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Transferability of correlative and process- based species 
distribution models revisited: A response to Booth

Abstract
Here, we respond to Booth's criticism of our paper, 
“Predictive ability of a process- based versus a correlative 
species distribution model.” Booth argues that our usage of 
the MaxEnt model was flawed and that the conclusions of 
our paper are by implication flawed. We respond by clari-
fying that the error Booth implies we made was not made 
in our analysis, and we repeat statements from the original 
manuscript which anticipated such criticisms. In addition, 
we illustrate that using BIOCLIM variables in a MaxEnt 
analysis as recommended by Booth does not change the 
conclusions of the original analysis. That is, high perfor-
mance in the training data domain did not equate to re-
liable predictions in novel data domains, and the process 
model transferred into novel data domains better than the 
correlative model did. We conclude by discussing a hidden 
implication of our study, namely, that process- based SDMs 
negate the need for BIOCLIM- type variables and therefore 
reframe the variable selection problem in species distribu-
tion modeling.

1  | INTRODUC TION

We welcome the critique of our recent contribution to Ecology and 
Evolution (Higgins et al., 2020) by Dr Booth (Booth, 2021), and in this 
response, we take the opportunity to show that his concerns are un-
founded and miss the point of Higgins et al. (2020). We begin by re-
sponding directly to the claims made in Booth's letter (Booth, 2021). 
The overarching argument is that it is possible to get better perfor-
mance out of a correlative model than we did in Higgins et al. (2020) 
if you use different environmental variables. Booth suggests that 
using monthly data in MaxEnt is inappropriate because months are 
not comparable between hemispheres (January in the north is very 
different to January in the south), and BIOCLIM variables overcome 
this. Unfortunately, Booth is not precisely clear about what aspect 

of our analysis, which accounted for such seasonal differences (see 
below), is at fault, and he does not reveal how one objectively and a 
priori defines more appropriate variables. But he is clear that in his 
assessment our usage use of what he terms “inappropriate variables” 
is severe enough to cast doubt on the validity of our conclusions 
that process- based models may have higher transferability than cor-
relative species distribution models; specifically, Booth states that 
“These conclusions may be true, but readers cannot be sure as there 
is a major problem with the variables selected for use.”

We anticipated this type of criticism in the original manuscript 
when we wrote in the discussion that “It is likely that different 
MaxEnt decisions (pseudo- absence sampling, regularization coef-
ficients, feature selection, and clamping) would change the results 
we present here.” and that “In this study, we provided both models 
with the same presence, pseudo- absence, and environmental data 
and use the default settings of the models. This favors the TTR- 
SDM since it has rather precise data requirements and this study 
met those requirements. MaxEnt was, in contrast, forced to do the 
best it could with environmental data tailored for the TTR- SDM.” 
Booth's letter draws attention to the validity of these statements, 
by explicitly providing an example of how using different variables 
in a MaxEnt model for Acacia saligna might enhance how MaxEnt 
performs in a transferability test.

