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5-fluorouracil (5-FU) is among the mostly administrated chemotherapeutic agents for a
wide variety of neoplasms. Non-coding RNAs have a central impact on the determination
of the response of patients to 5-FU. These transcripts via modulation of cancer-related
pathways, cell apoptosis, autophagy, epithelial–mesenchymal transition, and other
aspects of cell behavior can affect cell response to 5-FU. Modulation of expression
levels of microRNAs or long non-coding RNAs may be a suitable approach to sensitize
tumor cells to 5-FU treatment via modulating multiple biological signaling pathways such
as Hippo/YAP, Wnt/b-catenin, Hedgehog, NF-kB, and Notch cascades. Moreover, there
is an increasing interest in targeting these transcripts in various kinds of cancers that are
treated by 5-FU. In the present article, we provide a review of the function of non-coding
transcripts in the modulation of response of neoplastic cells to 5-FU.

Keywords: lncRNA, miRNA, fluorouracil, expression, biomarker
Abbreviations: 5-FU, 5-fluorouracil; SCC, squamous cell carcinoma; ADC, adenocarcinoma; VEGF, vascular endothelial
growth factor; EGFR. epidermal growth factor receptor; TS, thymidylate synthase; FdUMP, Fluorodeoxyuridine
monophosphate; FdUTP, fluorodeoxyuridine triphosphate; FUTP, fluorouridine triphosphate; HMGB1, High Mobility
Group Box 1; MTHFR, methylenetetrahydrofolate reductase; DPD, Dihydropyridine dehydrogenase; dTTP,
deoxythymidine triphosphate; UTP, uridine triphosphate; TK, thymidine kinase; DPYD, dihydropyrimidine
dehydrogenase; DHFU, 5,6-dihydro-5-fluorouracil; FBAL, a-fluoro-b-alanine; CYPs, Cytochromes P450; CDHP, 5-chloro-
2, 4-dihydroxypyridine; DMEs, drug-metabolizing enzymes; AC, acid ceramidase; CRC, colorectal cancer; BTG1, B-cell
translocation gene 1; HCC, Hepatocellular carcinoma; CML, chronic myeloid leukemia; ESCC, Esophageal squamous cell
carcinoma; Rcc, Renal Cell Cancer; PaC, Pancreatic Cancer; CHK, 1checkpoint kinase 1; EMT, epithelial–mesenchymal
transition; GC, Gastric Cancer; PDAC, Pancreatic ductal adenocarcinoma; COMP, cartilage oligomeric matrix protein; NPC,
Nasopharyngeal carcinoma, OAC, Oesophageal adenocarcinoma; HAT, histone acetyltransferases; HDAC, histone
deacetylases; CDKN1A, cell cycle arrest caused by overexpression of p21; MDR, Multidrug resistance; PDX, patient-
derived tumor xenograft; ctDNA, circulating tumor DNA; CTCs, circulating tumor cells.
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INTRODUCTION

5-fluorouracil (5-FU) and its oral prodrugs including S1 and
capecitabine (1) are among the main components of most
chemotherapeutic regimens whose efficiencies have been
established in the treatment of several neoplasms such as head
and neck squamous cell carcinoma (SCC) (2), gastrointestinal
SCC and adenocarcinoma (ADC) (3, 4), and SCC of the uterine
cervix (5). This agent was introduced by Heidelberger et al.
during the 1950s (6). Afterward, it has been increasingly used
during the last decades and remained as the backbone of most of
chemotherapy regimens. 5-FU has also been used in
combination with novel cancer therapies especially targeted
therapeutics including vascular endothelial growth factor
(VEGF) inhibitors [bevacizumab (7), ziv-aflibercept (8),
regorafenib (9) and ramucirumab (10)] and anti-epidermal
growth factor receptor (EGFR) therapies [cetuximab (11) and
panitumumab (12)]. The cytotoxic effect of 5-FU is mainly
induced through inhibition of cellular thymidylate synthase
(TS) leading to the prevention of DNA replication (13) and
also inhibition of RNA synthesis by the integration of its
metabolites into RNA (14) after intracellular activation. These
mechanisms of action are, however, only applicable when 5-FU
is administered as a single agent chemotherapeutic drug. Since 5-
FU has been used in combination with other chemotherapeutics,
mostly platinum-based drugs and/or taxanes, and also
concurrently during radiotherapy, as a radiosensitizer; other
mechanisms of action might be involved that are less clear.
F l u o r o d e o x y u r i d i n e monopho s p h a t e ( F dUMP ) ,
fluorodeoxyuridine triphosphate (FdUTP), and fluorouridine
triphosphate (FUTP) are all the final active metabolites of 5-
FU which are produced after the active transportation of 5-FU
into cells by the uracil transport system (15, 16) in addition to the
passive paracellular and transcellular routes and also passive
diffusion (17, 18). Each of these metabolites prevents cell growth
in a specific way. FdUMP inhibits TS leading to indirect DNA
damage by deoxynucleotide imbalances and raised levels of
deoxyuridine triphosphate. However, FdUTP damages DNA
directly by misincorporation into it. In other hand, FUTP is
incorporated into RNA resulting in substantial damage in this
molecule. Finally, 5-FU causes cell death through simultaneous
induction of apoptosis and autophagy (19, 20). Xiong et al. (19)
showed that treatment of Bax or PUMA deficient human colon
cancer cells with 5-FU resulted in reduction of mTOR activity and
subsequent up-regulation of autophagy in this cell line resulting in
considerable inhibition of cell proliferation. Moreover, Yang et al.
(21) have shown that treatment of human gastric cancer cells with
5-FU resulted in inhibition of cell proliferation through autophagic
process resulting from 5-FU-related miR-30 suppression and
Beclin-1 upregulation. Besides, mTOR activity and miR-30
suppression as potential pathways for 5-FU-related autophagy
activation, Cottone et al. (22) showed that 5-FU can stimulate the
inflammatory cells which are responsible for High Mobility Group
Box 1 (HMGB1) release resulting in the exacerbation of the
autophagy activation. In this context, Nyhan et al. (23) used
HMGB1 as a marker of non-apoptotic cell death showing the
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increase of autophagy after the treatment of human oesophageal
cancer cell lines with 5-FU in the presence of miR-193b
overexpression. In addition to tumoral cells, non-malignant cells
are also influenced by 5-FU-related autophagy. Focaccetti et al. (24)
showed clear signs of autophagy along with the significant increase
in apoptosis in endothelial cells and cardiomyocytes after treatment
with 5-FU. Interestingly, more recently autophagy is proposed as a
potential way of acquired resistance of tumoral cells towards 5-FU
(25). Globally, the alternation of TS coding gene, i.e. TYMS (26),
single nucleotide polymorphisms affecting the activity of
methylenetetrahydrofolate reductase (MTHFR) (27), and
Dihydropyridine dehydrogenase (DPD) expression (28) are
considered as the main mechanisms of resistance.
CATABOLIC AND ANABOLIC WAY OF
5-FLUOROURACIL TRANSFORMATION

5-FU is a uracil analog with a fluorine atom at the C-5 position.
After intravenous administration of 5-FU, this medication can
rapidly enter target cells using the same transport mechanism as
uracil (15). Accumulating evidence demonstrated that the
transportation of 5-FU could be passively triggered via
transcellular and paracellular pathways in tumor cell
monolayers. In addition, 5-FU by passive diffusion can
promptly pass the blood-brain barrier (BBB) (18, 29). 5-FU
can be transformed to the following active metabolites in the
target cells: 1) Fluorodeoxyuridine triphosphate (FdUTP) that
could combine into DNA rather than deoxythymidine
triphosphate (dTTP); 2) Fluorouridine triphosphate (FUTP)
that could combine into RNA rather than uridine triphosphate
(UTP). FUTP alters RNA function and processing, and FdUTP
and FdUMP can induce DNA damage. Both of these procedures
have a profound effect on RNA and DNA triggering cell death in
tumor cells; and 3) FdUMP suppresses the function of
Thymidylate synthase (TS) in the ternary complex (16).
FdUMP can create a constant ternary complex with 5, 10-
methylenetetrahydrofolate (CH2THF), and TS. TS can in turn
catalyze conversion of deoxyuridine monophosphate (dUMP) to
deoxythymidine monophosphate (dTMP) (1). The ternary
complex could impede the availability of dUMP to the
nucleotide-binding site (NBS) of TS via competing with
FdUMP that could lead to imbalance in deoxynucleotides pool,
particularly enhancing deoxyuridine triphosphate (dUTP) levels
and causing damage to DNA. Reduction of dTMP could induce
reduction of dTTP, which disrupts the levels of the other
deoxynucleotides (30). Another 5-FU activation cascade
includes thymidine phosphorylase (dThdPase) that could
trigger the transformation of 5-FU to fluorodeoxyuridine
(FUDR) which could be phosphorylated via thymidine kinase
(TK) to FdUMP. Phosphorylation reaction through the UrdPase
needs ribose-1-phosphate as a cofactor that could play an
effective role in creating FUMP. On the other hand, the
phosphorylation reaction via dThdPase needs deoxyribose-1-
phosphate as a cofactor resulting in the creation of FdUMP.
Subsequently, FUMP could be phosphorylated to fluorouridine
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diphosphate (FUDP) that is either subsequently phosphorylated
to the active metabolite FUTP or could be transformed to
fluorodeoxyuridine diphosphate (FdUDP) via ribonucleotide
reductase (16). Afterward, FdUDP is either phosphorylated to
FdUTP or could be dephosphorylated to FdUMP. Therefore,
both dUTP and FdUMP could effectively contribute to DNA
damage. The transformation of 5-FU to FdUMP in the
alimentary canal and bone marrow could in turn lead to
digestive tract toxicity as well as myelotoxicity (1).
Additionally, dihydropyrimidine dehydrogenase (DPYD),
which is a ubiquitous and rate-limiting enzyme of the uracil
catabolic pathway and is present in the liver, gut, intestinal
mucosa, and several other tissues, could be considered as a
major enzyme for the degradation of 5-FU (1, 31). 5-FU
represents poor bioavailability because of its prompt catabolic
degradation to 5, 6-dihydro-5-fluorouracil (DHFU) via DPYD
(25). DPYD could catabolize 5-FU to 5, 6-dihydro-5-fluorouracil
(DHFU), eventually resulting in the creation of a-fluoro-b-
ureidopropionic acid (FUPA) as well as a-fluoro-b-alanine
(FBAL) that subsequently could be excreted through the
kidneys (32). Oral administration of 5-FU in the form of 5-FU
pro-drugs (oral FPs) could result in imperfect and disordered
bioavailability because of variation in the function of DPYD.
Hence, it is correlated to unpredictable levels of 5-FU in the
plasma because of noticeable intra- and inter-patient mutability
in its adsorption/deletion (33).
NON-CODING RNAS AND
RESPONSE TO 5-FU

