37 ◦C (grey) of tested cephalosporin-resistant strains isolated from meat samples. The results
are presented as an average for isolated bacteria from each meat type (turkey n = 23; chicken n = 6;
pork n = 7; beef n = 6). The experiment was performed twice with at least three replicates. Statistically
different results are marked with different letters as tested with ANOVA followed by Tuckey post
hoc test at p < 0.05.

2.3. Repetitive Sequence Profiles Are Diverse among E. coli and S. fonticola 3CG-R Strains

When looking at repetitive sequence profiles obtained with rep-PCR with ERIC
primers for the most abundant species, S. fonticola (n = 16) and E. coli (n = 8), large variability
in the profiles could be visible (Figure 4). All E. coli 3CG-R strains were isolated from poul-
try (mostly from turkey). A total of seven different band patterns could be distinguished in
the analysis, with E. coli C49 reference strain being diverse from each of the tested isolates.
A few identical patterns could be observed for this species (strains 1295C and 1296T; 180T
and 1252T). It is noteworthy that all identical pairs were comprised of the isolates coming
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from different voivodeships. Moreover, E. coli 1295C and 1296T were isolated from two
different meat types (chicken and turkey, respectively). The S. fonticola isolates represented
more diverse repetitive sequence profiles than E. coli isolates, as, for 16 strains taken for the
analysis, as many as 12 different profiles could be distinguished. Similar to E. coli isolates,
in three cases, the profiles were almost identical to each other (strains 175P, 210B, 138T and
132P, 134P and 211B, 582C). One pair of S. fonticola strains (132P and 134P) with identical
profiles was isolated from the same type of meat (pork), and the meat came from the same
voivodeship. In the case of S. fonticola 175P, 210B and 138T, despite having the same profiles,
the strains were isolated from diverse meat types (pork, beef and turkey) produced in
different voivodeships, similarly to S. fonticola 211B and 582C strains.
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Figure 4. Fingerprinting profiles of E. coli (A) and S. fonticola (B) cephalosporin-resistant strains
isolated from meat samples. The profiles were obtained with ERIC rep-PCR primers and analyzed
with GelJ software using UPGMA and band similarity index set to 1.0. T—turkey, C—chicken,
P—pork, B—beef, C49—E. coli ATCC 25922; C19—S. marcescens KPD102-BA.

