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Abstract

Background: Transgenic chloroplasts are potential bioreactors for recombinant protein
production, especially for achievement of high levels of protein expression and proper folding.
Production of therapeutic proteins in leaves provides transgene containment by elimination of
reproductive structures. Therefore, in this study, human Insulin like Growth Factor-| is expressed
in transgenic chloroplasts for evaluation of structural identity and function.

Results: Expression of the synthetic Insulin like Growth Factor | gene (IGF-Is, 60% AT) was
observed in transformed E. coli. However, no native IGF-I gene (IGF-In, 41% AT) product was
detected in the western blots in E. coli. Site-specific integration of the transgenes into the tobacco
chloroplast genome was confirmed after transformation using PCR. Southern blot analysis
confirmed that the transgenic lines were homoplasmic. The transgenic plant lines had IGF-Is
expression levels of 11.3% of total soluble protein (TSP). The IGF-In plants contained 9.5% TSP as
IGF-1In, suggesting that the chloroplast translation machinery is more flexible than E. coli in codon
preference and usage. The expression of IGF-1 was increased up to 32% TSP under continuous
illumination by the chloroplast light regulatory elements. IgG-Sepharose affinity column
chromatographic separation of Z domain containing chloroplast derived IGF-1 protein, single and
two dimensional electrophoresis methods and mass spectrometer analysis confirmed the identity
of human IGF-I in transgenic chloroplasts. Two spots analyzed from 2-D focusing/phoresis
acrylamide gel showed the correct amino acid sequence of human IGF-I and the S. aureus Z-tag.
Cell proliferation assays in human HU-3 cells demonstrated the biological activity of chloroplast
derived IGF-1 even in the presence of the S. aureus Z tag.

Conclusion: This study demonstrates that the human Insulin like Growth Factor-| expressed in
transgenic chloroplasts is identical to the native protein and is fully functional. The ability to use
plant chloroplasts as bioreactors to generate proteins of great economic value that retain their
biological activity is an exciting and achievable goal that appears to be within our grasp.
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Background

Insulin-like growth factor 1 is an anabolic hormone pro-
duced in the liver that is known to stimulate proliferation
and differentiation of many cell types and plays an impor-
tant role in tissue renewal and repair [1]. Growth hormone
binds to specific receptors on the hepatocyte cell mem-
brane and triggers a mechanism (largely undefined), that
synthesizes and releases IGF-1 into the blood [2]. The nor-
mal levels of IGF-1 are between 120-400 ng/ml [3].
Because of important IGF-1 functions in the body, people
who suffer IGF-1 deficiency also experience many harmful
side effects [4]. Patients with liver cirrhosis have a reduction
of the GH receptor in the hepatocytes and the diminished
synthesis of the liver parenchyma causes a significant
decrease of IGF-I levels in the blood (20 ng/ml and fre-
quently to undetectable levels). This reduction in IGF-1
results in systemic problems including muscle atrophy,
osteopenia, hypogonadism, protein-calorie malnutrition,
weight loss, and many others [5]. Studies in rats with liver
cirrhosis showed that treatments with low doses of IGF-I
help to induce significant improvements in intestinal
absorption [6], hypogonadism [7], and liver functions [8].
Replacement therapy with IGF-1 in liver cirrhosis patients
requires daily doses of 1.5 to 2 mg. Thus, a single patient
would need to consume about 600 mg IGF-1per year. How-
ever, IGF-1 treatment is very expensive. In addition to the
applications described above, IGF-1 is used in treatment of
dwarfism [9], diabetes [10] and osteoporosis [11].

Currently, most of the IGF-1 that is available is synthe-
sized in E. coli [12] or yeast [13]. Construction and main-
tenance of fermentation systems are very expensive. In
addition, formation of inclusion bodies in E. coli or vari-
able biological activities of different forms of IGF-1 in

A. Native IGF-1
ggaccggagacgctctgcggggctgagctggtggatgctcttcagttcg
tgtgtggagacaggggcttttatttcaacaagcccacagggtatggctcc
agcagtcggagggcgcctcagacaggcatcgtggatgagtgctgcttc
cggagctgtgatctaaggaggctggagatgtattgcgcacccctcaag
cctgccaagtcaget

B. Synthetic IGF-1
ggtcctgaaactttatgitggtgctgaattagtagatgctitacaattcgtatg
tggtgatcgtggittctatttcaacaaacctactggttacggttctictictcg
tcgtgctectcaaactggtattgtagatgaatgttgtttecgticitgtgattta
cgtcgtitagaaat gtactgtgctcctttaaaacctgctaaatctgcet

Figure |

Nucleotide sequence of IGF-I genes. A) Nucleotide
sequence of the native IGF-In gene. B) Nucleotide sequence
of the synthetic IGF-/s gene optimized for chloroplast
expression. Red letters show nucleotides that were modified
in the IGF-Is gene.
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yeast are disadvantages of current production systems.
Transgenic plants are good expression systems for large-
scale production of recombinant proteins at industrial
levels. Plant systems have many advantages including the
low cost of growing plants on a large scale, the availability
of natural protein storage organs, and the established
practices for their efficient harvesting, transporting, stor-
ing, and processing [14]. It has been estimated that the
cost of producing recombinant proteins in plants could be
10 to 50 fold lower than producing the same protein by E.
coli via fermentation [15].

However one major drawback of expression of human
blood proteins via the nuclear genome is their low levels
of expression, mostly less than 1% of the total soluble
protein. Some examples of these proteins are human
serum albumin 0.02%, haemoglobin 0.05%, and erythro-
poietin 0.0026% of total soluble protein [16,17]. Also, a
synthetic gene coding for the human epidermal growth
factor was expressed only up to 0.001% of total soluble
protein in transgenic tobacco [17]. IGF-1 expression level
in transgenic rice and tobacco was in the range of 22-113
ng/mg protein or 0.002 - 0.011% total soluble protein,
after optimization of codons for plant expression and use
of optimal regulatory sequences with or without leader
peptides [18]. Although improvements have been made
recently for enhancing expression of foreign genes [19],
most progress has been made in expression of vaccine
antigens [20,21] and monoclonal antibodies [22] using
plant viral technology. However, there are not many
examples of high level expression of human blood pro-
teins using nuclear transgenic plants. The most commonly
encountered challenges are random integration of trans-
genes into the nuclear genome leading to position effect
and transgene silencing, resulting in low levels of foreign
gene expression. The position effect could be eliminated

1 2 3
kDa
25 —
15 —
Figure 2

IGF-1 Expression in E. coli. Expression of IGF-I in west-
ern blots was detected using mouse anti-human IGF-1. Lane:
I-untransformed E. coli; Lane 2-pLD5'UTRZZTEVIGF-In;
Lane 3: pLD5'UTRZZTEVIGF-Is. The zz tag-TEV-IGF-|
polypeptide has a molecular size of 24 kDa.
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Figure 3