Non-coding RNAs modulate several cellular pathways that are
involved in the response of neoplastic cells to 5-FU or its oral
prodrugs (34). In a broad classification, we categorize non-
coding RNAs to long non-coding RNAs (lncRNAs) and
microRNAs (miRNAs) with sizes more than 200 nucleotides
and about 22 nucleotides, respectively. These two main classes of
non-coding RNAs vary in their mode of action in the regulation
of gene expression, however, both regulate fundamental aspects
of cellular activities among them are apoptosis, autophagy, and
DNA repair (35, 36). These cellular processes define the response
of neoplastic cells to chemotherapeutic agents such as 5-FU.

miRNAS AND 5-FU RESPONSE

The impact of miRNAs in the modulation of 5-FU resistance has
been largely assessed in colorectal cancer (CRC) cells. For
instance, as a tumor suppressor miRNA, expression of miR-
15b-5p has been down-regulated in tissues and cells obtained
from patients with this kind of neoplasm. Up-regulation of miR-
15b-5p has enhanced 5-FU-associated cell apoptosis and
ameliorated cell response to 5-FU both in vitro and in animal
models. NF-kB signaling pathway has been identified as the
mediator of miR-15b-5p effect on response to 5-FU. This
miRNA negatively regulates NF-kB1 and IKK-a. miR-15b-5p
has also been shown to target the anti-apoptotic gene XIAP (37).
Frontiers in Oncology | www.frontiersin.org 3
In CRC cells, miR-21 influences response to 5-FU through
targeting PDCD4 and hMSH2 (38, 39). Notably, PDCD4 has
also been shown to be targeted by miR-1260b. This miRNA
confers resistance to 5-FU and inhibits apoptosis in CRC cells via
the PI3K/Akt signaling pathway (40). Expression of miR-21 has
been considerably increased in exosomes of CRC cells versus
normal human colon epithelium. Exosomal miR-21 can enhance
the expression of genes participating in cell proliferation,
invasiveness, and extracellular matrix construction. Moreover,
miR-21 through targeting PDCD4 can increase resistance to 5-FU
(38). Another experiment in this kind of cancer has shown the
role of miR-22 in the enhancement of sensitivity to 5-FU through
inhibition of autophagy and boosting apoptosis. These effects of
miR-22 are mediated through the suppression of expression of B-cell
translocation gene 1 (BTG1) (41). Treatment of CRC cells with 5-FU
has resulted in enhancement of miR-23a while down-regulation of
APAF-1 in these cells. miR-23a antisense has enhanced the activation
of the caspases-3 and -7 through up-regulation of miR-231 target
APAF-1 and increased the 5-FU-associated apoptosis. Yet, miR-23a
antagonism did not surge the anticancer impact of 5-FU in the
xenograft model of CRC (42). The tumor-suppressive miRNA
miR-199b directly targets the PP2A inhibitor SET, a crucial factor
in conferring resistance to 5-FU. An experiment in rectal cancer
cells has shown that both miR-199b up-regulation and SET
suppression can combat 5-FU resistance. Expression of miR-
199b has been decreased in about one-fourth of cases in
associa t ion wi th lymph node pos i t iv i ty fo l lowing
chemoradiotherapy and advanced stage (43). Table 1
summarizes the influence of miRNAs on response of CRC cells
to 5-FU.

Hepatocellular carcinoma (HCC) is another type of cancer in
which the role of miRNAs in the regulation of response to 5-FU
has been vastly assessed. Forced over-expression of miR-122 in
hepatoblastoma cells has reduced expressions of Bcl-2 and Bcl-XL
while increasing P53 protein levels. These effects have
been accompanied by enhancement of apoptosis and higher
sensitivity to 5-FU, demonstrating the impact of this miRNA in
response to 5-FU (86). Another experiment in several HCC cell
liens has shown lower expression of miR-125b in 5-FU-resistant
cells compared with sensitive cells. TRansfection of pre-miR-125b
into HCC cells has led to the improvement of sensitivity to 5-FU.
F-FU resistant cells also exhibited higher glucose uptake
and lactate synthesis compared with 5-FU-sensitive cells.
Remarkably, miR-125 has been shown to decrease glucose
metabolism by influencing the expression of hexokinase II (87).
miR-147 is a tumor suppressor miRNA whose expression has
been reduced in HCC cell lines and clinical samples.
Overexpression of miR-147 has suppressed in vitro proliferation
and migration of HCC cells and enhanced cytotoxic effects of 5-
FU. Moreover, it has decreased in vivo tumorigenicity of HCC
cells. HOXC6 has been recognized as the downstream target of
miR-147 through which this miRNA enhances 5-FU sensitivity
(88). Another tumor suppressor miRNA in HCC namely miR-
503 regulates the expression of EIF4E and enhances response to
5-FU (89). Table 2 demonstrates the impact of miRNAs
modulation of response to 5-FU in HCC cells.
April 2021 | Volume 11 | Article 658636
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TABLE 1 | Role of miRNAs in the modulation of response to 5-FU in colorectal cancer (ANT, adjacent normal tissue).

microRNA Animal/Human Cell line Targets/
Regulators

Function Ref

miR-15 62 pairs of CRC and
ANTs

HCT116 Bcl-2, Bcl-XL,
NF-kB

MiR-15 could sensitize CRC cells to 5-FU and increase apoptosis via
NF−kB. (37)

miR-21 – HT29, T84, LS174, CRL1831 PDCD4, TPM1,
PTEN

MiR-21 by targeting PDCD4 could promote proliferation, invasion and
therapy resistance. (38)

miR-21 – HT-29, HT-29/5-FU hMSH2, TP,
DPD

MiR-21 by targeting hMSH2 could increase cell proliferation and
chemoresistance and inhibit apoptosis. (39)

miR-21 mouse Colo-320DM, SW620, HCT-
116, SW480, RKO

hMSH2 MiR-21 by targeting hMSH2 could induce resistance to 5-FU in CRC
cells. (44)

miR-22 mouse/human; 94 pairs
of CRC and ANTs

SW620, RKO BTG1 MiR-22 by targeting BTG1 could increase 5-FU sensitivity via inhibiting
autophagy and promoting apoptosis in CRC cells. (41)

miR-23a mouse HCT116, HT29 APAF-1,
Caspase-9

MiR‐23a by targeting the APAF‐1/Caspase‐9 axis could enhance 5‐FU
resistance in CRC cells. (42)

miR-24 – HCT116, RKO, SW480,
SW48, CCD-18Co

DND1 MiR-24 by targeting DND1 could enhance apoptosis and sensitivity in
CRC cells. (45)

miR-26b mouse/human; 36 CRC
tissues and 16 normal
ANTs

HT-29, LOVO, HT-29/5-FU,
LOVO/5-FU, FHC

Pgp MiR-26b by targeting Pgp could enhance chemosensitivity to 5-FU.
(46)

miR-29c-
3p

– HCT116 p53+/+, HCT116
p53−/−

PHLDB2 MiR-29c-3p by targeting PHLDB2 could suppress colon cancer cell
invasion and migration. (47)

miR-30-5p 30 pairs of CRC and
ANTs

Caco2, HT29, HCT15,
HCT116, SW620, SW480,
293T

USP22, Wnt/b-
catenin

MiR-30-5p by targeting USP22 could suppress cell chemoresistance
and stemness in CRC cells through the Wnt/b‐catenin signaling
pathway.

(48)

miR-31 mouse/human; 112 pairs
of CRC and ANTs

DLD‐1, SW480, WiDr, HT‐29,
SW48, DLD/F, SW/F

FIH-1 MiR-31 by silencing FIH-1 could contribute to CRC cell resistance to
5-FU. (49)

miR-34a – DLD-1, DLD-1/5FU Sirt1, E2F3,
PI3K/Akt

MiR-34a targets Sirt1 and E2F3 genes and decreases resistance to 5-
FU. (50)

miR-34a mouse SW480, LoVo DLL1, Notch MiR-34a by targeting DLL1 could overcome ABCG2-mediated
resistance to 5-FU in CRC cells via the Notch signaling pathway. (51)

miR-122 mouse HCT-116/R, HT-9/R, HCT-
116, HT-29

PKM2 MiR-122 by inhibiting PKM2 could reverse chemoresistance for 5-FU
in CRC cells. (52)

miR-129 mouse/human: 77 pairs
of CRC and ANTs

HCT116, RKO, SW480 Bcl-2, E2F3,
TS

MiR-129 by targeting Bcl-2 could promote apoptosis, inhibit cell
proliferation, cause cell-cycle arrest, and also increase response to 5-
FU in CRC cells.