2.4. Antibiotic Resistance Patterns May Be Explained by Meat Type for S. fonticola and En. cloacae

Next, PCA derived from the autoscaled data of antibiotic resistance of tested strains
(excluding ampicillin (AMP) and cefuroxime (CXM)) and phenotypic tests (swimming,
swarming and biofilm formation) for tested 3CG-R strains isolated from meat samples
was performed. For a more detailed interpretation of the obtained results for the studied
samples, a statistical technique, namely PCA, was applied. The PCA belongs to a group
of factor analysis and offers graphic data visualization of the relationships between the
variables or objects without losing any significant information. This approach is based
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on the transformation of the original measured variables into new uncorrelated variables
called principal components (PC), where each PC is a linear combination of the original
responses and is orthogonal to each other [64]. Thus, the first PC (PC1) explains most
of the variation in the data, whereas PC2 covers much of the remaining variation, and
so on. That means that a few PCs explain the variation of a large number of original
responses. Thus, a two-dimensional or three-dimensional projection of samples which
are based on the PC axes allows the relationships between objects to be shown, looking
for groups and trends, and sorting out outliers. The PCA results calculated for the meat
samples with isolated E. coli (8) and S. fonticola (16) are shown in Figure 5A (variables)
and 5B (objects, OUTs), while the ones with K. pneumoniae (6), En. cloacae (7), S. liquefaciens
(3) and S. marcescens (1) are presented in Figure 5C (variables) and 5D (objects, OUTs),
respectively. In both PCA calculations, the autoscaled data obtained for E. coli C49 and
S. marcescens C19 used as the references were also included. In the case of PCA calculation
based on the matrix data obtained for the meat samples with isolated S. fonticola and
E. coli strains (26 objects x 23 variables), the first two PCs explained 54.97% of the data
variability (Figure 5A,B). Moreover, the variances in the variables describing resistance to
sulfamethoxazole/trimethoprim (SXT) and ciprofloxacin (CIP) of E. coli and S. fonticola
isolated from the tested meat samples and then to CAZ and ETP were mainly explored
by the PC1, whereas the variabilities in resistance parameters to TZP and cefepime (FEP),
as well as TE and SH, were mainly explained by the PC2. Thus, the variability in the
phenotypic analysis for the tested strains was not explored by the two first PCs. According
to the loading PCA plot (Figure 5A), the parameters describing the resistance to SXT, SH and
TE were located on the left part of the upper side of the graph together with those calculated
to aminoglycosides (AMK, CN and streptomycin (S)), DOX and SH (cluster I). In the case of
CAZ, ETP, TZP and FEP, they were positioned with the antibiotics belonging to penicillin
(AMC), cephalosporin (cefotaxime (CTX)) and carbapenem group (IMP, MEM) (cluster II)
on the right side of the plot, respectively. Only tigecycline (TGC) and AMK were found
in opposite clusters taking into account their chemical structures. This indicates that PCA
distinguished tested antibiotic resistance of S. fonticola and E. coli strains according to beta-
lactamase activity. It is also interesting that, when the application in human and veterinary
medicine was taken into account, six out of eight antibiotics used for human treatment
were located in cluster I, while seven out of nine of veterinary drugs were positioned in
cluster II, respectively. Thus, PCA results also confirmed that the way an antibiotic is used
can be considered as a deciding factor regarding creation of specific antibiotic resistance
in the strains. The phenotypic results of biofilm formation (BF_RT and BF_37), swimming
(RT_0.3 and 37_0.3) and swarming (37_0.8 and RT_0.8) were located in cluster III. These
parameters gave comparable characteristics of the tested strains but these results were
different in respect to resistance established for antibiotics (Figures 3 and S1). Thus, for
E. coli, a pair of strains isolated from the same meat type (turkey) falls close to each other in
PCA analysis taking into account antibiotic resistance and phenotypic traits of the strains.
On the other hand, the third pair (1295C and 1296T) that was isolated from chicken and
turkey, despite having the same genotypic profiles, represents diverse phenotypic traits in
PCA analysis. In case of S. fonticola, the strains with similar band patterns presented diverse
tendencies in PCA analysis of phenotypic traits. The S. fonticola 132P and 134P, despite both
being isolated from pork, express different behavior in phenotypic tests, while S. fonticola
582C and 211B isolated from chicken and beef express very similar phenotypic features in
the tested conditions. As was mentioned above, the variability in these parameters was not
explained by the first two PCs. This fact explains why the localization of the tested meat
samples with isolated S. fonticola and E. coli strains in the score PCA plot (Figure 5B) was
not consistent to the observations based on phenotypic analysis.
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Figure 5. The PCA results for variables (A,C) and objects (OTUs) (B,D) based on data
for antibiotic resistance (excluding ampicillin (AMP) and cefuroxime (CXM)) and phenotypic
tests (swimming, swarming and biofilm formation) for tested cephalosporine-resistant strains
(E. coli and S. fonticola (A,B) and K. pneumoniae, En. cloacae, S. liquefaciens and S. marcescens
(C,D)) isolated from meat samples. In (A,C): veterinary antibiotics (green), human antibiotics
(black); AMC—amoxicillin/clavulanic acid; TZP—piperacillin/tazobactam; CTX—cefotaxime;
CAZ—ceftazidime; FEP—cefepime; IPM—imipenem; MEM—meropenem; ETP—ertapenem;
AMK—amikacin; CN—gentamycin; CIP—ciprofloxacin; SXT—co-trimksazol; TGC—tigecycline;
TE—tetracycline; DOX—doxycycline; S—streptomycin; SH—spectomycin; RT—room temper-
ature; 37C—37 ◦C; 0.3—swimming motility; 0.8—swarming motility; BF—biofilm formation.
In (B,D): T—turkey; B—beef; P—pork; C—chicken. E. coli (red); S. fonticola (blue); K. pneumoniae
(black); En. cloacae (purple); S. liquefaciens (green); S. marcescens (orange); C49—E. coli ATCC 25922;
C19—S. marcescens KPD102-BA were used as reference strains.