Chloroplast vectors and PCR confirmation of transgene integration. A) Two chloroplast expression cassettes were
made, one with the IGF-In gene and another with the IGF-Is gene (for complete sequence, see figure 1). A) The blue dotted
lines show regions of homologous recombination with the chloroplast genome. Regulatory sequences used were from the
tobacco chloroplast genome: Prrn: 16S rRNA promoter; 5'UTR: the psbA promoter and 5' UTR; 3'UTR: the psbA 3' UTR. The
primers 3P & 3M and 5P & 2M were used to confirm the integration of the IGF-/ gene cassette into the chloroplast genome.
The primer (3P, 3M or 5P, 2M) landing sites for PCR reactions are shown in green boxes. Transgenic lines should produce a
1.65 kb PCR product with 3P & 3M primers and 2.5 kbp products with 5P & 2M primers. B) Lanes 1-3: IGF-Is transgenic lines;
lane 4: Untransformed control. C) Lanes 1—4: IGF-1n transgenic lines; lane 5: Untransformed control. D) Lanes |-3: transgenic
lines with the 5'UTRZZTEVIGF-Is gene cassette; Lanes 4-6: Transgenic lines with the 5'UTRZZTEVIGF- I n gene cassette. Lane
7: Untransformed control. Lanes marked MW show | kbp DNA ladder.

by site specific integration of transgenes into the chloro-
plast genome [23,24]. No gene silencing has been ever
reported in transgenic chloroplasts. In spite of expression
of transgenes up to 46% of the leaf protein [25] or 150-
170 fold higher transcription than the nuclear transgene
[26,27], no gene silencing has been observed in transgenic
chloroplasts. Yet another major advantage of transgene
expression via the chloroplast genome is their contain-

ment because of maternal inheritance of chloroplast
genome [28,29]. Containment of foreign genes via pollen
or seeds is achieved by their expression only in leaves or
vegetative tissues and their harvest before emergence of
reproductive structures.

Based on these advantages, several vaccine antigens and

biopharmaceuticals have been expressed in chloroplasts
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Figure 4

Southern blot analysis. A flanking sequence probe (810 bp) was obtained from the trnA/trnl genes (indicated by red lines in
4A). Regulatory and coding sequences are the same as in figure 3A. This map also shows the chloroplast DNA fragment that
hybridizes with this probe. Untransformed genome hybridized with a 4.47 kbp fragment whereas transformed chloroplast
genomes hybridized with two fragments of 5.2 kbp and 930 bp. B) Lane |: Untransformed control; Lanes 2—3: IGF-Is transgenic
lines (T, generation); Lanes 4-5: IGF-1s transgenic lines (T, generation); Lanes 6—7: IGF-In plants (T, generation); Lane 8: posi-
tive control. C) The IGF-I coding sequence was used as a probe to confirm integration of the IGF-/ gene into the chloroplast
genome. The transgenic lines that contain the IGF-/ show a 930 bp fragment. Lane: |- untransformed, Lanes 2—3: IGF-/s trans-
genic lines (TO0), 4-5: IGF-Is transgenic lines (T1); 6-7: IGF-In transgenic lines; Lane 8: blank; Lane 9: the IGF-1 probe as a posi-
tive control.
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Figure 5

Northern blot analysis. A) The map of pLD-5'UTR-ZZTEVIGF-| shows a monocistron transcript of 1099 nt, a dicistron
transcript of 2019 nt, and polyciston transcript of 4519 nt. B) Lane |: untransformed control. Lanes 2-3: 5’'UTRZZTEVIGF-1s
transgenic lines (T0); Lanes 4-7: 5’UTRZZTEVIGF-Is transgenic lines (T1); Lanes 8-9 5'UTRZZTEVIGF-In Protein quantifica-
tion by ELISA in (T0); Lane 10: blank; Lane | I: IGF-1 probe used as a positive control.

and their efficacy has been evaluated. For example vaccine
antigens have been expressed against bacterial, viral and
protozoan pathogens and have been shown to be immu-
nogenic and offer protection against pathogen challenge
[30-36]. Similarly, several human blood proteins includ-
ing somatotropin [37], interferon alpha [38], interferon
gamma [39] and insulin [40], were expressed in chloro-
plasts and shown to be properly folded and fully func-
tional. However, no detailed study has yet been reported
on evaluation of the structure of human blood proteins or
their amino acid sequence or codon usage. Therefore in
this article, we investigate optimization of codon compo-
sition of the human IGF-1 and compare expression of the

native and synthetic genes at different stages of growth
and development of transgenic lines under normal or
continuous illumination. After purification of chloroplast
derived IGF-1 using IgG sepharose affinity column chro-
matography, 2-D, electrophoresis and mass spectrometer
analyses were used to investigate structural identity. Cell
proliferation assay was used to evaluate biological activity
of chloroplast derived IGF-1.

Results

Chloroplast vectors with native and synthetic IGF-1 genes
Analysis of the codon composition of IGF-1 gene revealed
a less than optimal AT content of 41% for chloroplast
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Figure 6

Western Blot Analysis. The plant samples were run in
12% SDS-PAGE and the blot was detected using mouse anti-
human IGF-I. Lane |: 5'UTR-ZZTEV-IGF-In transgenic line.
Lane 3: T, 5'UTR-ZZTEV-IGF-Is transgenic lines. Lane 4: T|
5'UTR-ZZTEV-IGF-Is transgenic lines. Lanes 5-8: IGF-1|
standards with a concentration of 10 ng, 25 ng, and 50 ng.

http://www.biomedcentral.com/1472-6750/9/33

expression. The most highly translated protein in the
chloroplast is encoded by the psbA gene; therefore codon
composition of this gene served as a model for IGF-1 opti-
mization (Figure 1). After optimization of the IGF-1 gene,
the AT content was increased from 41% to 60%. One goal
of this study was to compare expression levels of the
native IGF-1 (IGF-1n) gene to the optimized, synthetic
IGF-1 (IGF-1s) gene. To test the expression levels of IGF-
1n and IGF-1s, tobacco plants were transformed with the
chloroplast transformation vector (pLD) containing
either the IGF-1s or IGF-1n gene. The pLD vector contains
the homologous recombination sequences trnl and trnA,
that allowed site specific integration into the chloroplast
genome as described previously [23,24]. Both the native
and synthetic genes contain the psbA promoter and 5'
UTR, which enhances translation under illumination. The
psbA 5' UTR is a cis acting regulatory element, controlling
the translation of genes in higher plants. In addition, both
constructs contain a 3' UTR, shown to increase the stabil-
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Figure 7