(53)

miR-133b – HT29, HCT116, SW620, 293T DOT1L MiR-133b by targeting DOT1L could suppress CRC cell stemness and
chemoresistance. (54)

miR-
135b/-182

mouse/human; 31 pairs
of CRC and ANTs

HCT-8, LoVo, HCT-8/5-FU,
LoVo/5-FU

ST6GALNAC2,
PI3K/Akt

MiR-135b and miR-82 by targeting ST6GALNAC2 could promote
chemoresistance of CRC cells via the PI3K/Akt signaling pathway. (55)

miR-139-
5p

mouse/human; 204 CRC
tissues and 54 normal
healthy controls

HT29, LS174T, SW480,
SW620, RKO, HCT116,
COLO205, LoVo, NCM460

Bcl-2, EMT MiR-139-5p by targeting Bcl-2 could sensitize CRC cells to 5-FU via
EMT regulation. (56)

miR-139-
5p

– HCT-116, LoVo, HCT-8, HCT-
116/5-FU, HCT-8/5-FU

NOTCH-1 MiR-139-5p by targeting NOTCH-1 could sensitize CRC cells to 5-FU.
(57)

miR-143 – HCT116, SW480, LoVo,
SW620

ERK5, Bcl-2,
NF-kB

MiR-143 by reducing NF-kB, ERK5 and Bcl-2 could increase 5-FU
cytotoxicity in CRC cells. (58)

miR-145 mouse/human; 152 pairs
of CRC and ANTs

SW620, 5-FuR SW620 RAD18 MiR-145 by directly targeting DNA damage-related gene RAD18 could
reverse drug resistance in CRC cells. (59)

miR-149 24 CRC tissues HCT-8, LoVo, HCT-8/5-FU,
LoVo/5-FU

FOXM1 MiR-149 by targeting FOXM1 could increase sensitivity to 5-FU in CRC
cells. (60)

miR-185-
3p

120 pairs of CRC and
ANTs

HCT-116, HCT-8, HCT-116/
5-FU, HCT-8/5-FU

AQP5, EMT MiR-185-3p by targeting AQP5 could enhance chemosensitivity in
CRC cells via EMT regulation. (61)

miR-195 – HCT-116 WEE1, CHK1 MiR-195 by targeting WEE1 and CHK1 could regulate the cell cycle
and desensitize CRC cells to 5-FU. (62)

miR-195-
5p

15 pairs of CRC and
ANTs

Caco-2, HCT8, HCT116,
SW480

GDPD5 MiR-195-5p by targeting GDPD5 could inhibit metastasis and sensitize
CRC cells to 5-FU. (63)

miR-200c – HCT-116 E-cadherin,
PTEN

Inhibition of miR-200c could trigger the acquired resistance of CRC
cells to 5-FU. (64)

miR-203 mouse FHC, HCT-116, Caco2,
SW480, LoVo/5-FU

TYMS MiR-203 by targeting TYMS could enhance chemosensitivity to 5-FU
in CRC cells. (65)

miR-204 33 pairs of CRC and
ANTs

LoVo, HT29, SW620, SW116,
HCT116, SW480, HcoEpiC

HMGA2 MiR-204 by inhibiting HMGA2 could enhance sensitivity to 5-FU.
(66)

miR-206 mouse HCT116, RKO, HCT116/FR,
RKO/FR

Bcl-2 MiR-206 by targeting Bcl-2 could decrease 5-FU resistance in colon
cancer cells. (67)

(Continued)
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In gastric cancer, miR-31 enhances sensitivity to 5-FU,
decreases migration and invasion capacity, and surges
the fraction of cells in G1/pre-G1 phase. These effects are
possibly mediated through down-regulation of E2F6 and
SMUG1 genes (97). On the other hand, miR-147 is an
oncogenic miRNA in gastric cancer cells whose silencing
has reduced cell proliferation and improved sensitivity of these
cells 5-FU via modulating apoptotic pathway. Mechanistically,
miR-147 down-regulates the expression of PTEN in gastric
cancer cells and consequently modulates PI3K/AKT signaling
pathway (98). Besides, the expression of miR-149 has
been shown to be elevated in 5-FU-resistant gastric cancer cells
compared with parental cells. miR-149 also enhances 5-FU
resistance through reduction of TREM2 levels and regulation
of b-catenin in vivo (99). Instead, the expression of miR-195
Frontiers in Oncology | www.frontiersin.org 5
has been lower in 5-FU-resistant gastric cancer cells compared
with the parental cells. Transfection of resistant cells with miR-
195 has led to inhibition of HMGA1 expression and
improvement of response to 5-FU (100). Figure 1
demonstrates the role of several miRNAs in regulating the
sensitivity of cancer cells to 5-FU via modulating the Wnt-b-
catenin pathway which is a highly conserved cascade and is
activated in the development of various human cancers like
colorectal cancer.

Table 3 provides a summary of experiments that reported the
impact of miRNAs in the response of gastric cancer to 5-FU.

A comprehensive study in esophageal cancer has frequent
down-regulation of miR-29c in tumors and sera of these patients.
Functionally, miR-29c has been shown to reverse 5-FU resistance
in vitro and in vivo through direct interaction with the 3'UTR of
TABLE 1 | Continued

microRNA Animal/Human Cell line Targets/
Regulators

Function Ref

miR-210-
3p

– HT29, HT29R SDHD, RAD-52 MiR-210-3p by targeting RAD-52 could increase DNA damage repair
and by targeting SDHD and could induce a shift from oxidative
metabolism towards OXPHOS.

(68)

miR-214 – HT-29, LoVo, HT-29/5-FU,
LoVo/5-FU

Hsp27 MiR-214 by targeting Hsp27 could sensitize CRC cells to 5-FU.
(69)

miR-215-
3p

mouse/human; 56 CRC
tissues and 23 normal
tissues

HCT116/5-FU, HCT116,
LoVo, HT-29, SW480

CXCR1 MiR-215-3p by targeting CXCR1 could improve the 5-Fu sensibility in
the colorectal cancer cell. (70)

miR-302a 24 pairs of CRC and
ANTs

HCT116, HT29 IGF-1R, AKT MiR-302a by targeting IGF-1R increases 5-FU-induced cell death in
CRC cells. (71)

miR-329 56 pairs of CRC and
ANTs

HCT116, SW480 E2F1 MiR-329 by targeting E2F1 could inhibit viability, and invasion and also
enhance sensitivity to 5-FU in CRC cells. (72)

miR-330 59 pairs of CRC and
ANTs

HCT116, HT29, SW480,
SW620, FHC, 293T

TYMS MiR-330 by targeting TYMS could inhibit cell proliferation and enhance
chemosensitivity to 5-FU in CRC cells. (73)

miR-361 – HCT116, HT29, HCT116
−Res, HT29−Res

FOXM1,
ABCC5/10

MiR-361 by targeting FOXM1-ABCC5/10 could sensitize resistant
CRC cells to 5-FU, inhibit colony formation, and induce apoptosis. (74)

miR-375-
3p

mouse, TCGA dataset HCT116, HT29, SW480,
Caco2, NCM460, HCT-15/FU

TYMS MiR-375-3p by targeting TYMS could increase 5-FU sensitivity by
enhancing cell apoptosis and cell cycle arrest and suppression of cell
proliferation, migration, and invasiveness.

(75)

miR-425-
5p

mouse HCT116-R, HCT116 PDCD10 MiR-425-5p by targeting PDCD10 could increase resistance to 5-FU in
CRC cells. (76)

miR-488 280 pairs of CRC and
ANTs

SW620, HT-29, Lovo,
HCT116, NCM-460

PFKFB3,
glycolysis

MiR-488 by targeting PFKFB3 could alleviate chemoresistance for 5-
FU and glycolysis of CRC cells. (77)

miR-494 mouse HCT116, HCT15, HCT8, HT-
29, LoVo, SW480/5-Fu

DPYD MiR-494 by targeting DPYD could enhance apoptosis and increase
chemosensitivity to 5-FU. (78)

miR-519d – HCT116, SW480 CCND1 MiR-519d by targeting CCND1 could reverse resistance to 5-FU in
CRC cells. (79)

miR-543 – HCT8, HCT8/FU PTEN, PI3K/
Akt

MiR-543 by targeting PTEN could promote cell migration, inhibit
apoptosis, and induce chemoresistance to 5-FU. (80)

miR-552 mouse/human: 97 pairs
of CRC and ANTs

SW-480, SW-620, HT-116,
CCD-18Co

SMAD2, TGF-b MiR-552 by targeting SMAD2 could enhance 5-FU sensitivity in CRC
cells via TGF−b signaling pathway. (81)

miR-577 mouse/human; 64 pairs
of CRC and ANTs

SW480, SW620, CaCo2,
HT29, Lovo, HCT-116,
NCM460

HSP27 MiR-577 by targeting HSP27 could suppress tumor growth and
enhance chemosensitivity in CRC cells. (82)

miR-587 mouse/human RKO, HCT116, FET, GEO PPP2R1B, AKT MiR-587 by targeting PPP2R1B could antagonize 5-FU-induced
apoptosis and confer chemoresistance. (83)

miR-874 mouse/human; 32 pairs
of CRC and ANTs

LoVo, SW1116, SW480,
HCT-116, NCM460

XIAP MiR-874 by targeting XIAP could inhibit growth, induce apoptosis, and
reverse chemoresistance in CRC cells. (84)

miR-1260b 30 pairs of CRC and
ANTs

HCT116, SW480 PDCD4, IGF1,
PI3K/Akt

MiR-1260b by targeting PDCD4 could confer resistance to 5-FU and
inhibit apoptosis in CRC cells via the PI3K/Akt signaling pathway. (85)

miR-199b 110 pairs of locally
advanced rectal cancer
and ANTs

SW480, HT-29, SW480R SET MiR-199b downregulation by targeting SET could confer resistance to
5-FU in locally advanced rectal cancer cells. (43)
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FBXO31, resulting in suppression of FBXO31 and activation of
p38 MAPK. Systemic administration of miR-29c has
significantly enhanced response to 5-FU in xenograft models of
esophageal cancer (109). In cervical cancer, miR-138/-135 can
target FAK, enhance 5-FU sensitivity, and inhibit invasion and
tumor growth (110). In pancreatic cancer cells, miR-221-3p,
miR-486-5p, miR-21, and miR-320a influence response to 5-FU
through targeting RB1, PTEN, and PDCD4 (111–114). Finally, in
chronic myeloid leukemia (CML), miR-378 suppresses FUS1
expression, promotes cell proliferation, inhibits apoptosis, and
confers resistance to 5-FU (115). Table 4 provides an overview of
researches that studied the role of miRNAs in the modulation of
response to 5-FU in other types of cancer.