Thus, the score plot for the object (OTUs) based on the above-mentioned data set
showed that most meat samples were located according to the species of the tested strains
isolated from these samples (Figure 5B). So, eight poultry, one bovine and one pork meat
S. fonticola isolates were positioned in cluster I A, together with S. marcescens C19, whereas
four other strains (138T, 1293T, 136B and 175P) were found in cluster I B. The small distance
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between these clusters indicated that slight differences in the antibiotic resistance and
maybe phenotypic profiles were found between these samples. Only the strains 210B and
132P isolated from bovine and pork meat samples, respectively, were located as outliers
on the PCA plot. Thus, these data suggest that the samples with S. fonticola isolated from
turkey meat had more comparable profiles in respect to those determined for beef and pork
meat. Thus, the type of meat can offer a specific tendency towards antibiotics resistance
and maybe phenotypic properties for S. fonticola. In the case of E. coli isolates, five out
of eight poultry meat isolates were positioned in cluster II, while 1296T and 198T were
located in the bottom side of the PCA plot. Due to the fact that only poultry meat samples
with E. coli were tested (seven from turkey and one from chicken), it was impossible
to verify any relationship between type of meat and antibiotic resistance or phenotypic
traits. It should be also noticed that the behavior of E. coli C49 was different in the tested
experimental conditions, which was found as an outlier in the upper part of the PCA plot.
When PCA was based on the matrix data (19 objects × 23 variables) calculated for the meat
samples with four other species, the first two PCs allowed 51.19% of the total variance to
be explained (Figure 5C,D, respectively). In this PCA calculation, the variances of other
antibiotic resistance were mainly explored by the first PCs in respect to S. fonticola and
E. coli (Figure 5A,B). Thus, the resistance to FEP, CAZ, IPM and MEM for K. pneumoniae,
En. cloacae, S. liquefaciens and S. marcescens strains isolated from the tested meat samples
was mainly described by PC1, while PC2 explored the variability in resistance to AMC,
CTX, DOX and S, respectively. The loading PCA plot illustrated in Figure 5C showed that
these parameters, except for AMC, were located in cluster I (FEP, IPM, MEM, CAZ and
CTX) and cluster II (S and DOX), respectively. It should be noticed that the parameters
describing the resistance to ETP and TZP were also located in cluster I, whereas resistance
to AMC was found as an outlier in a small distance to cluster I. Thus, four species of isolated
strains from the meat samples possessed comparable profiles of resistance to beta-lactam
antibiotics and the drugs belonging to other antibiotic classes, which were included by
PCA into cluster II. Only the variable calculated for resistance to AMK was located as
an outlier between clusters I, II and III, respectively. It can also be observed that most
antibiotics used in veterinary treatment (six) were positioned by PCA in cluster I, when
TGC, CIP and SXT were found in cluster II together with five other drugs used in human
medicine. On the other hand, the variables describing the resistance to CAZ and AMC
were located at a long distance to AMK and the drugs positioned in cluster II. Thus, the
positions of human antibiotics in the loadings PCA plot were more different than those
found for S. fonticola and E. coli strains (Figure 5B). It can also be noticed that swimming
ability (RT_0.3 and 37_0.3) provided slightly different data about the strains than swarming
and biofilm formation profiles for S. fonticola and E. coli strains (Figure 5A). However, in
PCA calculation based on the data set calculated for the other four species, the first two PCs
did not explain the variabilities in these parameters for the tested strains. This can explain
the lack of correlation between the phenotypic characteristics of the tested bacterial isolates
and their localizations in the score PCA plot illustrated in Figure 5D.