IGF-1 expression in transgenic chloroplasts. ELISAs show IGF-| expression as percentage of the total soluble protein. A)
Transgenic lines grown in a 16 hours light and 8 hours dark photoperiod; T, are mature plants and T is a younger plant. B)
Transgenic lines grown in continuous light for 13 days; C) Protein quantification by ELISA in young (Y), mature (M), and old (O)
transgenic leaves. Young leaves were among the top few leaves; mature leaves were fully grown, present in the middle of the
plant; the bottom few scenescing leaves were identified as old. D) Protein quantification by ELISA in seedlings and potted plants
grown for 5 days and |5 days. E) IGF-1 expression in IGF-1s Tyand T, transgenic lines. F) IGF-Is present in the total and soluble

fractions of T, and T, generations.
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Figure 8
Chloroplast derived IGF-1 before and following
hydroxylamine treatment. Transgenic tobacco IGF-1 was
purified from centrifuged plant homogenates by IgG-sepha-
rose affinity column chromatography. Proteins eluted from
the IgG-sepharose column were identified by polyacrylamide
gel electrophoresis. Lanes from left to right: molecular
weight marker proteins (MW), human insulin like growth fac-
tor | (human IGF-1), tobacco chloroplast-derived human
IGF-1, (IGF-1A). Darker upper broad band of approx. 15 kDa
= IGF-1 linked to Staphylococcus aureus Z domains. Partial
removal of S. aureus Z domains by hydroxylamine cleavage
(IGF-1B), lower broad band = IGF-1. Right lane = human
insulin.

ity of the transcript [41]. The integration of either IGF-1
gene cassette into the inverted repeat region should dou-
ble the transgene copy number.

The IGF-1 gene was fused to the ZZ tag to facilitate the
purification process. Creating this fusion increases the
protein's stability and protects the polypeptide from pro-
teolytic degradation. The pLDG-IGF-1n and pLDG-IGF-1s
vectors were designed with the Glu-Asn-Leu-Tyr-Phe-GlIn-
Gly amino acid sequence, which is recognized by the
Tobacco Etch Virus (TEV) protease and cuts between the
GIn-Gly. In this way, the IGF-1 polypeptide can be
released without any extra amino acids.

IGF-1 expression in E. coli using chloroplast vectors

The chloroplast expression system utilizes many prokary-
otic features including transcription and translation.
Therefore, western blot analysis was used to detect IGF-1
expression in E. coli. When the two plasmids, IGF-1s and
IGF-1n were tested in E. coli, expression of the protein was
detected only in clones with the synthetic gene (Figure 2)
and not in the native human IGF-1. Therefore this obser-
vation confirms that an optimized gene enhances transla-
tion in a prokaryotic system (E. coli).

Confirmation of site-specific transgene integration
Tobacco leaves were bombarded with the pLDG-IGF-1s
and pLDG-IGF-1n vectors. After 48 hours of incubation in

http://www.biomedcentral.com/1472-6750/9/33

the dark, the bombarded leaves were cut into small pieces
(5 mm square) and placed in RMOP medium with spec-
tinomycin selection (500 mg/1). This high concentration
of spectinomycin helped to eliminate untransformed cells
and cells in which the gene cassette integrated into the
nuclear genome (because nuclear transformed plants do
not produce enough aadA enzyme to overcome such high
levels of antibiotic selection). After four weeks of growth
on the selection medium, the putative transgenic green
shoots appeared from bleached leaves. The 3P and 3M
primer pair that land in the native chloroplast genome
and in the aadA gene, respectively, confirmed integration
of the gene cassette into the chloroplast genome (Figure
3A). Transformed plants that have the gene cassette inte-
grated into the chloroplast genome showed a 1.65 kb PCR
product (see Figures 3B, C). Plants that grew in the selec-
tion medium but did not show transgene integration in
the chloroplast genome are most likely mutants, with
mutations in the 16S rRNA gene. Transgenic shoots that
show the 1.65 kb PCR product have the gene cassette inte-
grated into the chloroplast genome. Those shoots that
produced the correct size PCR product were cut into small
pieces and transferred into fresh RMOP medium with
spectinomycin for a second round of selection. After
transgenic shoots were obtained from the second round of
selection, they were tested with the 5P-2M primers to con-
firm the integration of the aadA and IGF-1 genes into the
tobacco chloroplast genome. The positive transgenic
shoots produced a 2.5 kb PCR product (see Figure 3D).

Evaluation of homoplasmy
The potted plants were tested by Southern blot analysis to
evaluate if transgenic lines were homoplasmic or hetero-

36
31

(A)ZZIGF1 _, 21
(BIZIGF1 —p 14

60
{€)I1GF1 —p59

Figure 9

The IGF-1 proteins isolated from the IgG-sepharose
column were separated on a 2-D focusing/phoresis
acrylamide gel. Five g of the IGF-1 — S. aureus fusion pro-
tein was loaded on a 10% bis-acrylamide gel for electrofocus-
ing and phoresis. Electrofocusing was conducted initially over
a pH range of 4-10. Following isoelectric focusing and elec-
trophoresis, four proteins (6, 7, 14 and 25 kDa) were
detected after Coomassie Blue staining. These proteins cor-
responded in molecular weight to ZZ-IGF-1 (A), Z-IGF-1 (B)
and IGF-1 (C).
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Figure 10

Mass Spectrometry Analysis of Chloroplast Synthesized Human IGF-1. The 7, 14 and 25 kDa protein bands were
trypsin-digested and evaluated by mass spectrometry. The top panel is the pure MS without fragmentation. The second panel
shows all of the significant MS/MS events derived from the MS scans. The third panel shows the MS/MS events that yielded a
fragment with m/z 1421 +/- | mu. These were all grouped together in one cluster eluting at 55.32. S. aureus protein A was
found in all spots examined and the active portion of IGF-1 was identified. In at least two of the spots analyzed, human IGF-|
and S. aureus Z-tag was detected. Shown are full MS and MS/MS patterns for discovery of peptide 105—1 16 with an elution time
of 55.32 for a single charge mass of 1421.1 and a double charge mass of 711.6.

plasmic. The flanking sequence probes allowed us to iden-
tify if all the chloroplast genomes are transformed
(homoplasmic) or if both the transformed and untrans-
formed chloroplast genomes were present (heteroplas-
mic). This probe contained portion of the trnl and the
trnA genes and therefore, the probe hybridized with the
trnl and trnA genes that are in the chloroplast genome
(Figure 4A). The transgenic and untransformed plant
DNA were digested with Bgl II restriction endonuclease,
which produced two DNA fragments (5.2 kb and 0.93 kb)
in transgenic plants and one fragment of 4.47 kb in
untransformed plants. The T, transgenic plants containing
the IGF-1s and the IGF-1n showed only the two fragments
of the transgenic chloroplast (5.2 kb and 0.93 kb), con-
firming that these plants had achieved homoplasmy (Fig-
ure 4B). The T, IGF-1s plants were also homoplasmic
[seeds were germinated on MSO with very high concentra-
tion of (500 mg/l) of spectinomycin]. A second probe

(IGF-1 probe) was used to confirm the integration of the
IGF-1 gene into the chloroplast genome of these trans-
genic lines (Figure 4C). All of the transgenic lines showed
the 930 bp fragment produced by the Bgl II digestion con-
firming that the IGF-1 gene was integrated into the chlo-
roplast genome. Untransformed plants did not show this
fragment in the Southern blots.