The expression pattern of several miRNAs that influence
response to 5-FU is associated with the survival of patients
with malignancies. Among oncogenic miRNAs, over-
expression of miR-1229-3p in gastric cancer patients has been
associated with shorter overall and relapse-free survival rates
(108). On the other hand, down-regulation of several tumor-
suppressive miRNAs such as miR-488, miR-145, and miR-199b
has been associated with poor survival of cancer patients (43, 77,
92). The possible application of 5-FU-associated miRNAs as
diagnostic markers has also been assessed showing the diagnostic
power values of 0.807 and 0.77 for miR-1229-3p and miR-378 in
gastric cancer and CML, respectively (108, 115). Table 5
provides a summary of the importance of 5-FU-related
miRNAs as diagnostic or prognostic markers in cancers.
Frontiers in Oncology | www.frontiersin.org 6
LNCRNAS AND RESPONSE TO 5-FU

Expression of HOTAIRM1 has been decreased in CRC tissues and
cell lines, particularly in 5-FU resistant tissues and cells. In 5-FU
resistant CRC cells, this lncRNA has been shown to suppress cell
progression through acting as a competing endogenous RNA for
miR-17-5p, thus enhancing the expression of BTG3 (123). HOTAIR
is another lncRNA that induces resistance to 5-FU in CRC. This
lncRNA down-regulates miR-218 level via an EZH2-related
mechanism. HOTAIR silencing has suppressed cell viability and
arrested cells in the G1-phase through enhancing miR-218
expression. VOPP1 is a functional target of this miRNA.
Moreover, NF-kB signaling has been shown to be inhibited by
HOTAIR via repression of miR-218 expression. Inactivation of NF-
kB signaling by HOTAIR silencing has also partly reversed 5-FU
resistance. Another route of participation of HOTAIR in resistance
to 5-FU is the enhancement of TS expression (124). A high
throughput assessment of transcriptome in 5-FU-resistant CRC
cells and parental cells has revealed differential expression of more
than 2,000 lncRNAs which have been enriched in Jak-STAT, PI3K-
Akt, and NF-kB signaling pathways, emphasizing the role of these
pathways in conferring resistance to 5-FU (125). Table 6
summarizes the role of lncRNAs in the modulation of response to
5-FU in CRC. Figure 2 illustrates that 5-FU-induced changes in cell
cycle regulation of several cancer cells might be associated with an
alteration of G1 and G2 target genes expression through the
modulation by various non-coding RNAs.
TABLE 2 | Role of miRNAs in the modulation of response to 5-FU in hepatocellular carcinoma (ANT, adjacent normal tissue).

microRNA Animal/Human Cell line Targets/
Regulators

Function Ref

miR-122 – BEL-7402, BEL-7402/5-FU Bcl-2, Bcl-
XL, p53

MiR-122 by downregulating Bcl-2 and Bcl-XL and increasing p53 could
enhance HCC cells sensitivity to 5-FU and induce cell death. (86)

miR-125b – SMMC-7221, Huh7, MHCC-97L,
HepG2, HepG3, BEL-7402,
THLE-2, THLE-3

HK II,
glycolysis

MiR-125b by targeting HK II could sensitize HCC cells to 5-fluorouracil
through inhibition of glycolysis. (87)

miR-
133a/-326

– HepG2 Bcl−XL MiR-133a/-326 by directly targeting Bcl-XL could co-contribute to HCC cell
5-FU sensitivity. (90)

miR-141 – HepG2, HuH7,SMMC-7721,
HepG2/5-FU, SMMC-7721/5-FU,
HuH7/5-FU

Keap1,
Nrf2

MiR-141 by repressing Keap1 could confer 5-FU resistance and contribute to
reduced susceptibility to 5-FU-induced apoptosis via activating Nrf2-
dependent antioxidant pathway.

(91)

miR-145 mouse/human:
102 pairs of HCC
and ANTs

SNU449, Huh7, LO2 TLR4 MiR-145 by targeting TLR4 could enhance chemosensitivity in HCC cells.
(92)

miR-147 mouse/human; 10
pairs of HCC and
ANTs

HepG2, C3A, SNU-398, Hep3B,
THLE2, THLE3, HiH7, MHCC97L,
MHCC97H

HOXC6 MiR-147 by inhibiting HOXC6 could suppress HCC cell proliferation,
migration and enhance chemosensitivity to 5-FU. (88)

miR-193a-
3p

mouse QGY-7703, SMMC-7721, BEL-
7402, HepG2, Hep3B, PLC, YY-
8103, FOCUS

SRSF2,
E2F1

DNA methylation-regulated miR-193a-3p by repressing SRSF2 could dictate
resistance of HCC cells to 5-FU. (93)

miR-195 – BEL-7402, BEL-7402/5-FU Bcl-w MiR-195 by targeting Bcl-w could confer HCC cells to 5-FU-induced
apoptosis. (94)

miR-200a-
3p

– Hep3B DUSP6 MiR-200a-3p by regulating DUSP6 expression could increase 5-FU
resistance in Hep3B cells. (95)

miR-302b – SMMC-7721, HepG2 Mcl-1,
DPYD

MiR-302b by targeting Mcl-1 and DPYD could enhance the sensitivity of HCC
cells to 5-FU. (96)

miR-503 9 HCC and ANTs HepG2, BEL-7402, SMMC-7721,
L-02

EIF4E MiR-503 by targeting EIF4E could render HCC cells susceptible to 5-FU and
inhibit cell proliferation. (89)
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In addition to CRC, lncRNAs have fundamental roles in
conferring resistance to 5-FU in other types of cancer, particularly
gastric cancer and HCC. For instance, in gastric cancer cells,
SNHG20 has been shown to mediate resistance to 5-FU via
modulating the expression of miR-140-5p and subsequent up-
regulation of its target gene NDRG3 (138). The role of PVT1 in
the progression of this kind of cancer and induction of
chemoresistance is mediated via up-regulation of the
antiapoptotic gene Bcl2 (139). KRAL is a down-regulated lncRNA
in HepG2/5-FU and SMMC-7721/5-FU cells compared with the
corresponding parental cells. Up-regulation of KRAL has enhanced
Keap1 expression. The resistance of these cells to 5-FU could be
reversed through the inactivation of the Nrf2-dependent
antioxidant pathway. KRAL serves as a sponge for miR-141 and
subsequently restores Keap1 expression (140). NR2F1‐AS1 is
involved in the modulation of response to 5-FU in breast cancer
Frontiers in Oncology | www.frontiersin.org 7
cells. This lncRNA increases IGF‐1 levels via spongingmiRNA‐338‐
3p and then activates IGF‐1R and ERK pathways (141). TMPO-AS1
is an over-expressed lncRNA in ovarian cancer tissues and SKOV3
cells. This lncRNA regulates TMEFF2 via sponging miR-200c.
Moreover, it activates the PI3K/Akt signaling pathway. TMPO-
AS1 silencing has suppressed epithelial–mesenchymal transition
(EMT), invasiveness, migration and 5-FU resistance in ovarian
cancer cells (142). Table 7 summarizes the role of lnRNAs in
modulation of response to 5-FU in other cancers.

In gastric cancer, Kaplan–Meier analysis has demonstrated
that patients with over-expression of PVT1 do not benefit from
5-FU containing chemotherapeutic regimens. However,
therapeutic regimens containing no 5-FU have been shown to
increase the first progression survival and overall survival of this
group of patients suggesting the role of PVT1 as a predictor of
resistance to 5-FU treatment (139). Additional studies in CRC
FIGURE 1 | A schematic representation of the crosstalk between microRNAs and the Wnt/b-catenin pathway contributing in the modulation of 5-FU in the cancer
cell. Mounting evidence has indicated that microRNAs dysregulation and the Wnt/b-catenin signaling pathway jointly drive the regulation of the sensitivity of tumor
cells to 5-FU as a chemotherapeutic agent. As an illustration, miR-30-5p has been detected to function as a tumor suppressor via regulating the Wnt/b-catenin
signaling cascade in colorectal cancer cells. miR-30-5p could downregulate the expression level of Wnt/b-catenin signaling target genes (MYC and Axin2) and the
levels of b-catenin protein, thereby promoting the sensitivity of these target cells to 5-FU agent (48). Besides, miR-125b is a critical downstream mediator of the
CXCL12/CXCR4 axis which could activate the Wnt/b-catenin signaling via targeting the APC gene and could play an effective role in enhancing invasion and 5-FU
resistance by elevating autophagy in colorectal cancer cells (101).
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have shown the importance of expression levels of several
lncRNAs namely HOTAIR, PCAT6, UCA1, XIST, TUG1,
HAND2-AS1, LINC00152, and H19 in the determination of
patients’ prognosis (Table 8). Figure 3 depicts the regulation of
the efficacy of 5-FU-based chemotherapy in cancer cells via
multiple non-coding RNAs through the Notch signaling cascade.
APPLICATION OF THE CRISPR/CAS9
SYSTEM WITH THE AIM OF
OVERCOMING 5-FU RESISTANCE IN
HUMAN CANCER CELLS