Therefore, the graphical data shown in Figure 5D confirmed that four K. pneumoniae
turkey meat isolates (606T, 619T, 628T and 615T) and one isolated from pork (617P) were
included in cluster I positioned in the bottom side of the graph, while K. pneumoniae 414T
was found at a small distance to S. liquefaciens (133P and 197T) and S. marcescens (142B) on
the right side of the graph. 571T also containing S. liquifaciens was positioned as an outlier
between E. coli C49 and S. marcescens C19 on the left of the PCA plot. This suggested that
various antibiotic resistance profiles were calculated for the used reference and the above-
mentioned strains. Moreover, there were no relationships between the type of the tested
meat samples and the antibiotic resistance for K. pneumoniae, S. liquefaciens and S. marcescens
strains. On the other hand, these profiles were also different in respect to the ones calculated
for En. cloacae strains. It is interesting that, for this species, only beef and pork meat isolates
(1300B and 141B, and 139P and 137P, respectively) were included in cluster II, while the



Molecules 2022, 27, 4151 12 of 20

strains isolated from turkey and chicken (175T, 1294T and 1200TC) were found in cluster
III. Thus, the type of meat can designate specific antibiotic resistance profiles.

Summarizing, PCA derived from antibiotic resistance of the tested strains (excluding
AMP and CXM) and phenotypic trials (swimming, swarming and biofilm formation) for the
tested cephalosporine-resistant strains isolated from meat samples showed that parameters
describing resistance to beta-lactam antibiotics were separated from the resistance to other
classes of tested antibiotics and phenotypic traits for both S. fonticola and E. coli and
four other species. Most antibiotic resistances calculated for human and veterinary drugs
were assigned to specific clusters for S. fonticola and E. coli but this observation was not
found for the antibiotics used in human medicine when four other tested species isolated
from the meat samples were used in PCA calculation. In both loadings PCA plots, biofilm
formation, swimming and swarming were found within the same cluster, which can
suggest that these parameters gave comparable differentiation of the tested strains, but this
description was different than the one observed for antibiotic resistance. However, in both
PCA calculations, the first two PCs did not explain the variabilities of these parameters
for the tested strains. In the case of score PCA plots established for the S. fonticola and
E. coli, the type of meat can offer a specific tendency towards antibiotic resistance and
maybe phenotypic properties for S. fonticola. The same effect was found for En. cloacae
in the calculation based on the data set established for the other four species, while these
relationships were not confirmed for other tested species.

3. Discussion

The average consumption of meat on the territory of the European Union equals
70.3 kg/person/year, which is about 40% more than in China (49.3 kg/person/year)
and approximately 30% less than in the USA (100.7 kg/person/year) [65]. Moreover,
the consumption of different meat types (poultry, pork and beef) also shows diverse
patterns between the mentioned regions, where, for the EU and USA, poultry is the largest
share (47 and 51%, respectively), while, for China, the pork meat accounts for the most
consumed meat type (63%) [65]. The consumption of beef is declining in the EU, while the
consumption of poultry is constantly rising when looking back from 2010 to 2020 [65].

In Poland, the average meat consumption accounts for 61 kg/person/year [66], which
is about 15% less than the EU average. However, Poland is one of the largest meat producers
among EU countries, accounting for 20% of poultry production (first place) and 9% for pork
production (fifth place) in the EU in 2020 [67,68]. What is more, in Poland, penicillin sales
for food-producing animals reached 54.1 mg/PCU (mg per population correction unit) in
2017, being the fourth largest after Cyprus, Italy and Spain among European countries [69].