Evaluation of chloroplast transcripts

The potted plants were grown in a photoperiod of 16
hours of light and 8 hours of dark at 27°C. RNA was
extracted from transformed and untransformed tobacco
plants to perform northern blot analysis. Transcripts of
about 1099 nucleotides were observed in the transgenic
lines, which contains the psbA promoter, 5' UTR, the IGF-
1 gene, and psbA 3' UTR. This mRNA is considered mono-
cistronic and it is the most abundant transcript in all
transgenic lines (Figure 5A, B). In addition, dicistronic
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Figure 11

Chloroplast synthesized human IGF-1 stimulates the
growth and proliferation of human cells in culture.
Proliferation of human megakaryoblastic HU-3 cells were
investigated by phase contrast light microscopy at 4 and 7
days after the addition of hulGF-1. Left panel: Four day HU-3
cell culture to which no chloroplast synthesized IGF-1 was
added (400 x magnification). Right panel: HU-3 cell culture of
the same age to which 62 ng/ml chloroplast-derived, partially
purified IGF-1 was added at time zero (100 x magnification).

and polycistronic transcripts were observed in lower
abundance in the chloroplast transgenic lines. Northern
blot analysis also showed that the IGF-1s and the IGF-1n
transgenic lines had similar transcript abundance and
there were no significant differences at the transcriptional
level between the IGF-1n and IGF-1s genes. Also, unusual
transcripts were not observed in the native gene, confirm-
ing the lack of non-specific processing of transcripts.

IGF-1 Expression in Transgenic Chloroplasts

Western blots made using protein extracts from plants grown
in a photoperiod of 16 hours of light and 8 hours of dark
showed that the plants transformed with IGF-1s and IGF-1n
genes were expressing the IGF-1 polypeptide, which had a
molecular weight of 24 kDa (Figure 6). Autoradiographs were
used to quantify the amount of IGF-1 expressed in the differ-
ent transgenic lines using Alpha Imager and AlphaEase FC
software (Alpha Innotech) by comparison with known quan-
tities of IGF-1 standard. The IGF-1n plants had an expression
level of 10.9% IGF-1 in the total soluble protein (%TSP). The
IGF-1s plants (T,,)) had a 12.5% TSP and the T1 plant (T1 plant
is a younger plant and T}, is a mature plant) had a 4.8% TSP.
Enzyme-linked immunosorbent assays (ELISA) were per-
formed in the same transgenic lines to further confirm protein
quantification. ELISAs showed that IGF-1n transgenic lines
had an expression level of 9.5% TSP. The IGF-1s transgenic
lines (T,,) had 11.3% TSP and the T1 transgenic lines had 4.9%
TSP (Figure 6, 7A). Thus, expression levels were confirmed by
both methods.

The transgenic tobacco lines were exposed to continuous
light for 13 days to evaluate IGF-1 expression levels,
because the psbA promoter and 5' UTR are regulated by
light. ELISAs showed more than 2 fold increase in the
expression levels after the transgenic lines were exposed

http://www.biomedcentral.com/1472-6750/9/33

for 5 days of continuous light (Figure 7B). The IGF-1s
transgenic line (T,) had an IGF-1 expression level of
32.7% TSP and T, transgenic line had 26.6% TSP, because
these were younger plants. The IGF-1n-plant (T,) had an
expression level of 32.4% TSP. The expression levels were
measured again after 9 and 13 days. For both IGF-1s and
IGF-1n, the ELISAs showed a decrease in the expression
levels (Figure 7B), although the decrease was more signif-
icant in IGF-1n transgenic lines. Additionally, IGF-1 pro-
tein accumulation was measured in young, mature, and
senescing leaves. A young leaf was taken from the top five
leaves, the mature leaf was green and fully-grown from the
mid-section of the plant, and the old leaf was senescent
and from the very bottom of the plant. Figure 7C shows
that all transgenic lines had a higher IGF-1 expression in
mature leaves. Younger leaf cells contained fewer chloro-
plasts and the psbA was developmentally regulated; there-
fore, expression levels were less than mature leaves. Older
senescent leaves had lower accumulation of IGF-1 proba-
bly due to higher proteolytic activity. Another experiment
was performed to quantify IGF-1 expression during plant
development by comparing seedlings and plants after 5
days and 15 days of growth in pots. The transgenic
tobacco line showed an IGF-1 expression level of 2.71%
TSP in the seedling, 3.2% TSP after 5 days in the pot and
4.9% TSP after 15 days in the pot (see Figure 7D), con-
firming developmental regulation of the psbA promoter.
ELISA experiments showed that the expression levels
between the T, and the T, transgenic lines were very simi-
lar (Figure 7E). Quantitation of IGF-1 in different fraction
showed that it was present in both the total and soluble
fractions (Figure 7F), suggesting that some of the IGF-1 is
in the insoluble fraction.

Purification and characterization of IGF-1 expressed in
chloroplasts

Human insulin like growth factor (IGF-1) linked to the S.
aureus Z tag was isolated by IgG Sepharose affinity column
chromatography and examined by polyacrylamide gel
electrophoresis for purity (Figure 8). Partial removal of
the Staphylococcus aureus Z domains from chloroplast-
derived IGF-1 was obtained following hydroxylamine
cleavage of the S. aureus Z domain - IGF-1 fusion protein
(Figure 8). Immunoblot analysis using human anti-IGF-1
as the primary antibody identified the two bands as con-
taining IGF-1 (Figure 8).