Accumulating evidence revealed that the CRISPR-Cas9 gene-
editing tool can be considered as a potential approach in order to
promote sensitivity to chemotherapeutic agents. Due to the
reason that gene mutation plays a remarkable role in
developing drug resistance in tumor cells, CRISPR-Cas9 can be
employed as an effective gene manipulation system with regards
to permanently removing genes and attenuating resistance to
cancer chemotherapy (149–151). Furthermore, this applicable
method can be applied effectively and has a great advantage
compared to other gene-editing technologies such as siRNAs,
ZFNs, and TALENs in manipulating target genes involved
in the chemotherapy resistance (152–154). Clinical evidence
demonstrated that cartilage oligomeric matrix protein (COMP)
has a substantial part in tumorigenesis, proliferation, and
invasion of colon cancer cells. Utilizing the CRISPR/Cas9
system, it has been possible to create COMP-knockout cells via
Frontiers in Oncology | www.frontiersin.org 8
lentiviral vectors which could, in turn, enhance the sensitivity of
tumor cells to 5-FU and suppress PI3K/Akt/mTOR/p70S6K
pathway (155). In addition, Lobo et al. figured out that
employing the CRISPR/Cas9 gene-editing tool for manipulation
of CD44 in addition to Phosphorodiamidate Morpholino
oligomers (PMOs) can promote cisplatin and 5-FU sensitivity in
gastric tumor cells (156). Furthermore, due to the association of
GPRC5a with a worse prognosis, the CRISPR/Cas9 was employed
to knock-out the expression level of this target gene to reduce
proliferation and migration ability of tumor cells and inhibit
resistance to oxaliplatin, 5-FU, and gemcitabine in pancreatic
cancer cells (157). Moreover, current research indicated that
upregulation of MUC5AC could widely affect colorectal cancer
chemotherapy response via overexpression of b-catenin and its
target genes CD44 and Lgr5 as well as suppression of p53 and its
target gene p21, which is frequently associated with aggressiveness
of colorectal cancer cells. RNA interference and CRISPR/Cas9
systems were utilized to knock-out the expression of MUC5AC in
tumor cells thereby enhancing the sensitivityof cancer cells to 5-FU
and oxaliplatin (158). With the emergence of the CRISPR-Cas9,
experimentations in the field of drug resistance in various human
cancers have been advanced greatly. A summary of clinical
researches related to the knockout of various genes causing 5-FU
resistance in several humancancer cells via theCRISPR/Cas9gene-
editing tool is demonstrated in Table 9. Although these studies
have targeted mRNA coding genes, they show the feasibility of
targeting certain transcripts and the significant effects of these
methods in sensitization of neoplastic cells to 5-FU. Similar
strategies targeting lncRNAs/miRNAs would have similar effects
on cancer cells.
TABLE 3 | Impact of miRNAs in the response of gastric cancer to 5-FU (ANT, adjacent normal tissue).

microRNA Animal/Human Assessed Cell line Targets/
Regulators

Function Ref

miR-31 – AGS, 293T, MKN-45 SMUG1,
E2F6

MiR-31 could enhance sensitivity to 5-FU and decrease migration and
cell invasion.

(97)

miR-147 mouse/human; 43 pairs of
GC and ANTs

GES-1, AGS, SGC-7901, MKN-
45, BGC-823, MGC-803

PTEN,
PI3K/Akt

MiR-147 by targeting PTEN could enhance proliferation and trigger
resistance to 5-FU.

(98)

miR-149 mouse/human: 20 pairs of
GC and ANTs

AGS/5-FU, AGS TREM2, b-
catenin

MiR-149 by targeting TREM2 could contribute to resistance of 5-FU in
GC cells via b-catenin signaling pathway.

(99)

miR-195 – SGC-7901, AGS, SGC-7901/5-
FU, AGS/5-FU

HMGA1 MiR-195 by targeting HMGA1 could enhance 5-FU sensitivity in GC
cells. (100)

miR-195-
5p

12 gastric
adenocarcinoma tissues

MKN28, MKN74 ZNF139 MiR-195-5p by targeting ZNF139 could reverse the multi−drug
resistance of GC cells. (102)

miR-197 – SGC−7901, SGC7901/5−FU MAPK1 MiR-197 by targeting MAPK1 could enhance sensitivity to 5-FU in
CRC cells. (103)

miR-204 mouse/human; 30 pairs of
GC and ANTs

GES-1, AGS, SGC-7901, MKN-
45, MGC-803, BGC-823

TGFBR2,
EMT

MiR-204 by targeting TGFBR2 could inhibit proliferation, migration, and
invasion in GC cells through EMT regulation. (104)

miR-567 mouse/human; paired
CRC and ANTs

GES-1, MKN45, BGC823,
AGS, MGC803, BGC803,
MKN28

PIK3AP1,
PI3K/Akt

MiR-567 by targeting PIK3AP1 could inhibit tumor growth and reverse
chemoresistance in GC cells via the PI3K/Akt signaling pathway. (105)

miR-623 31 pairs of GC and ANTs MKN-45, SGC-7901, BGC-823,
MGC-803, GES-1

CCND1 MiR-623 by targeting CCND1 inhibits proliferation and enhances
chemosensitivity to 5-FU. (106)

miR-625 – SGC7901, SGC7901/VCR,
SGC7901/ADR

ALDH1A1 MiR-625 by directly targeting ALDH1A1 could reverse multidrug
resistance and induce apoptosis in GC cells. (107)

miR-1229-
3p

mouse/human: 60 plasma
samples of GC patients

HGC27, GFP-MKN45 SLC22A7,
TS, DPD

MiR-1229-3p overexpression could induce chemoresistance of 5-FU
and proliferation in GC cells. (108)
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EFFECT OF HISTONE DEACETYLASE
INHIBITORS IN COMBINATION WITH
5-FU ON PROMOTING THE
CHEMOTHERAPEUTIC EFFICACY IN
MULTIPLE HUMAN CANCERS

Accumulating evidence has demonstrated that tumorigenesis not
only occurs by a genetic mutation, but it also could be triggered
via epigenetic alteration processes. Modification of histones by
acetylation has an important part in epigenetic modulation of
gene expression which is regulated by both histone
acetyltransferases (HAT) and histone deacetylases (HDAC)
(171). Since dysregulation of histone acetylation is a hallmark
of cancer in some cases, thereby employing HDAC inhibitors
could shed novel insights into regulatory mechanisms of
transcription as well as inducing differentiation and apoptosis.
HDAC inhibitors are potential anticancer drugs because of their
ability to induce tumor cell differentiation, cell cycle arrest, and
cell death, attenuate angiogenesis, reverse transformed cell
Frontiers in Oncology | www.frontiersin.org 9
morphology, and regulate immune response (172).
Importantly, the combination of HDAC with 5-FU can elevate
the efficacy of this agent in tumor cells. The HDAC inhibitor
SAHA has a key role in promoting sensitivity to 5-FU and
irinotecan via triggering proapoptotic signals in hepatocellular
carcinoma cells through overcoming MDR-mediated drug efflux,
suppressing SN-38 glucuronidation and synchronization of the
cell cycle by upregulation of CDK-inhibitor p21cip1/waf1 (173).
Additionally, Minegaki et al. have demonstrated that co-
administration of 5−FU with VPA or SAHA as an inhibitor of
histone deacetylases could downregulate the expression level of
TS in 5−FU−resistant MDA−MB−468 breast cancer cells, and
thereby promoting the sensitivity of both 5-FU-sensitive and
−resistant breast cancer cells to 5-FU chemotherapy (174).
Moreover, another research has illustrated that the
combination of HDAC inhibitor depsipeptide and 5-FU could
significantly enhance the sensitivity of colon cancer cells to
chemotherapy. This sensitization of tumor cells could occur via
triggering cell cycle arrest caused by overexpression of p21
(CDKN1A), modulating apoptosis represented by caspase-3/7
TABLE 4 | Impact of miRNAs in the modulation of response to 5-FU in other types of cancer (ANT, adjacent normal tissue).

Cancer type microRNA Animal/Human Assessed Cell line Targets/
Regulators

Function Ref

Esophageal
squamous cell
carcinoma
(ESCC)

miR-29c mouse/human; multiple cohort
studies including paired ESCC
and ANTs and serum samples/
TCGA dataset

KYSE150FR,
KYSE410FR,
KYSE150, KYSE410

FBXO31,
p38

MiR-29c by targeting FBXO3 could reverse
chemoresistance to 5-FU in ESCC cells. (109)

ESCC miR-145 25 pairs of ESCC and ANTs HEEC, TE-8,
KYSE150, TE-1

REV3L MiR-145 by targeting REV3L enhances 5-FU induced
cell viability inhibition and cell apoptosis in ESCC cells. (116)

ESCC miR-338-
5p

mouse/human; 72 pairs of ESCC
and ANTs

KYSE410, KYSE150,
KYSE270, T.Tn, 293T,
KYSE410FR,
KYSE150FR

Id-1 MiR-338-5p by targeting Id-1 could inhibit migration
and invasion and reverse chemoresistance in ESCC
cells.

(117)

Cervical
Cancer

miR-138/-
135

Mouse HeLa FAK MiR-138/-135 by targeting FAK could increase
chemosensitivity, inhibit invasion, and tumor growth. (110)

Renal Cell
Cancer (Rcc)

miR-381 – 786-O, HK-2 WEE1,
Cdc2

MiR-381 by targeting WEE1 could trigger Cdc2
activation, mitotic catastrophe, and cell apoptosis and
also enhance chemosensitivity in RCC cells.

(118)

Melanoma miR-204-
5p

mouse/human; 30 melanoma
tissues and 30 benign nevi

A375, WM35, SK-
MEL-5, SK-MEL-2,
HEMa-LP

MMP9, Bcl-
2

MiR-204-5p by targeting MMP9 and Bcl-2 could inhibit
melanoma growth and resistance to 5-FU. (119)

Gallbladder
Carcinoma

miR-335 60 pairs of gallbladder carcinoma
and ANTs

GBC-SD, SGC-996 MEF2D MiR-335 by targeting MEF2D could inhibit cell growth
and sensitize gallbladder carcinoma cells to 5-FU. (120)

Cervical
Cancer

miR-433 – HeLa TYMS MiR-433 by negatively regulating TYMS could increase
sensitivity for 5-FU and inhibit proliferation in HeLa cells. (121)

Pancreatic
Cancer (PaC)

miR-221-
3p

– PANC-1, PATU8988,
293TN, PATU8988/5-
FU

RB1, EMT MiR-221-3p by targeting RB1 could increase
proliferation, migration, and invasion and also confer
resistance for 5-FU in pancreatic cancer cells via the
EMT signaling pathway.

