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Abstract: Plants produce numerous structurally and functionally diverse signaling metabolites, yet
only relatively small fractions of which have been discovered. Multi-omics has greatly expedited
the discovery as evidenced by increasing recent works reporting new plant signaling molecules and
relevant functions via integrated multi-omics techniques. The effective application of multi-omics
tools is the key to uncovering unknown plant signaling molecules. This review covers the features
of multi-omics in the context of plant signaling metabolite discovery, highlighting how multi-omics
addresses relevant aspects of the challenges as follows: (a) unknown functions of known metabolites;
(b) unknown metabolites with known functions; (c) unknown metabolites and unknown functions.
Based on the problem-oriented overview of the theoretical and application aspects of multi-omics,
current limitations and future development of multi-omics in discovering plant signaling metabolites
are also discussed.

Keywords: plant signaling molecules; multi-omics; secondary metabolites; structures and functions

1. Introduction

Small molecules produced by plants play vastly diverse roles in nature, amongst which
signaling and communication are two of the most important aspects. Plant metabolites
are broadly classified into primary and secondary metabolites. Primary metabolites are
ubiquitous to all plants whereas secondary metabolites are specifically produced by certain
plants, tissues and cells and in most cases elicited under certain conditions. It is estimated
that there are over one million metabolites produced throughout the plant kingdom [1].
Secondary metabolites (including but not limited to terpenes, phenylpropanoids and
alkaloids) are important signaling molecules that convey information in a spatial–temporal-
specific manner [2]. We define signaling molecules as those small plant metabolites that
can be perceived by living organisms and trigger or participate in signal transduction.

These metabolites can serve as signaling molecules during plant growth and develop-
ment, initiating and coordinating plant developmental programs. In the meantime, they
can “liaise” with external environments and other living organisms, fulfilling the subtle
demands for plant health and growth. Plant hormones including jasmonic acid [3], abscisic
acid [4], brassinosteroids [5,6], auxin [7], gibberellins [8], strigolactones [9], ethylene [10]
and salicylic acids [11] are well known signaling molecules that participate in numerous
aspects of plant growth, defense and plant–environment interactions. These compounds
are essential for plant growth and development, yet their specific roles and the ways they
function can vary drastically among different plant species and under specific environ-
mental conditions. Secondary metabolites were well-known for their direct impacts on
herbivores and pathogens in plant defense. More recently, their functions as signaling
molecules that indirectly aid plants in overcoming stresses are gradually being unveiled.
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For instance, triterpenes including the oat antifungal avenacin precursor β-amyrin [12]
and thalianol-derived triterpenes from Arabidopsis thaliana [13] were found to participate
in plant root growth and development, with β-amyrin affecting the oat root epidermal
cell patterning and thalianol derivatives impacting A. thaliana root length, respectively.
Defense compound glucosinolate can also influence plant growth via its degradation prod-
uct indole-3-carbinol, which inhibits root elongation by competing directly with auxin
as a signaling molecule, so as to maintain the balance between plant growth and plant
defense [14]. Other plant metabolites such as flavones apigenin and luteolin were recently
found to be able to promote maize growth and nitrogen acquisition via recruiting beneficial
bacteria of the taxa Oxalobacteraceae [15]. Such indirect effects of secondary metabolites on
plant performance were also observed in maize. Maize roots exuded well-known defense
compounds, benzoxazinoids, that altered the root-associated microbiota in soils, which, in
turn, exerted a prolonged impact on the growth and herbivore resistance of maize in the
next generation [16].

The aforementioned examples demonstrate that even some of the best-known plant
metabolites still have unknown functions awaiting discovery. Moreover, the majority of
plant metabolites discovered so far have only been chemically/structurally characterized
and not yet been assigned a definite function in nature. The plant metabolites that we
have already discovered might actually represent only the tip of the iceberg regarding
the metabolic diversity of plants, as implicated by the numerous uncharacterized pre-
dicted biosynthetic genes present in plant genomes [17]. Current research concerning the
discovery of plant signaling metabolites can be broadly classified into three categories:
(a) plant metabolites with known structures but unclear functions; (b) plant metabolites
with unknown structures but implicated functions; (c) plant metabolites with yet to be de-
termined structures and functions (Figure 1). The difficulties in discovering plant signaling
metabolites under these three scenarios also vary.