To confirm IGF-1 structure by mass spectrometry, 2D
focusing/phoresis was performed on the chloroplast syn-
thesized IGF-1 protein. Four protein spots were detected
at 6, 7, 14 and 25 kDa after staining with Commassie Blue
(Figure 9). The 7, 14, and 25 kDa spots were digested with
trypsin and evaluated for the presence of IGF-1 peptides
by MS/MS mass spectrometry using a Thermo LCQ Deca
XP mass spectrometer fitted with a nanospray RP column
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Effect of chloroplast-derived IGF-1 on HU-3 cell proliferation. IGF-| was added to HU-3 cells; 48 hours later, cell pro-
liferation was measured by the Cy-QUANT NF Cell proliferation assay (Invitrogen) and by hemocytometer counting. Prolifer-
ation was measured by fluorescence determination of DNA replication based on intercalation of a fluorescent dye into double
stranded DNA. Cell proliferation was determined according to the instructions supplied by the manufacturer. Red (chloroplast
derived IGF-I), blue (Sigma IGF-1), and green (negative control) lines represent the best fit of the respective data points for
each proliferation assay treatment. Top row shows concentration (ng/ml) of IGF-1 (Sigma). Bottom numbers are dilution factor
of chloroplast-derived IGF-1. Negative control is the dilution of the TS buffer.

(Figure 10, all panels). Evaluation of the spectra was
accomplished with X-Tandem software matching against
the fasta databases for S. aureus and H. sapiens. The fasta
databases provide in simple single letter format, the pri-
mary protein sequences contained in the explored sample
http://www.ncbi.nlm.nih.gov. In figure 10, the top panel
is the pure MS without fragmentation. The second panel
shows all of the significant MS/MS events derived from
the MS scans. The third panel shows the MS/MS events
that yielded a fragment with m/z 1421 +/- 1 mu. These
were all grouped together in one cluster eluting at 55.32.
The elution time of 55.32 shows a single charge mass of
1421.1 and a double charge mass of 711. 6. The X-Tan-
dem software identified S. aureus protein A in all the spots
examined (Figure 10, top and middle panels). Sequest

software (University of Washington, Seattle) permitted
identification of the active portion of IGF-1B and identi-
fied 5 tryptic peptides yielding dozen ions ranging from
M/Z 326 to 2306 (Figure 10, top and middle panels). The
heaviest spot on the 2D gel (25 kDa) gave an IGF-1 signal
on three peptides from this spot. Of particular significance
were signals generated by peptide 70-84 (GFYFNKPT-
GYGSSSR yielding 1669, 834 and 557 ions) and peptide
105-116 (LEMYVAPLKPAK yielding 1422 and 711.6 ions
(Figure 10). Signals for these peptides were also found in
the second heaviest 14 kDa band (Figure 10). Thus, in at
least two of the spots analyzed from the 2D gel separation
of the IgG sepharose column eluate, it was possible to
identify both human IGF-1 and the S. aureus Z tag domain
(Figure 10).
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The biological activity of partially purified human IGF-1
preparations isolated from tobacco chloroplasts was
established by measurement of IGF-1 stimulation of
mammalian cell proliferation. Briefly, human megakary-
oblastic (HU-3) cells carrying the IGF-1 receptor were cul-
tured in RPMI-1640 medium. At the beginning of the time
course assay, commercial human IGF-1 (Sigma), or IGF-1
partially purified from tobacco chloroplasts was added to
each well at several different concentrations. The cell cul-
tures were incubated at 37°C for 48 hours and a portion
of each culture was stained with Trypan Blue dye to quan-
tify cell viability prior to cell proliferation measurements
as reliably determined by hemocytometer cell counting
methods. Murine 3T3 fibroblasts carrying the IGF-1 recep-
tor were maintained in DMEM medium and were evalu-
ated in different concentrations of IGF-1 by the
CyQUANT NF Cell proliferation assay (Invitrogen Inc.,
San Diego, CA) and by hemocytometer counting meth-
ods. Cell proliferation was measured by fluorescence
measurements of DNA replication based on intercalation
of a fluorescent dye™ into double stranded DNA. While
increased numbers of mouse 3T3 cells were detected as
compared to the uninoculated control, this increase was
significantly less than the increase in human HU-3 cell
numbers stimulated by plant synthesized IGF-1 (Figure
11). Red, blue and green lines represent the best fit of the
respective data points for each proliferation assay (Figure
12). At the beginning of the time course assay, commer-
cial human IGF-1 with purity >97 (Sigma [3769) or par-
tially purified chloroplast-derived IGF-1 or TS buffer (as a
negative control) was added to cells in 3 wells at different
concentrations. The error bars represent growth differ-
ences among these wells of the tissue culture plate. Chlo-
roplast-derived IGF-1 was tested starting from dilution
1:4, which corresponded to 10,000 ng/ml IGF-1. Addition
of chloroplast-derived IGF-1 resulted in a dose-dependent
growth response at low concentrations. The effective
range was in dilutions at 1: 2000 - 1: 32 000, which cor-
responded to 20 -1 ng/ml IGF-1. Worthy of note, is the
observation that the maximal level of the cell proliferation
was seen with commercial IGF-1 (Sigma) almost at simi-
lar concentrations.

Chloroplast-derived IGF-1, at higher concentrations (dilu-
tions between 8 -128) did not significantly stimulate the
proliferation of the HU-3 cells; this could be due to some
impurity present in these preparations that were obtained
with rapid purification. However, >97% pure commercial
IGF-1 also did not show dose dependent increase between
300 ng/ml and 10,000 ng/ml concentrations. These
results suggest that both the commercial and plant synthe-
sized IGF-1 have similar levels of mitogenic activity and
that the apparent dip in the dose response curve at higher
IGF-1concentrations may be due to currently unknown
environmental factors that had an approximately equal

http://www.biomedcentral.com/1472-6750/9/33

effect on the two sources of IGF-1. Therefore, addition of
chloroplast-derived IGF-1 resulted in a dose-dependent
growth response of HU-3 cells, very similar to commercial
IGF-1. Alterations in the mitogenic response to decreasing
IGF-1 dosage are similar in both chloroplast-derived IGF
and commercial IGF inoculated cell cultures. These obser-
vations argue against specific differences between chloro-
plast-derived and commercial IGF-1. Chloroplast-derived
IGF-1 functioned efficiently in spite of the presence of ZZ-
tag and possibly other impurities present after rapid puri-
fication.

Discussion

Transplastomic lines express significant amounts of
human IGF-1. The difference in IGF-1 expression levels is
insignificant between the synthetic and native genes in the
chloroplasts. This may be due to optimal levels of expres-
sion already achieved with the native gene and limitations
of the chloroplast protein synthetic machinery other than
codon usage. On the contrary, the IGF-1 polypeptide was
only expressed in the E.coli cells that contain the IGF-1s.
These results show that E. coli translational machinery
may be different from chloroplast in codon preference
and usage. Although previous studies used chloroplast
vectors for expression of foreign proteins in E. coli, this is
the first time a dramatic difference has been observed
between these two systems in their translation machinery.