Booth's letter implies that we ignored the fact that winter and 
summer fall in different months in different hemispheres. Indeed, if 
one did not relabel the months into a consistent seasonal sequence, 
this would compromise the between- hemisphere transferability of 
the MaxEnt models we fitted. We relabelled months so that month 1 
was the month after the winter solstice to avoid this problem when 
fitting and projecting the models. We unfortunately did make the 
error of not using this relabelling scheme when creating the zone 
map, which was used to stratify the sampling of presence and 
pseudo- absence data. However, this would have only influenced the 
weighting of the environmental conditions considered in the sam-
ples. And since all model variants used the same sample points, this 
issue is unlikely to explain the differences in model performance re-
vealed in Higgins et al. (2020); this is confirmed by the reanalysis we 
provide here. A corrected version of this zone map is in Figure S1 (cf. 
figure S1 in Higgins et al., 2020).
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This leaves us with the task of illustrating that our conclusions 
remain valid even when using what Booth considers to be appropri-
ate variables in the MaxEnt model. We thus ran an expanded analysis 
that included a MaxEnt model fit that uses the 19 BIOCLIM vari-
ables provided by Hijmans et al. (2005). That is, this expanded anal-
ysis uses MaxEnt- Monthly (MaxEnt using monthly environmental 
variables as in the original manuscript), MaxEnt- BIOCLIM (MaxEnt 
using BIOCLIM environmental variables), TTR- STD (Standard TTR 
model), and TTR- FQR (Farquhar TTR model). In the original manu-
script, we used the R command rgbif::occ_search (Chamberlain et al., 
2019) to download records from GBIF to create a data set of oc-
currences outside of the training data domain (outside of Australia). 
This unfortunately does not preserve attribution information on the 
data sources. In this reanalysis, we therefore use the R command 
rgbif::occ_download (Chamberlain et al., 2019) as this allows full at-
tribution. The different download procedures and dates produced 
different occurrence data in the non- native range. It is now possible 
to evaluate the model for 157 species instead of for 46 species as in 
the original manuscript. These differences in the GBIF test data do 
not influence the qualitative ranking or interpretation of the models 
performance outside of the training domain. Apart from these de-
tails, the protocol is as described in the original manuscript. We re-
peated all previous model fits for this analysis and slight differences 
in the model fits are present due to the usage of the corrected zone 
map (Figure S1) for the stratified random sampling of the occurrence 
pseudo- absence records (see Higgins et al., 2020).

We do not present all the statistics presented in the original man-
uscript here: Instead, we focus on the AUC values in the training and 
test domain and reproducing expanded versions of figures 5 and 6 
from the original manuscript. The AUC values derived for models 
evaluated against the training data (models fitted using the native 
range in Australia) when using MaxEnt- BIOCLIM were intermediate 
between MaxEnt- Monthly and the two TTR variants (median AUC 
values are, respectively, 0.992, 0.988, 0.971, and 0.969 for MaxEnt- 
Monthly, MaxEnt- BIOCLIM, TTR- STD, and TTR- FQR). The AUC 
values derived for models evaluated against observations made out-
side of the training data domain (in the non- native range, outside of 
Australia) when using BIOCLIM variables for MaxEnt models are also 
intermediate between MaxEnt using monthly variables and the two 
TTR variants (median AUC values are, respectively, 0.594, 0.628, 
0.703, and 0.777 for MaxEnt- Monthly, MaxEnt- BIOCLIM, TTR- STD, 
and TTR- FQR). That is, in this case study the rank order of AUC val-
ues are reversed in the training domain relative to the test data do-
main, suggesting that good performance in the training domain does 
not transfer to good performance in an independent testing domain.

The probability of the models correctly predicting a GBIF ob-
servation outside of Australia (i.e., outside of the training domain) 
decreases with increasing environmental dissimilarity from the train-
ing data, where environmental dissimilarity is calculated using the 

monthly environmental data as in the original manuscript (Figure 1, 
cf. figure 6 in Higgins et al., 2020). The increased sample size (more 
species and more GBIF occurrence data) rescales the y axis of this 
graph relative to the original manuscript; that is, all models per-
formed better when evaluated against this larger data set. However, 
the ranking remains the same. TTR- FQR performs best and its pre-
dictive ability decays slower with increasing environmental dissim-
ilarity than is the case for the other models. MaxEnt- BIOCLIM is 
better than MaxEnt- Monthly (as anticipated by Booth) but not as 
good as the two TTR- SDM variants.