There are a few major challenges impeding the discovery of plant signaling molecules:
(i) the content of plant signaling metabolites are usually very low; (ii) plant signaling
metabolites are often under dynamic metabolism (i.e., they are actively being synthe-
sized as well as being catabolized and secreted); (iii) plant signaling metabolites nor-
mally have characteristic spatial–temporal distributions (they can respond to the upstream
signal transduction cascade, including those from the environment, growth and devel-
opmental programs at specific stages); (iv) they have extremely diverse physical and
chemical properties that demand customized analytical and assay methods; (v) they
have diverse specialized functions that can only be captured under specific spatial and
temporal conditions.

Addressing these challenges requires interdisciplinary approaches. Multi-omics is a
powerful and indispensable integrated technique that has greatly accelerated the discov-
ery of plant signaling metabolites via systematic comparative analysis of large datasets
(Figure 1). Experimental designs and technical application are critical for the successful
implementation of multi-omics for discovering plant signaling metabolites. This review
synthesizes the technical features and limitations of multi-omics and discusses effective
strategies for implementation with recent successful examples in discovering plant sig-
naling metabolites for the purpose of providing guidance for the effective application of
multi-omics technologies in uncovering the structures and functions of plant metabolites.
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Figure 1. Overview of multi-omics for plant signaling metabolite discovery. Key tools at the different
levels of omics for plant signaling discovery are highlighted on the left panel. The different categories
(A–C) of plant signaling metabolites awaiting discovery are depicted on the right panel. WGCNA,
weighted gene co-expression network analysis.

2. Multi-Omics as a Powerful Tool for Uncovering Plant Signaling Metabolites

Biological networks are highly complex, interconnected and tightly regulated. Plant
metabolites are the output of the Central Dogma, closely related to phenotypes and associ-
ated with various aspects of cellular processes ranging from biosynthesis and catabolism to
regulation, transport, mode of action and their interactions with environmental changes.
Each of the related aspects provides an entry point for investigating plant signaling metabo-
lites. These entry points correspond well with the different levels of omics (including
genomics, epigenomics, transcriptomics, proteomics, metabolomics and microbiomics) that
are currently available. Different levels of omics techniques will have to be employed in a
combinatorial fashion to reveal a relatively complete picture of plant signaling metabolites.
Depending on the nature of the study, and the current knowledge of the structures and
functions of the metabolites of interest, one might design experiments with specific focus
on one or two omics techniques. Nevertheless, an in-depth grasp of the technical features
and research aims are critical for the successful execution of multi-omics.

2.1. Features of Multi-Omics, Including Genomics, Epigenomics, Transcriptomics, Proteomics,
Metabolomics and Microbiomics

Multi-omics refers to the integrated application of more than one type of large dataset
analysis, including genomics, epigenomics, transcriptomics, proteomics, metabolomics
and microbiomics. To better understand biological activities at a system level, traditional
single-omics research is rarely comprehensive enough and requires the integrated multi-
omics data for global analysis of biological systems [18], and multidimensional analysis as
well as multi-stage development analysis are increasingly used to understand biological
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mechanisms and deepen our understanding of plants and environment. Each single omics
has its own feature that could compensate for limitations of the other omics techniques.