The psbA promoter and 5'UTR were used in the pLDG-
IGF-1n and pLDG-IGF-1s vectors to enhance the protein
expression. The expression levels increased more than 2
fold after five days in continuous light. Also, IGF-1 expres-
sion levels increased during plant development. Both
light regulation and developmental regulation of the psbA
gene is well known in the literature although this study
has further confirmed the role of such regulatory elements
using a human blood protein. This information will be
useful in various biotechnology applications. Similarly,
IGF-1 expression was measured in young, mature and old
leaves. The IGF-1 expression was higher in mature leaves
and this again provides an ideal time to harvest this pro-
tein in the green house or field.

Maternal inheritance of genetically modified chloroplast
genomes and the absence of any reproductive structures
when foreign proteins are expressed in leaves, offer effi-
cient transgene containment and facilitates their safe pro-
duction in the field [28,29]. Two recent studies point out
efficient control of maternal inheritance of transgenes in
transplastomic tobacco. Ruf et al [42] set up a stringent
selection system for paternal transmission by using male
sterile maternal parents and transplastomic pollen donors
conferring plastid specific antibiotic resistance and green
fluorescence for visual screening. This selection system
identified six among 2.1 million seedlings screened (fre-
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quency of 2.86 x 10-¢) that showed paternal transmission
of transgenes and the authors concluded that plastid
transformation provides an effective tool to increase
biosafety of GM crops. Svab and Maliga [43] examined the
contribution of alien cytoplasm to rare paternal plastid
transmission and reached similar conclusions. Transplas-
tomic plants producing human therapeutic proteins have
been already tested in the field after obtaining USDA-
APHIS approval [38]. Because of such unique advantages,
transgenic chloroplasts have been used for expression of
human therapeutic proteins [30-40,44].

IgG-Sepharose affinity column chromatographic separa-
tion of Z domain containing chloroplast derived IGF-1
protein confirmed a protein with a molecular mass corre-
sponding to human IGF-1. Staphylococcal protein A
(SPA) is an immunoglobulin-binding receptor present on
the surface of the gram positive bacterium Staphylococcus
aureus. The strong and specific interaction between SPA
and the constant part (Fc) of certain immunoglobulins
(Ig) have made it useful for purification and detection of
immunoglobulins in a variety of different applications
[45,46] and therefore in our study the ZZ tag was used for
purification of IGF-1 fusion proteins expressed in chloro-
plasts. SPA does not contain any cysteine residues that
could interfere with the disulfide formation within a fused
target protein [47]. The hydroxylamine cleavage resulted
in approximately 40% cleavage of the ZZ tagged IGF-1 to
IGF-1 + ZZtag-IGF-1 as observed by acrylamide gel stain-
ing following gel electrophoresis. Hydroxylamine cleav-
age was more efficient than TEV protease and less
expensive but resulted in full length IGF-1 with no extra
amino acids. There is evidence that dependent upon the
fusion protein, the ZZ tag can be more or less resistant to
hydroxylamine cleavage. This may be responsible for the
reduced level of ZZ-tag cleavage [48].

Conclusion

The presence of human IGF-1 in purified plant extracts
was confirmed by single and two dimensional electro-
phoresis methods and the structural elements of chloro-
plast-derived IGF-1 was further confirmed by mass
spectrometer analysis. Cell proliferation assays confirmed
the biological activity of chloroplast derived IGF-1 and
found that human HU-3 cells react strongly to the addi-
tion of chloroplast generated IGF-1 even in the presence
of the S. aureus Z tag. Proper functionality of IGF-1 sug-
gests that required disulfide bonds are formed. Presence
of disulfide bonds in several chloroplast-derived human
blood proteins including interferon alpha, gamma and
somatotropin [37-39] was evaluated by their functionality
in cell culture assays. Therefore, therapeutic proteins
expressed in transgenic chloroplasts have proper post-
translational modifications and are fully functional.

http://www.biomedcentral.com/1472-6750/9/33

While purification of chloroplast generated human IGF-1
to homogeneity remains to be attained, retention of sig-
nificant biological activity of the ZZ tagged IGF-1 mole-
cule indicates its effective biological usefulness even in an
altered state. Therefore, the ability to use plant chloro-
plasts as bioreactors to generate proteins of great eco-
nomic value that retain their essential biological activity is
an exciting goal that appears to be within our grasp.

Methods

Recursive PCR and Primer Design

For synthesis of optimized IGF-1 (IGF-1s) gene, four
primers were designed: two external primers of 56 bp and
two internal primers of 100 bp. All the primers have an
overlapping region of 20 bp. The 5' external primer was
engineered to include the sequence of the TEV enzymatic
cleave site and the 3' primer contained the NotI restriction
site. In recursive PCR reaction, the external oligonucle-
otides were in higher concentration than the internal (20-
30 pmol of the external primers and 0.2-0.3 pmol of the
internal primers). The lower concentration of the inter-
nals oligonucleotides assisted in avoiding unwanted
products.

Two different parts were used in the recursive PCR [49,50].
In the first part, the reaction were run through 10 cycles
using the following temperature sequence: 94 °C for 30 sec-
onds to denature the DNA, 55 °C for 30 seconds for anneal-
ing primes, and 72°C for 1 minute to synthesize DNA. An
incubation period of 7 minutes at 72°C followed after the
cycles ended. The primers were designed to have an anneal-
ing temperature of 55°C to avoid unspecific binding of the
primers. The second part consisted of 30 cycles, denaturing
the DNA for 30 seconds at 94°C, then primers annealing
for 30 seconds at 65°C, followed by DNA synthesis for 7
minutes at 72°C. The PCR product was run on 1.5% agar-
ose gel at 65 volts for 55 minutes to visualize amplified
products. The IGF-1s was cloned into the pBluescript KS 11,
and E. coli cells were transformed with this vector.

Bombardment and Selection of Transgenic Lines

Sterile leaves were bombarded using the Bio-Rad PDS-
1000/He biolistic device [51,52]. The bombarded leaves
were incubated in the dark for 48 hours and then cut and
placed in RMOP medium with 500 pg/ml of spectinomy-
cin.

PCR Analysis

The plant DNA was extracted from leaves using the Qia-
gen Dneasy Plant Mini Kit (Quiagen). The 3P and 3M
primers were used to perform PCR on transformed and
untransformed plants [51-53]. Samples were run for 30
cycle with the following sequence: 94°C for 1 min., 65°C
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for 1.5 min., and 72°C for 2 min. PCR products were ana-
lyzed on 0.8% agarose gel.

Southern Blot Analysis

The plant DNA of the transgenic and wild type tobacco
plants were digested with BglIl, and separated on 0.8%
agarose gel and transferred to a nylon membrane. The 0.8
kb probe was generated by digesting pLD-CtV2 (that con-
tains the trnl and trnA genes) vector with BamHI and Bglll
and was labeled with 32P (Amersham). The probe was
hybridized with the membrane using the QUICK-HYB
hybridization solution and protocol (Stratagene).