In our study, throughout the year, there were collected 86 meat samples, accounting for
about 61% of an average person’s meat consumption in the EU. However, the proportions
of the poultry/pork/beef were a bit different than in the EU (60.5% poultry, 22.1% pork and
17.4% beef). On average, 32.5% of the samples were positive for 3GC-R strains’ presence,
with different prevalence when taking into account the meat type. Similarly, 3GC-R E. coli
have been found in meat from all animal species across Europe [70], despite the fact that
the use of third- and fourth-generation cephalosporins is not authorized for poultry in the
European Union (2015/C 299/04). Noteworthy, human infections with 3GC-R E. coli and
other Enterobacterales are associated with substantial morbidity, mortality and increased
costs compared to infections caused by pathogens susceptible to antibiotics [71,72]. Origi-
nally, 3GC-R and CR Enterobacterales infections were mainly a hospital-related problem with
bacteria acquisition in hospitals or related to healthcare contact. This has changed in the
past two decades, with people that have had no healthcare contact also being rectal carriers
of 3GC-R and CR strains [73]. Many recommendations of international medical associations
still include 3GC as the first-line drugs in the empirical treatment of community-acquired
infections, especially in patients not previously hospitalized. The presence of 3GC-R strains
in raw meat, which is a popular food product, poses a risk of acquiring colonization and/or
infection with 3GC-R strains and, thus, the ineffectiveness of 3GC empirical therapy. Em-
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pirical therapy for community-acquired bacterial infections, such as urinary tract infection
or Gram-negative sepsis, is the first line of saving the patient’s life. The waiting time for
a microbiological test, even with the use of the latest diagnostic methods, will extend the
time of using an adequate antimicrobial drug. At a time when the number of patients
with acquired or congenital immune disorders is constantly increasing, the uncertainty
of the use of drugs considered to be the most effective way to fight community-acquired
infections limits the possibilities of effective treatment of this type of infection.

The most abundant in 3GC-R strain presence in our study was turkey meat (43%),
which was similar to the prevalence found in Germany (40%) [74]. When taking into
account chicken meat, in Poland, the prevalence of 3GC-R strains was 33%, while, in other
countries, it was usually higher. For example, in Germany, Bangladesh and South Korea,
3GC-R strains on chicken meat were found in as many as 70–74% of the samples [74–76],
respectively]. A lower amount of 3GC-R producers were found in Pakistan (39%), Spain
(43%), the Netherlands (54%) and Singapore (51%), still being at least 6% higher than
in the presented study [24,77–79]. The highest amount of 3GC-R strains was found in
France (92%), for chicken breast samples [50]. As regards different European countries, the
proportion of broiler meat contaminated with 3GC-R strains is, on average, larger than in
the single studies, as shown by EFSA report expanding from 0.4% for Norway up to 78%
for Spain [80].

As for pork meat, the prevalence of 3GC-R strains in Polish meat samples (24%) was
similar to that found in other countries (Singapore (27%), South Korea (30%) and Germany
(12%)) [24,73,75]. Interestingly, the prevalence of the 3GC-R strains was the lowest in beef
meat (21%); however, this value was still at least three times higher than in other countries
(Germany 4.2%, South Korea 0% and Singapore 7%) [24,74,76]. Although beef meat seems
to be relatively less contaminated with 3GC-R strains than other meat types, the risk for
human exposure to these strains is the highest, accounting for as much as 61% of total
exposure in the Netherlands [81], despite the fact that the highest contamination of E. coli
3GC-R strains was observed for chicken meat.