(111)

PaC miR-486-
5p

mouse PANC-1, MiaPaCa-2 PTEN,
ERK, Akt

MiR-486-5p silencing could enhance cytotoxic effect of
5-FU. (112)

PaC miR-21 – PATU8988, PANC-1,
293TN, PATU8988/5-
FU

PTEN,
PDCD4

MiR-21 by targeting PTEN and PDCD4 could increase
resistance to 5-FU in pancreatic cancer cells. (113)

PaC miR-320a – PATU8988, PANC-1,
293TN, PATU8988/5-
FU

PDCD4,
EMT

MiR-320a by targeting PDCD4 could promote 5-FU
resistance in human pancreatic cancer cells via EMT
regulation.

(114)

CML miR-378 59 bone marrow samples of CML
and healthy controls

K562 FUS1,
Nanog,
OCT4, c-
Myc

MiR-378 by repressing FUS1 could promote cell
proliferation, inhibit apoptosis, and establish drug
resistance to 5-FU in CML cells.

(115)
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activation as well as regulating the expression level of MHC class
II (175). In addition, Hamam et al. have detected that the effect of
5−FU against colon tumor cells could be promoted remarkably
by the combination treatment with CUDC−907, a dual HDAC,
and PI3K inhibitor. This could in turn lead to upregulation of
apoptotic processes and necrosis, as well as enhancing polyploidy
(176). Besides, Tan et al. have shown that the HDAC6 selective
inhibitor ACY1215 could play an effective role in inhibiting
colon cancer cell growth, migration, invasion, and triggering
apoptosis in colon cancer cells, and thereby elevating the efficacy
of 5-FU (177). On the other hand, another study showed that
upregulation of HDAC4 could modulate TGFb signaling cascade
via reducing the expression levels of SMAD4, SMAD6, BMP6,
iID1, TGFb2, and TGFb3 in breast cancer cells. HDAC4 could
also regulate the expression of SMAD4 via histone h3
deacetylation which could in turn augment MDA-MB-231 cell
resistance to 5-FU (178). The effects of epigenetic regulators on
the expression of lncRNAs/miRNAs which are linked with
cellular response to 5-FU have been less studied.
THE ROLE OF AUTOPHAGY IN 5−FU
TREATMENT IN MULTIPLE
HUMAN CANCERS

Multidrug resistance (MDR) could occur mostly after long−term
chemotherapy, leading to tumor recurrence. Autophagy, a
Frontiers in Oncology | www.frontiersin.org 10
self−degradative mechanism, generally occurs during the
process of resistance to chemotherapy. Autophagy can enhance
the MDR and protection of tumor cells from these drugs.
Autophagy induced by anticancer agents could also trigger
upregulation of apoptotic signaling pathways in MDR cells,
simplifying MDR reversal (179–181). Accumulating evidence
il lustrated that suppression of autophagy by either
pharmacological procedures or through regulatory gene
silencing enhances 5−FU− induced tumor cell death.
Furthermore, autophagy could have a pro−death role which
may modulate cell death in various tumor cells to trigger
apoptosis pathways. Therefore, autophagy could be a target to
improve the sensitivity of multiple cancer cells to 5−FU (20).
Zhang et al. have illustrated that a combination of 5-FU and b-
Elemene could play an effective role in promoting the sensitivity
of p53-deficient colorectal cancer cells to 5-FU via modulation
pro-death autophagy by promoting the formation of
autophagosome (182). Furthermore, another research has
demonstrated that psilostachyin-A can attenuate 5-FU
resistance in liver carcinoma via triggering autophagy in
these cells. Psilostachyin-A could cause the enhancement of
the autophagosomes via upregulating the expression levels of
LC3B-II and Beclin-1 in the HepG2 cells. This could also
induce G2/M arrest of the tumor cells through declining of
cyclin B1 and CDK1 expression as well as suppressing the
MAPK/ERK signaling cascade, and thereby inhibiting
proliferation and invasion of the HepG2 cells to the large
extent (183). Besides, Zhang et al. have detected that whilst
TABLE 5 | Diagnostic/prognostic roles of 5-FU-related miRNAs (OS, overall survival; RFS, relapse-free survival; DFS, disease-free survival).

Sample Area
Under
Curve

Sensitivity Specificity Kaplan-Meier Univariate/Multivariate Cox regression analysis Ref

60 GC patients 0.807 73.7 80.5 High level of miR-1229-3p was
associated with shorter OS and RFS
rates.

A high level of miR-1229-3p was correlated with
advanced TNM stages. (108)

280 CRC patients – – – Low level of miR-488 was associated
with shorter survival rate.

– (77)

102 HCC patients – – – A low level of miR-145 was associated
with a shorter survival rate.

A low level of miR-145 was correlated with lymph
node metastasis and advanced TNM staging.

(92)

110 LARC patients – – – Low level of miR-199b was associated
with shorter OS and RFS rates.

– (43)

97 CRC patients – – – Low level of miR-552 was associated
with shorter OS and DFS rates.

– (81)

104 ESCC patients – – – Low level of miR-338-5p was associated
with shorter survival rate.

–

(117)
TCGA dataset – – – Low level of miR-29c was associated

with shorter OS rate.
–

(122)
59 CML patients (miR-
378)

0.770 72.1 90.9 – –

(115)
56 CRC patients – – – Low level of miR-329 was associated

with shorter OS.
– (72)

CRC patients from
PROGgeneV2
database

– – – Low level of miR-29c-3p was associated
with shorter OS and MFS.

– (47)

30 melanoma patients – – – Low level of miR-204-5p was associated
with shorter survival.

–

(119)
152 CRC patients A low level of miR-145 was associated

with shorter survival.
(59)
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autophagy could be activated by treatment of human colon
carcinoma cells with 5-FU, treatment of these cells
with curcumin followed by the 5-FU treatment could
considerably attenuate autophagy activation and promote
the cytotoxicity of this chemotherapeutic drug. This could
occur via the alteration in LC3II/LC3I, beclin-1, and p62
expression levels in cancer cells which could, in turn,
contribute to the downregulation of Akt/mTOR as well
as AMPK/ULK1 signaling cascades in HCT116 cells (184).
Furthermore, Yu et al. have represented that miR-125b could
enhance 5-FU resistance in colorectal cancer cells via promoting
cell autophagy. miR-125b remarkably upregulates the expression
levels of beclin-1 and cleaved LC3B-II which could, in turn,
play an important role in triggering autophagy and reducing
the sensitivity of cancer cells to 5-FU. miR-125b was increased
Frontiers in Oncology | www.frontiersin.org 11
by the activation of the CXCL12/CXCR4 axis, and thereby miR-
125b could significantly augment EMT. Inhibition of
this miRNA may be a suitable approach to attenuate
the development of chemoresistance in tumor cells which
could play a critical role in the regulation of autophagy
(101). Similarly, several miRNAs/lncRNAs that affect response
to 5-FU modulate autophagy in the neoplastic cells.
DISCUSSION

A vast body of literature has revealed the impact of non-coding
RNAs in the determination of the response of cancer cells to 5-FU.
CRC and HCC are the most assessed cancer types in this regard
possibly because of the vast application of this chemotherapeutic
TABLE 6 | Role of lncRNAs in the modulation of response to 5-FU in colorectal cancer (ANT, adjacent normal tissue).

lncRNA Human/Animal Assessed Cell line Targets/Regulators Function Ref

HOTAIRM1 athymic mice/
human: 56 pairs of
CRC and ANTs

HCT116, SW480, NCM460,
HCT116/5-FU, SW480/5-FU

miR-17-5p, MRP1,
MDR1, BTG3, E-
cadherin, N-cadherin

HOTAIRM1 via sponging endogenous miR-17-5p/
BTG3 axis could suppress cell progression in 5-FU
resistant CRC cells.

(123)

HOTAIR 48 pairs of CRC and
ANTs

HT29, SW480, FHC, HT29/5-FU,
HCT116, SW620, SW1116, lovo,
RKO, colon205

miR-218, VOPP1, TS,
AKT, ERK, E2F-1, NF-kB

HOTAIR via suppressing miR-218 and activating
NF-kB/TS signaling could contribute to 5-FU
resistance.

(124)

uc010vzg.1,
ENST00000468960

Microarray HCT116, HCT116/5-FU JAK/STAT, PI3K/AKT,
NF-kB

Any change in lncRNA expression could be
involved in 5-FU-based CRR in CRC cells. (125)

PCAT6 73 pairs of CRC and
ANTs

HCT116, HT‐29, SW620, SW480,
DLD‐1, RKO, LoVo, 293T, CCD‐
112CoN

miR‐204, HMGA2, PI3K/
AKT

Overexpression of PCAT6 by inhibiting miR‐204
thereby promoting HMGA2/PI3K axis could
enhance the chemoresistance of CRC cells to 5‐
FU.

(126)

NEAT1 55 pairs of CRC and
ANTs

FHC, HT29, HCT8, HCT116,
SW480, SW620

miR-34a, Caspase-3,
LC3 II/I, ULK1, Beclin-1,
ATG9A, ATG4B, HMGB1

NEAT1 silencing could attenuate autophagy to
elevate 5-FU sensitivity in CRC. (127)

NEAT1 male BALB/c-nude
mice/human; 30
pairs of CRC and
ANTs

SW480, HCT116, NCM460 miR-150-5p, CPSF4, P-
gp, GST-p

NEAT1 via the miR-150-5p/CPSF4 axis could
regulate 5-Fu sensitivity in CRC. (128)

ENST00000547547 – HCT116, LoVo, LoVo/5-FU,
HCT116/5-FU

miR-31, Bax, Bcl-2 ENST00000547547 via competitive binding to
miR-31 could reduce the 5-FU resistance of CRC
cells.