ELISA

ELISA was used to quantify the IGF-1 expression levels in
different transgenic lines. Different concentrations of 100
mg leaves (transformed and untransformed plants) were
ground with liquid nitrogen. Bicarbonate buffer, 500 pl,
pH 9.6 (15 mM Na,CO;, 35 mM NaHCO;, and 0.1%
Tween 20, pH 9.6) was used to resuspend the ground mix-
ture and incubated overnight at 4°C. Diluted sample
(1:3000) was added in each well (100 pl) of the plate and
this was done in duplicate. Bicarbonate buffer was used as
blank. The plate was incubated overnight at 4°C. After
washing the wells thrice with washing buffer, PBST (PBS
and 0.05% Tween 20), mouse anti human IGF-1 diluted
1 pg/ml in 0.01 M PBST containing 0.3% milk (100 pl/
well) was added and incubated for 2 h at 37°C. The wells
were washed and incubated with 1:10,000 goat anti
mouse IgG-alkaline phosphatase conjugate in 0.01 M
PBST containing 0.3% milk (100 pl/well) for 2 h at37°C.
The plate was developed with TMB substrate (100 pl/well,
American Qualex) for 30 minutes at room temperature
and the reaction was stopped by addition of 50 ul/well of
2 M sulfuric acid and the plates were read at 405 nm. For
a standard curve, purified commercially available human
IGF-1 (R&D Systems) was diluted with bicarbonate buffer
to concentrations between 3 and 25 ng/ml and processed
as above. Total soluble plant protein concentration was
determined using the DC Protein Microassay (Bio-Rad).
IGF-1 expression levels were calculated as a percentage of
the total soluble protein.

Immunoblots

One hundred mg of tobacco leaves were ground in liquid
nitrogen and resuspended in 200 pl of extraction buffer
(200 mM Tris-HCI, pH 8.0, 100 mM NaCl, 10 mM EDTA,
4 mM PMSF) [54]. Leaf extracts were boiled for 5 minutes
in the sample buffer (0.5 M Tris-HCI, pH 6.8, 2.5 ml glyc-
erol, 10% SDS, 0.5% bromophenol blue reached a total
volume 9.5 ml with water) (Bio-Rad). All samples were
electrophoresed in 15% resolving and 4% stacking gels
using the buffer system of Laemmli. The membrane was
blocked for 20 minutes at room temperature with PBS and
3% non-fat milk (PBS-milk). Then, the blot was incubated
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with anti-IGF-1 (Upstate Biotechnology, diluted in PBS-
milk until it achieved a final concentration 1 ug per ml)
overnight at 4°C. The membrane was washed twice with
water. The secondary antibody used was a Goat Anti
Mouse IgG conjugated to Horseradish Peroxidase (Ameri-
can Qualex Antibodies) at a 1:5000 dilution, and was
added to membranes in blocking solution and incubated
for one hour. The blot was washed with water. A final
wash was done for 5 minutes in PBS with 0.05% Tween
20. Development was performed by the chemilumines-
cent method (Pierce).

Following elution from the immuno-affinity column, the
protein samples were concentrated by speed vac evapora-
tion and diluted 1:2 in 1x Gel-loading buffer (50 mM Tris,
2% SDS, 0.05% Brome-Phenol Blue, 10 v/v% glycerol and
2 pul DTT (dithiothreitol). The samples were heated at
95°C for 5 min, and 20 pl (protein conc. 500 pg/ml) of
the sample was loaded onto the gel. Electrophoresis was
performed at 160 V-, in 1x Laemmli running buffer (5x
Laemmli: 500 ml-in water solution 7.5 g Tris, 47 g glycine,
2.5 g SDS). Capillary blotting of proteins was carried out
overnight in transfer buffer (3 g Tris, 14.4 g glycine, 200
ml methanol per liter). The nitrocellulose membrane was
washed for 5-10 min with TST-buffer (4.5 g NaCl, 250 pl
Tween 20, 25 ml in 500 ml 1 M Tris, pH 7.5), then
blocked in TST containing 5% dry milk (TST = 5 g dry milk
in 100 ml) for 30 min in glass tubes of the DNA hybridi-
zation equipment, with slow rotation. The primary anti-
body (goat a-human IGF-I, SIGMA Cat#8773) was
diluted1:1250 in TST (with 2.5% dry milk); membranes
were rinsed in distilled water. The primary antibody (10
ml) was added to membranes, and incubated for 2 h at
room temp with gentle shaking. Membranes were washed
5 times in distilled water followed by 3 x 5 times in TST,
(50 ml). The secondary antibody (Rabbit a-goat alkaline
phosphatase-conjugate, Sigma Cat#4049), or mono-
clonal a-goat alkaline phosphatase-conjugate- Sigma
Cat#8062) was diluted in TST buffer (1:10000, 20000,
50000), added to blots and incubated with gentle rotation
on an orbital shaker for 1 h. Blots were washed 3 x 5 times
in TST, followed by 5 times in distilled water. Immunob-
lots were developed for 20-40 min in NBT substrate:
made up of 5 mg NBT (nitrotetrazolium blue, Sigma)
diluted in100 pl of 70% DMF (dimethyl-formamide)
solution; 82 ul BCIP (5-bromo-4-chloro-3-indolyl phos-
phate disodium salt) was added to 10 ml substrate buffer
(100 ml: 10 ml 1 M Tris, 2 ml 5 M NaCl and 5 ml 1 M
MgCl,). Blots were stained at 4 °C overnight. The reaction
was stopped by dilution of the substrate in cold tap water.