However, most of the above-mentioned abundance of 3GC-R strains in different meat
types reflected only E. coli species. In our study, we determined the presence of 3GC-R
strains belonging to six different species in meat samples. Similarly, in Spain, as many
as 10 species were identified in meat samples and, in Turkey, four 3GC-R species were
found in chicken meat [78,82]. In the presented study, the most prevalent were S. fonticola
(39% of isolates) and E. coli (20%) species, followed by En. cloacae (17%) and K. pneumoniae
(15%). In Spanish meat samples, all four mentioned species were also identified, with the
largest prevalence of E. coli (71%), followed by S. fonticola (14%) [78]. Similarly, Özpınar
et al. [82] found E. coli (37%) to be the most prevalent species in examined chicken meat
samples, followed by En. cloacae and K. pneumoniae (both 2.5%). Of note, we have not only
identified the 3GC-R strains to the species level, but also performed a genotypic profiling
of the most abundant ones (E. coli and S. fonticola). Similar to other studies, the obtained
profiles were diverse [31,50,76]. Interestingly, in a few cases, we have found strains with
identical profiles, both isolated from the same type of meat or from different types and
of different origin. Kim et al. [76] have also found two E. coli strains with 99% identical
profiles isolated from meat samples in Singapore coming from the USA and Brazil.

Moreover, the isolated 3GC-R strains were more resistant to antibiotics used in veteri-
nary medicine than those in human medicine and differences could be noticed between
resistance patterns of strains isolated from different meat types (see: PCA analysis). This
phenomenon clearly suggests that the strains express a “meat type” resistance phenotype
which would be likely to develop, as, for different animals, different antibiotics are more
frequently used for treatment. In Poland, the usage of antibiotics in animal breeding has
grown recently; however, in numerous countries, the usage of antibiotics in meat produc-
tion was decreased in the past decade [50,79]. In such a case, it would be expected that
the prevalence of 3GC-R bacteria would also decrease in raw meat, which was shown by
Huizinga et al. [79] for chicken meat, where a drop from 68.3% of positive samples in 2014
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to 44.6% in 2015 was observed. In contrast, Casella et al. [50] have shown that, at least in
France, for the chicken breast, no decrease in 3GC-R strain prevalence was observed.

The rationale of 3GC-R strain transmission between people (farm workers, local resi-
dents and, in particular, consumers) and animals, slaughter houses and meat processing
plants are not fully explored. The publications mainly compare the strains’ genotypes or the
plasmids carried by the strains, which, in terms of horizontal gene transfer, does not always
clearly indicate an epidemiological pathway [83]. In Denmark, the cross-transmission of re-
sistant bacteria between broiler breeding and workers has been proven [81]. Consequently,
it could be expected that a fraction of these bacteria are transferred from raw chicken
meat to other foods through cross-contamination and recontamination processes—and,
ultimately, to the consumer through the intake of these contaminated foods. Bacteria
are able to attach to surfaces and form biofilms on them, which was also shown in this
study. Interestingly, the isolates coming from turkey meat, which was the most contami-
nated with 3GC-R strains, have shown a relatively high biofilm formation ability at room
temperature, unlike strains isolated from other meat types, for which a large difference
between incubation temperatures was observed. Biofilm-embedded bacteria present in-
creased resistance to antimicrobial treatments. Detachment of biofilm cells may lead to
the cross-contamination of the products [84]. The problem of biofilm production and high
levels of swimming and swarming abilities of strains derived from food is also a risk
factor for cross-contamination during raw meat processing at home, where there may be
cross-transmission of food-borne or multi-drug-resistant strains from food to the work area
in the kitchen. High biofilm formation in food-borne strains may favor cross-transmission
in home kitchens and small local restaurants. Indeed, 18% of total exposure was due to
cross-contamination via meat handling at home [81]. The meat samples tested came from
one family, where the rules of preventing cross-contamination while handling meat were
carefully followed. In the gastrointestinal tract of the family members (from which one
suffers from inherited immunodeficiencies), no 3GC-R strains were found at the end of the
project (data not shown).

In the prevention of human infections, the source of the infection is as important as the
route of infection in order to be eliminated or reduced. An important factor in preventing
the acquisition, colonization and possibly infection with 3GC-R strains is to obey basic
hygienic rules when handling raw meat and meat products during their production and
preparation of meals at home. Eating raw or uncooked meat carries the risk of infection
not only with 3GC-R strains, but also with other common pathogens of the gastrointestinal
tract [85]. More awareness should be raised among consumers and meat producers in order
to decrease the risk of becoming infected with 3GC-R strains.