(129)

UCA1 119 pairs of CRC
and ANTs

293T, HCT8, HCT116, HT29,
LoVo, SW480,

miR-204-5p, CREB1,
Bcl-2, RAB22A

UCA1 by inhibiting miR-204-5p could increase cell
proliferation and 5-FU resistance in CRC. (130)

XIST 268 pairs of CRC
and ANTs

HT29, HCT116, FHC, HT29/5-FU,
HCT116/5-FU

TS XIST via promoting thymidylate synthase
expression could inhibit 5-FU-induced CRC cell
cytotoxicity.

(131)

TUG1 124 pairs of CRC
and ANTs

HCT8Fu, HCT8, HCT116, SW1116 miR-197-3p, TYMS TUG1 by acting as a ceRNA of miR-197-3p could
mediate 5-FU resistance in CRC. (132)

HAND2-AS1 nude mice/human;
27 pairs of CRC and
ANTs

NCM460, HCT116, SW480,
HCT116/5-FU, SW480/5-FU

miR-20a, PDCD4, Bax,
Bcl-2, MMP2, MMP9

HAND2-AS1 by modulating miR-20a/PDCD4 axis
could inhibit 5-FU resistance in CRC. (133)

LINC00152 nude BALB/c mice/
human; 108 pairs of
CRC and ANTs

HCT8, HT29, LoVo, HCT116,
SW480, SW620, 293T

miR-139-5p, NOTCH1 LINC00152 by inhibiting miR-139-5p could
promote cell proliferation and confer 5-FU
resistance in CRC.

(134)

H19 110 pairs of CRC
and ANTs

HCT8, HCT8Fu, SW1116, 293T,
HCT116, Lovo,
HT29, SW480, SW620,
CCD-18Co

Caspase-3, PARP, p62,
LC3I/II, SIRT1

H19 by promoting SIRT1-mediated autophagy
could confer 5-FU resistance in CRC. (135)

CCAT1 BALB/c mice/
human; 67 pairs of
CC and ANTs

HCT 116, SW1417, HT-29, KM12,
NCM460

g-H2AX, p53, c-Myc Downregulation of CCAT1 could enhance 5-FU
sensitivity in CC cells. (136)

H19, UCA1 – HCT116, DLD1, SW480, HCT116/
5-FU, DLD-1/5-FU, SW480/5-FU,
HCT116/p, DLD-1/p, SW480/p

Rb, p27kip1 Overexpression of UCA1 and H19 could be
involved in the impaired cell cycle in cells
susceptible to 5-FU.

(137)
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agent in these types of cancer. Yet, the influence of non-coding
RNAs in the modulation of response to 5-FU has been mostly
assessed in vitro needing confirmation in animal models and
human subjects. Autophagy has been identified as the main
route of the function of non-coding RNAs in the determination
of the response of cancer cells to 5-FU. Moreover, the influence
of non-coding RNAs on apoptotic-related pathways also affects
Frontiers in Oncology | www.frontiersin.org 12
the response of cancer cells to 5-FU. EMT is also influenced by
these non-coding RNAs. The latter function of lncRNAs and
miRNAs is consistent with the observed association between
EMT and acquired resistance to 5-FU in cancer cells (185).

It is crucial to emphasize that the results of in vitro studies
regarding the role of non-coding RNAs in the modulation of
response to 5-FU should be verified in animal models as well as
FIGURE 2 | The schematic diagram of the effects of 5-FU on G1 and G2 phase cell cycle arrest in tumor cells through regulation by various non-coding RNAs.
5-fluorouracil has been highly applied for chemotherapy of gastrointestinal cancers and is known to affect the cell cycle and trigger apoptotic death of cancer cells.
Non-coding RNAs have an important role in regulating cell cycle mechanisms via modulating the effects of 5-FU on the expression of G1/S and G2/M-related cell
cycle regulators in tumor cells. LncRNA HOTAIR via downregulating the expression level of miR-218 and promoting the activation of NF-kB/TS signaling cascade
could induce upregulation of the cell cycle transcription factor E2F-1, and thereby contributing to 5-FU Resistance and elevating enhanced colorectal cancer cell
carcinogenesis (124). Besides, miR-381 via downregulation of the expression level of WEE1 and upregulation of the activity of Cdc2 results in alteration in cell cycle
regulation which could potentiate the anti-tumor efficacies of 5-FU and abrogate G2/M cell cycle arrest in renal cancer cells (118). Additionally, miR-195 via directly
targeting checkpoint kinase 1 (CHK1) and G2 checkpoint kinase WEE1 could desensitize colorectal cancer cells to 5-FU. This result demonstrates that miR-195 has
a potential role in promoting the cell cycle via elevating G2/M transition after exposure to 5-FU (62).
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human subjects. Although the results of these three types of
studies are mostly consistent, there are few examples of
inconsistency. For instance, while miR-23a antisense has
enhanced the activation of the caspases-3 and -7 and increased
the 5-FU-associated apoptosis in CRC cells, this approach has
not improved the anticancer impact of 5-FU in the xenograft
model of CRC (42).

Exosome-mediated transfer of non-coding RNAs particularly
miRNAs is implicated in conferring chemoresistance at a wide
distance from the original cells. Moreover, these cell-free
part ic les can modulate several ce l l s in the tumor
microenvironment in favor of tumor progression. On the other
hand, it is possible to take advantage of exosomes as vehicles for
the specific transfer of anti-cancer agents to cancer cells. A
successful example of the latter function of exosomes has been
provided by simultaneous delivery of 5-FU and miR-21 inhibitor
oligonucleotide to Her2 expressing cancer cells via engineered
exosomes (186).

LncRNAs mostly affect the response of cancer cells to 5-FU
through the modulation of the expression of miRNAs.
HOTAIRM1/miR-17-5p, HOTAIR/miR-218, PCAT6/miR‐204,
Frontiers in Oncology | www.frontiersin.org 13
NEAT1/miR-34a, NEAT1/miR-150-5p, ENST00000547547/
miR-31, UCA1/miR-204-5p, TUG1/miR-197-3p, HAND2-AS1/
miR-20a, KRAL/miR-141, SNHG20/miR-140-5p and
LINC00152/miR-139-5p are examples of the roles of lncRNAs
in sponging miRNAs in the context of 5-FU resistance. A
number of lncRNAs such as XIST have been shown to directly
influence the expression of 5-FU-related genes such as TS.

In spite of the comprehensive data about the effect of miRNAs
and lncRNAs in the modulation of response of cancer cells to 5-FU,
therapeutic efforts are scarce in this field. An important study in this
field has shown the significant effect of systemic administration of
miR-29c in the enhancement of response to 5-FU in the xenograft
model of esophageal cancer (109). Conduction of similar studies
using mimics or antamiRs for other miRNAs is a necessity for
translation of the valuable basic science in this filed into clinical use.

Finally, the expression signature of miRNAs and lncRNAs
which confer resistance to 5-FU has been associated with the
survival of patients with different types of cancer. This observed
association is not necessarily related to the role of these
transcripts in chemoresistance particularly in cancer patients
who have not been treated with this agent. Instead, it might
TABLE 7 | Role of lncRNAs in the modulation of response to 5-FU in other cancers (ANT, adjacent normal tissue).

Cancer type lncRNA Human/Animal Assessed Cell line Targets/
Regulators

Function Ref

Gastric Cancer
(GC)

SNHG20 GC tissues (n = 408),
normal stomach tissue
(n = 211)

BGC−823, AGS miR−140
−5p, NDRG3

SNHG20 via miR−140−5p/NDRG3 axis could
contribute to 5−FU resistance in GC. (138)

GC PVT1 Nod/SCID mice/human;
normal (n = 35), GC (n
= 229)

SGC-7901, Bax, Bcl-2,
Caspase-3

PVT1 via increasing Bcl-2 could mediate 5-FU
resistance in GC. (139)

GC HOTAIR 168 pairs of GC and
ANTs

– – HOTAIR could be considered as a biomarker for
patients with advanced GC. (143)

Hepatocellular
Carcinoma
(HCC)

KRAL 30 pairs of HCC and
ANTs

HepG2, HepG2/5-FU,
SMMC-7721, SMMC-7721/
5-FU

Keap1, miR-
141

KRAL by acting as a ceRNA against miR-141 could
reverse 5-FU resistance in HCC cells. (140)

Breast Cancer
(BC)

SNORD3A female BALB/c athymic
nude mice/human; 26
pairs of BC and ANTs

MCF10A, MCF-7, MDA-MB-
231, T47D, SKBR3,
ZR7530, BT549, HCC1937,
BT474, 293T

GFP, UMPS,
Meis1

SNORD3A by sponging miR-185-5p to enhance
UMPS could sensitize BC cells to 5-FU. (144)

Esophageal
cancer (EC)

LINC00261 BALB/c nude mice/
human; EC (n = 162),
normal tissue (n = 11)

Het-1A, KYSE150, Eca109,
TE-1,
TE-5, TE-1/5-FU

DPYD LINC00261 by mediating methylation-dependent
repression of DPYD could induce chemosensitization
to 5-FU in EC.

(145)

EC LINC01270 male nude mice, 42
pairs of EC and ANTs

TE-13/5-FU, Eca-109,
KYSE450, TE-13, EC109,
TE-11

GSTP1,
DNMT3B,
MMP2

Silencing of LINC01270 by mediating GSTP
methylation could enhance chemosensitivity to 5-FU
and inhibit EC progression.