Figure 2 is a revision of our original figure 5 which used Acacia 
saligna to illustrate differences between the models' projections. 
This revised Figure should additionally be compared to Booth's 
figure 3. Booth's figure 3 suggests that he used only Acacia saligna 
records from western Australia to fit the model, whereas we 
used all Australian records in the original analysis. Furthermore, 
motivated by previous research (Thompson et al., 2011), Booth 
selected a subset of BIOCLIM variables. The model Booth fitted 
predicts Acacia saligna to be present in all Mediterranean- type cli-
mate zones, but essentially nowhere else. Our MaxEnt- BIOCLIM 
fit in turn uses all 19 BIOCLIM (Hijmans et al., 2005) variables, 
and although it less clearly identifies all Mediterranean- type cli-
mate zones, it does identify some other regions such as Ethiopia 
where the species is observed in the GBIF records (see figure 5 

F I G U R E  1   The probability of the species distribution models 
correctly predicting GBIF records of the 157 study species with 
sufficient data outside of Australia. The lines represent the fits 
of a Bayesian logistic regression model to an environmental 
dissimilarity score. The dissimilarity score indicates dissimilarity 
relative to the training arena. The shaded areas indicate the 95% 
credible intervals. This is a revised version of figure 6 from Higgins 
et al. (2020)
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F I G U R E  2   Global projected environmental suitability of Acacia saligna for four different species distribution models. The species 
distribution models were trained using data from Australia. The projections are made for 0.25 degree grid cells. This is a revised version of 
figure 5 from Higgins et al. (2020)
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in Higgins et al., 2020). The Booth analysis misses that parts of 
Ethiopia are suitable for Acacia saligna. The point is, however, not 
to get distracted into debating the best MaxEnt model for Acacia 
saligna: It is that a good fit in the training data domain is not nec-
essarily a reliable indicator of predictive ability in a novel data 
domain. We should further not, in the context of our study, be 
distracted by discussions about MaxEnt variable selection proce-
dures and ignore the message of our paper that process- based 
species distribution models can be surprisingly transferable 
(Higgins et al., 2020). Indeed, process- based species distribution 
models are maturing into alternatives to correlative models (Evans 
et al., 2016).

We also wish to draw attention to the fact that there is a signif-
icant conceptual difference in how environmental data is treated in 
process versus correlative species distribution models. In the TTR- 
SDM, the model runs as a forward simulation, forced by monthly 
temperature, soil- moisture, solar radiation, and soil nitrogen values. 
The model's equations are set up so that these environmental vari-
ables can colimit a plant's resource assimilation and growth. That 
is, the model simulates that a plant's monthly resource assimilation 
and growth are colimited by the temperature, soil– moisture, solar 
radiation, and soil nutrients that a plant is exposed to each month 
of a year. This means that the model can directly mimic the fact that 
soil– water limits growth in the Mediterranean summer, whereas 
solar radiation and temperature may colimit in the Mediterranean 
winter. This essentially means that process- based models do not 
need BIOCLIM- type variables, which attempt to develop proxies for 
colimitation processes such as the temperature in the driest quarter 
or rainfall in the warmest quarter. That is, process- based models 
allow us to use our knowledge of plant physiology along with data 
on the fundamental environmental variables (light, water, tempera-
ture, and nutrients) that influence plant performance to make infer-
ences about the potential ranges of plant species. Fortunately, there 
are now increasingly sophisticated numerical libraries available 
for simulating microclimatic variables needed for forcing process- 
based species distribution models (Kearney et al., 2020). The chal-
lenge in process- based species distribution modeling is therefore 
not defining and selecting the forcing variables, but rather defining 
how to represent the ecophysiology of colimitation processes in el-
egant and efficient ways. Using process models frees us from the 
impossible task of producing climatic indices that correlate with the 
outcome of time- dependent colimitation dynamics.

Overall, the differences in how different SDMs use environ-
mental data make model comparisons difficult and the increasing 
diversity of models mean that comprehensive comparisons will soon 
require prohibitive effort. Booth's critique of our attempt to bench-
mark a boutique method (TTR- SDM) against a widely used method 
(MaxEnt) is a symptom of this problem. In Higgins et al. (2020), we 
suggested that data sets for benchmarking methods should be es-
tablished allowing developers of new methods to compare their 
analyses to analyses conducted by developers of existing methods. 
A model for how this could work was demonstrated by Magarey 

et al. (2018) who asked experts in different SDM methods to analyze 
the same data in the context of a transferability test.
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