4. Materials and Methods
4.1. Fresh Produce Samples

A total of 86 fresh retail meat samples (35 turkey, 17 chicken, 19 pork and 15 beef)
were collected in 5 different semi and large size hypermarkets in the city of Gdansk
(Pomerania, Poland) from 7 January 2020 to 21 July 2021. The examined samples re-
flect about 70% of a typical annual meat intake of an average person in Poland (annual
intake = 61kg/person/year; [66]). The tested meat samples were purchased in generally
accessible stores for retail customers; there was no co-operation with sellers, distributors or
meat producers. The meat bought in stores was previously packed in 2 VAC systems or
on foamed polystyrene trays wrapped with foil. Of the 86 samples tested, 56 (65%) were
packed in vacuum packaging or modified atmosphere packaging, while 30 (35%) samples
were bought on foamed polystyrene trays wrapped with transparent foil.

4.2. Isolation of Cephalosporin-Resistant Bacterial Strains

The meat samples were processed within 24 h after buying. The piece of meat was
neither washed nor sterilized before use so as to mimic conditions of meat processing at
home. The meat was imprinted on several media, such as MacConkey (Graso Biotech,
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Jabłowo, Poland) for determining the presence of lactose-negative and lactose-positive
Enterobacterales; Mannitol Salt Agar (Graso Biotech) for Staphylococci growth, MRSA Chro-
mAgar (Graso Biotech) for methicillin-resistant Staphylococci and ESBL ChromAgar (Graso
Biotech) for the presence 3GC-R E. coli and bacteria constituting the KESC group (Klebsiella,
Enterobacter, Serratia, and Citrobacter). The imprints were then incubated for 24–48 h at 37 ◦C.
The characteristic colonies grown on each media were counted and CFU/cm2 of the meat
surface was calculated. Additionally, for ESBL ChromAgar positive plates, 1–4 characteris-
tic colonies were transferred to a fresh medium and grown until pure. Pure colonies were
identified with the use of MALDI-TOF MS (Matrix-Assisted Laser Desorption/Ionization
with Time of Flight Mass Spectrometry) (MALDI Biotyper; Bruker Daltonics, Billerica, MA,
USA) according to the manufacturer’s procedure. Strains identified with MALDI-TOF
MS were also stored in the laboratory collection at −60 ◦C with 20% glycerol (Epoch,
Poland) [8].

4.3. Antimicrobial Susceptibility Testing

The double-disk synergy (DDS) assay was carried out to identify ESBL-producing
strains [86]. Subsequently, E. coli and KESC group isolates were tested using a Kirby–
Bauer disk diffusion assay for susceptibility to the following 19 antimicrobial agents ac-
cording to the European Committee for Antimicrobial Susceptibility Testing (EUCAST)
v.10.0 (2020) guidelines and according to Clinical and Laboratory Standard Institute CLSI
VET01S ED5:2020 guidelines for veterinary chemotherapeutics: ampicillin (AMP) (10 µg),
amoxicillin/clavulanic acid (AMC) (10/30 µg), piperacillin/tazobactam (TZP) (30/6 µg),
cefuroxime (CXM) (30 µg), ceftazidime (CAZ) (10 µg), cefepime (FEP) (30 µg), cefotaxime
(CTX) (5 µg), ciprofloxacin (CIP) (5 µg), gentamycin (CN) (10 µg), amikacin (AMK) (10 µg),
imipenem (IPM) (10 µg), meropenem (MEM) (10 µg), ertapenem (ETP) (10 µg), tigecy-
cline (TGC) (15 µg), sulfamethoxazole/trimethoprim (SXT) (25/25 µg), doxycycline (DOX)
(30 µg), tetracycline (TE) (30 µg), streptomycin (S) (25 µg), and spectinomycin (SH) (25 µg)
(Oxoid). E. coli ATCC 25922 (C49) was used as a reference strain.