Purification of IGF-1 from transplastomic leaves

Transformed tobacco leaves (50 g) were ground to a fine
powder in a liquid nitrogen in pre-cooled mortar. The
plant powder was thawed by addition of two volumes
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(100 ml) of cold Extraction Buffer A (50 mM Tris HCI, pH
8.0, containing 200 mM NaCl, 100 mM EDTA and 1 mM
phenylmethylsulfonyl fluoride (PMSF) and 0.1% Nonidet
P-40). The homogenate was centrifuged in 50 ml
Oakridge tubes at 9,000 rpm, 10 min, at 4°C in a pre-
cooled SA-600 rotor, in a Sorvall RC-5B centrifuge to
remove cell debris. The non-IGF-1 plant proteins in the
supernatant were precipitated by the addition of solid
ammonium sulfate to 30% saturation (w/v), while the
IGF-1 remained in the soluble fraction. The mixture was
centrifuged at 9,500 rpm in a Sorvall SA-600 rotor at 4°C
for 30 min. The supernatant containing the IGF-1 was
raised to 65% saturation with ammonium sulfate and the
mixture was centrifuged as before. The IGF-1 was now pre-
cipitated in the pellet. The pellet was resuspended in a
small volume (3-4 ml) of Extraction Buffer B (25 mM
Tris-HCI, pH 7.5, 0.01% thiodiglycol and 10 uM PMSF) -
10x. The mixture was dialysed against 1.0 liter of extrac-
tion buffer B at 4°C for 6 hrs in dialysis tubing with a
molecular weight cutoff of 7,000 kDa or less. The dialysate
was centrifuged as before at 9,500 rpm in the SA-600 rotor
for 15 min to sediment insoluble proteins. The superna-
tant containing the IGF-1 was adjusted to 0.15 M NaCl
and loaded onto a IgG-Fast Flow 6 Sepharose (Sigma)
immunoadsorbent column (10 ml bed vol), equilibrated
with TST buffer (50 mM Tris-HCI, pH 7.6, 120 mM NacCl,
0.05% Tween 20). Proteins other than ZZ-IGF were eluted
from the column by washing with 10-20 column vol-
umes of TST buffer. The Tween 20 detergent was removed
from the column by washing with 2 volumes of 5 mM
ammonium acetate, pH 4.8. The ZZ-IGF-1 fusion protein
was eluted from the column with 0.4 M acetic acid, pH 3.4
at a low linear flow rate (20 cm/hr) to obtain a sharp IGF-
1 peak. The column eluate was collected (2.0 ml frac-
tions), and monitored (OD,g,) for the appearance of ZZ-
IGF-1 protein which eluted after the column volume. The
fractions containing the ZZ-IGF-1 protein were pooled
and the protein concentration was determined spectro-
photometrically by comparison of the OD /55, nm ratio,
or more precisely by Bradford protein assay. Residual salt
was removed by dialysis for 2-3 hrs against 1 I of 5 mM
ammonium acetate, pH 6.0, at 4°C using dialysis tubing
with a 3.5 kDa cutoff (Pierce). A sample of the ZZ-IGF-1
protein was subjected to electrophoresis on a 15% acryla-
mide gel to examine the molecular weight of the ZZ
tagged IGF-1.

The ZZ-linker was cleaved from the IGF-1, by dissolving
2.0 mg of previously isolated tobacco ZZ-tagged IGF-1
fusion protein in 1.0 ml of ZZ Buffer without hydroxy-
lamine (0.2 M Tris-HCI, pH 9.2, 1 mM EDTA). Cleavage
of the ZZ moiety from the IGF-1 was carried out by addi-
tion of an equal volume of ZZ buffer (0.2 M Tris-HCI, pH
9.2, 2 M hydroxylamine, 1 mM EDTA).containing 2.0 M
hydroxylamine. The mixture was incubated at 45 °C for six
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hours and the reaction was terminated by lowering the pH
to 6.0 with acetic acid. Cleaved IGF-1 was estimated by
separation of the two forms by acrylamide gel electro-
phoresis. Hydroxylamine was removed from the mixture
by first lowering the pH to 6.0 with glacial acetic acid
(measured with pH paper), followed by dialysis of the
mixture for 2 hrs at 4°Cin 1.0 liter of 50 mM ammonium
acetate buffer, pH 6.0. The ZZ-tagged-IGF-1/IGF-1 mix-
ture was lyophilized yielding a tan powder. After resus-
pension of the powder in a small volume (0.5 ml) of
distilled water, the mixture was separated by polyacryla-
mide gel electrophoresis on a 15% acrylamide gel in a Bio-
Rad minigel electrophoresis apparatus for 1 hr, at 100
Volts. The protein bands (2) representing IGF-1 and ZZ-
tagged-IGF-1, were stained by immersion of the gel in
"gelcode" (Pierce), bromophenol blue stain for 2 hr. The
gel was destained in distilled water prior to photographic
documentation.

To remove the contaminating ZZ ligand and uncleaved
77-1GF-1 from the IGF-1 molecules, the cleavage mixture
was passed over a small (3.0 ml) IgG-sepharose column
previously washed with 10x vol of TST, 2x vol of TS and
2x vol of 5 mM ammonium acetate, pH 4.5. IGF-1 mole-
cules passed through the column following the void vol-
ume (1.0 ml, determined by the elution of blue dextran),
while the free ZZ domains and uncleaved ZZ-IGF bound
to the IgG -sepharose. After collection of the column elu-
ate (1.0 ml fractions), the amount of IGF-1 protein was
measured by Bradford protein assay and the protein
diluted with sterile water, divided into aliquots and frozen
at -20°C for use in biological assays or structural studies.

Cell Proliferation Assays

The biological activity of partially purified human IGF-1
preparations isolated from tobacco chloroplasts was
established by measurement of IGF-1 effects on mamma-
lian cell proliferation. Briefly, human megakaryoblastic
(HU-3) cells carrying the IGF-1 receptor were cultured in
RPMI-1640 medium + 10% calf serum. Cells in the loga-
rithmic phase of growth were seeded into 96-well plates at
a concentration of 25,000 cells/well in 50 pL RPMI-1640
containing 0.1 BSA and 0.5-1% calf serum. At the begin-
ning of the assay, commercial human IGF-1 (Sigma), or
IGF-1 partially purified from tobacco chloroplasts (50 pL)
was added to each well at concentrations from 0.001 pg/
ml to 10 pg/ml. The cell cultures were incubated at 37°C
for 48 hours and a portion of each culture was stained
with Trypan Blue dye to quantify cell viability prior to
measurements of cell proliferation as determined most
reliably by cell counting by hemocytometer.

Murine 3T3 fibroblasts also carrying the IGF-1 receptor
were maintained in DMEM medium and seeded in 96-
well plates from 2,000 cells/well to concentrations as high
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as 20,000 cells/well in 50 uL. DMEM + 0.1% BSA contain-
ing 0.1-1% calf serum. IGF-1 (50 pL) was added in
ascending concentrations from 0.001 to 10 pg/ml. Forty
eight hours later (some time after 7 days) cell proliferation
was measured by the CyQUANT NF Cell proliferation
assay (Invitrogen Inc., San Diego, CA) and by hemocy-
tometer counting. Proliferation was measured by fluores-
cence determination of DNA replication based on
intercalation of a fluorescent dye into double stranded
DNA. Cell proliferation was determined according to the
instructions supplied by the manufacturer. Red, blue and
green lines represent the best fit of the respective data
points for each proliferation assay treatment. The com-
mercial human IGF-1 used in the assay was Sigma-Aldrich
Cat#3769 (10 pg-0.001 pg/ml).
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