2.1.1. Genomics—The Source Code for Discovering Plant Signaling Metabolites

Genomics involves the study of complete DNA sets in organisms, including all its
genes, their sequences, arrangements and architecture, providing perspective for looking
into biological problems from the most basic code of life DNA. DNA carries instructions for
transcription (promoters, untranslated regulatory regions and splicing sites), translation
(start and stop codons) and specific functions of a gene (coding sequence) [19]. Genomics
features underlying transcriptional and translational regulation, biosynthesis and the trans-
port of plant metabolites can be utilized for systematic mining at single or multiple genome
scales for discovering plant signaling metabolites. Driven by advances in high-throughput
DNA sequencing technologies such as Illumina HiSeq, PacBio and Nanopore sequencing,
more than 600 plant genomes have been sequenced and made publicly available [20]. The
majority of genomes deposited have been structurally and functionally annotated, thus,
can be exploited for mining biosynthetic genes and other genomic features concerning
plant metabolites. Protein family domains and physical arrangements of the corresponding
genes (e.g., whether or not colocalized) in the genomes can be used for predicting the types
of enzymes and potential metabolic products derived thereof [21]. For instance, a rare
type of terpene compound, namely sesterterpenes, which are convergently synthesized by
plants and fungi, were discovered via investigating the metabolic output of an interesting
colocalization phenomenon of genes containing the prenyltransferase (Polyprenyl_synt
(PT)) and terpene synthase (Terpene_synth C (TPS)) domains in plant genomes [22,23].
Gene-guided approaches have also been employed to discover the precursor gene en-
coding peptide with the BURP domain (Pfam 03181) and core ribosomal peptide(s) for
bioactive compound lyciumin biosynthesis. The newly discovered genomic features un-
derpinning lyciumin biosynthesis enabled the customized tblastn search in plant genomes
for genes encoding BURP domain proteins to identify ribosomally synthesized candidates
and post-translationally modified peptides (RiPPs) in Amaranthaceae, Fabaceae, Rosaceae and
Solanaceae families [24]. With the usage of plant genomic sequence, protein annotation and
gene expression profile, a few bioinformatic tools including plantiSMASH [21], phytoclus-
ter [25] and clusterfinder [26,27] have been developed to predict plant biosynthetic gene
clusters (BGCs) from plant genomes, which will certainly facilitate the discovery of plant
signaling metabolites.

2.1.2. Epigenomics—The Gatekeeper for Plant Metabolite Biosynthesis

DNA in cells is wrapped around histone proteins H1, H2A, H2B, H3 and H4, which
form spool-like structures that enable very long DNA molecules to be wrapped up neatly
into chromosomes inside the cell nucleus. DNA and histones can undergo reversible
chemical modifications like DNA methylation or histone methylation, acetylation, phos-
phorylation and adenylation, the complete set of which in cells are heritable without
changing the DNA sequence, termed epigenome. Epigenomics unitizes high-throughput
technologies to decipher epigenome landscapes based on comprehensive analyses.

Epigenome landscapes are tightly associated with gene activity and expression, con-
trolling the production of proteins and metabolites under a specific condition via altering
chromatin conformation or transcription regulator recruitment. DNA methylation is one
well-known epigenomic process with methyl groups being added to the bases of a DNA
molecule at specific sites, switching the genes on or off by altering interactions between
the DNA and methyl group reading proteins. Epigenomics technologies including chro-
matin immunoprecipitation–sequencing (ChIP–seq) and Assay for Transposase-Accessible
Chromatin using sequencing (ATAC–Seq) [28] enable detection of global chemical modifi-
cations associated with various aspects of plant signaling metabolites, thereby providing
another perspective for looking into metabolite biosynthesis and regulation. Via ChIP–seq
analysis, plant triterpenes thalianol and marneral biosynthetic gene clusters were found
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to be regulated by histone modification with histone 3 lysine trimethylation (H3K27me3)
and the histone2 variant H2A.Z reported to repress and activate the thalianol and marneral
gene clusters, respectively [29]. Besides triterpenes, camalexin biosynthesis genes were also
found to contain epigenetic marks with H3K18ac and H3K27me3 found to activate and
repress gene expression, respectively [30]. Similarly, the diterpene gene cluster responsible
for the biosynthesis of the antifungal diterpene, ent-5,10-diketo-casbene, was recently found
to also be under the regulation of epigenetic modifications with H3K27me3 acting as a
repression mark [31]. Epigenomics can yield meaningful information for discovering the
regulatory mechanism of plant signaling metabolite biosynthesis, especially when used
together with other omics techniques.

Apart from plants having complete genome sequences as mentioned above, epige-
nomics may also be applied to decouple the regulatory mechanisms underlying plant
signaling metabolite biosynthesis in non-model plants that lack a whole genome, using
techniques such as epiGBS, reference-free reduced representation bisulfite sequencing [32]
for exploration and comparative analysis of DNA methylation de novo. This method could
help to profile epigenetic regulation patterns and understand how epigenetic regulatory
mechanisms affect metabolite biosynthesis in non-model plants.