(141)

EC HOTAIR nude mice/human, 70
pairs of EC and ANTs

KYSE150, EC109, TE-1,
HEEC,
TE-1/5-FU

MTHFR HOTAIR by attenuating the promoter hypermethylation
of the MTHFR could sensitize EC cells to 5-FU. (146)

ESCC LINC01419 nude mice/human; 38
pairs of ESCC and
ANTs, GSE21362
database

Het-1a, KYSE70, KYSE450,
EC109, EC9706

GSTP1 Overexpression of LINC01419 via promoting GSTP1
methylation could diminish the sensitivity of ESCC
cells to 5-FU.

(147)

Ovarian cancer TMPO-AS1 BALB/C nude mice/
human; GEO database

HOSEpiC, SKOV3, SKOV3/5-
FU

miR-200c,
TMEFF2,
PI3K/AKT

Knockdown of TMPO-AS1 via the miR-200c/TMEFF2
axis and disrupting the PI3K/Akt signaling could inhibit
the invasion, metastasis, and drug resistance of OC
cells.

(142)

Pancreatic ductal
adenocarcinoma
(PDAC)

DGCR5 30 pairs of PDAC and
ANTs

HPDE6, PANC-1, SW1990,
BxPC-3, HPAC, MIAPaCa-2,
HPDE6/5-FU, PANC-1/5-FU

E-cadherin,
Twist,
Vimentin,
miR-320a,

Overexpression of DGCR5 via targeting miR-320a/
PDCD4 axis could promote 5-FU resistances of PDAC
cells.

(148)
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TABLE 8 | Prognostic roles of 5-FU-related lncRNAs (ANTm adjacent normal tissue; OS, overall survival; RFS, relapse-free survival).

Sample Kaplan–Meier Multivariate Cox regression analysis Ref

48 pairs of CRC
and ANTs

Higher expression of HOTAIR was related to lower OS
and RFS rates.

Higher expression of HOTAIR was related to tumor size, distant metastasis, and
tumor differentiation. (124)

73 pairs of CRC
and ANTs

Higher expression of PCAT6 was related to a lower
OS rate.

Higher expression of HOTAIR was related to TNM stage, tumor differentiation,
and lymph node metastasis. (126)

119 pairs of CRC
and ANTs

Higher expression of UCA1 was related to a lower
OS rate.

Higher expression of UCA1 was related to tumor size and lymph node invasion.
(130)

268 pairs of CRC
and ANTs

Higher expression of XIST was related to lower OS and
RFS rates.

Higher expression of XIST was related to TNM stage and distant metastasis.
(131)

124 pairs of CRC
and ANTs

Higher expression of TUG1 was related to lower
RFS rate.

Higher expression of TUG1 was related to the depth of the tumor.
(132)

27 pairs of CRC
and ANTs

Lower expression of HAND2-AS1 was related to lower
OS rate.

–

(133)
108 pairs of CRC
and ANTs

Higher expression of LINC00152 was related to lower
OS and DFS rates.

Higher expression of LINC00152 was related to the tumor stage.
(134)

110 pairs of CRC
and ANTs

Higher expression of H19 was related to lower
RFS rate.

–

(135)
168 pairs of GC
and ANTs

Higher expression of HOTAIR was related to lower
OS rate.

Higher expression of HOTAIR was related to tumor size and TNM stage.
(143)
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FIGURE 3 | A schematic illustration of the Notch signaling pathway involved in the regulation of response of cancer cells to 5-FU via various non-coding RNAs.
Notch signaling cascade is involved in the various processes of normal morphogenesis, such as cell growth, apoptosis, as well as the acquisition of drug resistance.
LINC00152 could elevate tumor cell migration and invasion, and confer 5-FU resistance in colorectal cancer via modulating the expression level of NOTCH1 through
sponging miR-139-5p and downregulating its function from enhancing CRC development (134). Additionally, miR-34a acts as a tumor suppressor and could directly
downregulate the expression level of DLL1 as a ligand of the Notch signaling cascade, and thereby could inhibit tumor growth under 5-FU treatment by promoting
chemosensitivity to this agent (51).
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TABLE 9 | Pre-clinical studies employing CRISPR/Cas9 to recognize the role of various genes in response to 5-FU treatment.

Cancer Target In
vitro

Cell line Animal In
vivo

CRISPR Vector Other
gene-
editing
methods

Treatment Signaling Effect Ref

Colorectal
cancer (CRC)

MUC5AC + HCT-8, LS174T 5–6-week-old
athymic nude
mice

+ Knockout
(targeting
exon 2)

Lentiviral siRNA 5-fluorouracil
(5-FU),
Oxaliplatin

CD44/b-
catenin/
p53/p21

Sensitized
the cells (158)

CRC SNHG15 + LoVo 6–7-week-old
female BALB/c-
Rag2/−IL2cc/
immunodeficient
mice

+ Knockout
(deleting
the region
between
exon 3 and
5)

plasmid siRNA 5-FU – Sensitized
the cells (159)

CRC CYSLTR1 + HT-29, HT-29-R − − Knockout Plasmid – 5-FU LTD4/
CysLT1R

Sensitized
the cells (160)

CRC COMP + HEK 293T, LoVo,
SW1116

4-week-old male
BALB/c nude
mice

+ Knockout
(targeting
exon 10)

Lentiviral – 5-FU PI3K/Akt/
mTOR/
p70S6K

Sensitized
the cells (155)

CRC BAG3 + HCT-116 − − Knockout Lentiviral – 5-FU JAK/Stat,
ERK/
MAP,
AMPK
PTEN,
PI3K/AKT

Sensitized
the cells (161)

CRC LINC01021 + HCT116 − − Deletion of
promoter
sequences
(MER61C
LTR
element)

Plasmid siRNA 5-FU,
Doxorubicin

– Sensitized
the cells (162)

CRC FoxO3A + HCT116 − − Knockout
(targeting
exon 2)

Plasmid siRNA 5-FU,
Irinotecan,
Cisplatin,
Etoposide

MEK/
ERK,
AMPK

Sensitized
the cells (163)

Gastric cancer
(GC)

cd44v6 + MKN45, GP202 − − Editing
(targeting
Exon-v6
Splice-
Sites)

Plasmid PMOs 5-FU,
Cisplatin

– Sensitized
the cells (164)

GC GSDME + MKN-45, SGC-
7901

− − Knockout Plasmid siRNA 5-FU – Sensitized
the cells (165)

Metaplasia DDIT4 + MGC-803 − − Knockout Plasmid – 5-FU mTORC1 Sensitized
the cells (166)

Myeloid
malignancies
(MDS, AML)

ASXL1 + U937 − − Frameshift
mutation
(targeting a
specific site
(nt1010-
1031) of
exon 8)

Plasmid – 5-FU – Sensitized
the cells (167)

Nasopharyngeal
carcinoma (NPC)

EBV DNA + C666-1,
HEK293M81

− − Editing
(targeting
EBNA1,
OriP, and
W repeats)

Plasmid – 5-FU,
Cisplatin

– Sensitized
the cells (168)

Oesophageal
adenocarcinoma
(OAC)

TP53 + OE33, OE19,
H1299, HEK293T,
JH-EsoAd1, FLO-
1, OACM5.1,
Eso26, SKGT4,
OACP4C, TE7,
OANC1, NES

6-week-old
female nude
(Eso26 and
OE19), NOD-
SCID IL-2RgKO
mice (FLO-1)

+ Knockout
(targeting
exon 5)

Lentiviral siRNA 5-FU,
Cisplatin,
Epirubicin

P53 Sensitized
the cells (169)

(Continued)
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merely reflect the oncogenic or tumor-suppressive effects of
these transcripts.

Perspectives and Future Directions
Generally, this review provides convincing evidence for the role of
miRNAs and lncRNAs as biomarkers of response to 5-FU
treatment in a variety of solid tumors, especially in colorectal
cancer cells. Patients with gastrointestinal cancer become resistant
to 5-FU because of the aberrant expression of certain genes. This
event is a prevalent phenomenon in clinical practice. Modulation of
expression levels of miRNAs or lncRNAs may be a suitable
approach to sensitize tumor cells to 5-FU treatment via
modulating multiple biological signaling pathways like Hippo/
YAP, Wnt/b-catenin, Hedgehog, NF-kB, and Notch cascades.
There is an increasing interest in targeting miRNAs as well as
lncRNAs in various kinds of cancers that are treated by 5-FU.
However, due to the wide range of miRNAs and lncRNAs
regulating the response to 5-FU and their aberrant expression in
multiple cancers, it is required to characterize the most clinically
relevant non-coding RNAs in these malignancies. Therefore,
researchers should systematically investigate the correlations
between genes, pathways, and drug sensitivity to find direct causal
effects. Besides, the research procedures recently utilized are mainly
phenotype-based, like in vitro cell proliferation, migration and
invasion, and in vivo mouse specimens. To find practical
strategies, novel gene editing systems such as the CRISPR/Cas9
method should be applied to figure out the biological role of various
target genes as well as non-coding RNAs in human cancers.
Additionally, the enhancement of human primary cell models
Frontiers in Oncology | www.frontiersin.org 16
and patient-derived tumor xenograft (PDX) animal models may
also play a key role in scrutinizing the role of non-coding RNAs and
improving non-coding RNA-targeting techniques. We also suggest
that non-invasive liquid biopsies such as circulating tumor DNA
(ctDNA) and circulating tumor cells (CTCs) should be employed to
identify factors that are explicitly accompanied with 5-FU sensitivity
and/or adverse reactions (187, 188). These methods can help in the
reduction of ineffective therapies and overdose as well as attenuating
toxic side effects of 5-FU. Moreover, based on sufficient
experimental data, we propose that the procedure of
downregulating autophagy by either pharmacological methods or
via silencing genes involved in the autophagy could also be
considered as effective adjunctive therapy to improve the
sensitivity of tumor cells to 5-FU. Besides, we propose that
epigenetic processes such as modification of histones by
acetylation can influence response to 5-FU. The obtained
information from these studies will guide the advancement of
precision medicine in the upcoming future.
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