4.4. Motility and Biofilm Formation

The motility (swimming and swarming) as well as biofilm formation assays were
performed as in Rybak et al. [8]. Briefly, the bacteria were grown overnight at 37 ◦C, then
the bacterial suspensions were prepared (0.5 MacFarland units). Each suspension in the
volume of 10 µL was put on LA medium with a decreased amount of agar—0.3% for
swimming and 0.8% for swarming motility and incubated for 24 h at 37 ◦C. For biofilm
formation, the bacterial suspensions were 10× diluted in the 1

2 LB medium (decreased
amount of yeast extract and peptone) and grown in 24-well Nunclon Delta Surface (Thermo
Scientific) plates for 48 h at 37 ◦C without agitation. After incubation, the cultures were
discarded and formed biofilm stained with crystal violet for 20 min without agitation. Then,
the wells were washed 4 times with 900 µL of distilled water. Afterwards, 900 µL of ethanol
(96%, Sigma Aldrich, Darmstadt, Germany) was added into each well and the OD540 was
measured. The tests were performed twice (motility) and three times (biofilm formation)
with at least 2 replicates for each strain. As the reference for the above-mentioned assays,
E. coli ATCC25922 (C49) and Serratia marcescens KPD102-BA (C19) were used.

4.5. DNA Fingerprinting

For bacterial strains that belonged to S. fonticola and E. coli species, which were
the most abundant, genomic DNA was isolated with Genomic Mini AX Bacteria Kit
(A&A Biotechnology, Gdynia, Poland). Then, the DNA concentration was measured
(Epoch Microplate Spectrophotometer; BioTek Instruments, Agilent, Santa Clara, CA, USA)
and the genomic DNA was analyzed with repetitive-sequence-based rep-PCR with ERIC
primers [87]. After performing PCR reactions, 5 µL of the PCR products was resolved
in 0.8% agarose gels (0.5xTBE) at 50 V for 2.5 h. After obtaining a band pattern for each
bacterial strain, they were analyzed with GelJ [88]. Similarity trees were composed with the
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unweighted pair group method with arithmetic mean (UPGMA) with band difference 1.0.
The similarity cut-off value for the pair of strains treated as having the same profile was set
to >0.5. E. coli strains C49 and S. marcescens C19 were used for comparative purposes.

4.6. Statistical Analysis

The phenotypic assays (biofilm formation, motility) were tested for statistical signifi-
cance with ANOVA, followed by Tuckey post hoc test (p < 0.05), with Statistica 13.3 (StatSoft
Polska, Krakow, Poland). The principal component analysis (PCA) was also performed
with the use of Statistica 13.3.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/molecules27134151/s1, Figure S1: Swarming (A), swimming (B) and biofilm formation
(C) ability at room temperature (black) and at 37 ◦C (grey) of tested cephalosporin-resistant strains
isolated from meat samples. The results are presented as average for each species with standard
deviation (S. fonticola n = 16; S. liquefaciens n = 3; S. marcescens n = 1; En. cloacae n = 7; E. coli n = 8,
K. pneumoniae n = 6). C49—E. coli ATCC 25922; C19—S. marcescens KPD102-BA. The experiment
was performed twice with at least 3 replicates. Statistically different results between each species
tested at different temperatures were marked with an asterisk as tested with ANOVA followed by
Tuckey post hoc test at p < 0.05. Table S1. Summary of the collected samples from 5 supermarkets in
Gdansk, Poland (2020). The bacterial contamination was assessed with shown growth media. The
isolated strains divided into different species are listed for each of the collected sample. Table S2.
Third-generation cephalosporine-resistant strains (n = 41) isolated from meat samples during 2020 in
supermarkets in Gdansk, Poland. Table S3. The results of antibiotic resistance testing of each isolated
cephalosporin-resistant strain (n = 41).
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