2.1.3. Transcriptomics—Snapshots of Gene Expression under Specific
Spatial–Temporal Conditions

Transcriptomics is used to study all types of RNA transcripts including messenger
RNAs (mRNAs), microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) present
in a sample under specific conditions. As one of the most widely used high-throughput
sequencing methods, modern transcriptomics technology has developed from bulk RNA
sequencing (RNA-seq) at the tissue or population level to single-cell RNA-seq at the indi-
vidual cell level using nanopore sequencing and 10× Genomics single-cell sequencing [33].
In contrast to the high cost of plant genome sequencing, RNA-seq is a cost-efficient and
facile approach to obtain snapshots of gene expression at a cell/organ/tissue under the
conditions being studied. Transcriptomics data can reveal information related to many
aspects of RNAs, including expression levels, functions, locations, trafficking, degrada-
tion, structures of transcripts and their parent genes, with regard to start sites, 5′ and 3′

untranslated regions (UTR), splicing patterns, alternative polyadenylation profiles and
post-transcriptional modifications [34].

Transcriptomics is particularly useful when no genome information is available for
the plant to be studied, as RNA-seq data can be assembled de novo to retrieve coding
sequences (CDS) of biosynthetic genes. This has proven to be a powerful tool for dis-
covering biosynthetic genes responsible for the synthesis of metabolites (e.g., colchicine
alkaloid [35] and protolimonoid biosynthesis [36]) in medicinal plants. Furthermore, signal-
ing metabolite-associated genes display similar expression patterns for certain biological
events [37]. RNA-seq is extremely powerful for uncovering patterns of genes relevant
to biological (e.g., developmental and environmental) events, exposing links between
metabolite biosynthesis and genes related to their functions, hence, facilitating the dis-
covery of metabolite structures and functions. By using the gene expression matrix from
RNA-seq data analysis, various co-expression analysis approaches, including weighted
gene co-expression network analysis (WGCNA) [38], hierarchical clustering [39], Pearson
Correlation Coefficient (PCC) [40], Highest Reciprocal Rank (HRR) [41], Mutual Rank
(MR) [42] and Self-Organizing Map (SOM) [43], have been successfully applied in iden-
tifying candidate genes involved in plant-specialized metabolic pathways by utilizing
known biosynthetic genes as a bait [44]. For instance, based on a SOM analysis of oat
(Avena species) transcriptomic data for six tissues, six transcripts of the known antifungal
avenacin biosynthetic pathway genes clustered to a node of the self-organizing map, indi-
cating the co-expression of these genes. Within the transcripts clustered with the avenacin
biosynthetic pathway genes in 100% of self-organizing map runs, nine transcripts were
identified as candidate avenacin glycosyltransferase genes (UGT). Combing the phylo-
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genetic analysis of the predicted amino acid sequences of the nine new candidate UGTs
with Agrobacterium-mediated transient expression assay, AsTG1 and AsUGT91G16 were
proven to form part of the avenacin biosynthetic gene cluster [45].

2.1.4. Proteomics—The Yet to Flourish Tool for Plant Signaling Metabolite Discovery

Proteins translated from mRNA are effectors of biological functions, catalyzing reac-
tions, transmitting signals and creating cellular support structures. Proteomics studies the
complete set of protein abundance, structures, functions, post-translational modifications
and protein–protein/metabolite interactions in a living organism under given conditions.
Protein abundance is closely related to transcript abundance but more dynamic due to
miscellaneous degradation and modification mechanisms present in plant cells. Some
biosynthetic enzymes responsible for the synthesis of secondary metabolites are actually
regulated by post-translational modifications [46]. Proteomics can also be used to im-
prove the functional annotation of genes in plant genomes, reducing difficulties for future
bioinformatics analysis and cloning efforts [47]. Moreover, some properties of proteins
(e.g., solubility/melting points) can change systematically when interacting with proteins
or metabolites, providing opportunities to probe protein–protein and protein–metabolite
interactions using methods like the cellular thermal shift assay (CETSA) and photo-affinity
labeled chemical proteomics [48–50]. Therefore, proteomics can reveal differentially ac-
cumulated proteins and their modification patterns associated with signaling metabolite
biosynthesis, regulation and functions, aiding in disentangling the relevant complex biolog-
ical events within cells [51]. One- or two-dimensional gel electrophoresis/mass spectrome-
try (MS) and liquid chromatography–MS (LC–MS) have been used for the quantification
and identification of proteins and potential post-translational modifications [52–54]. For
instance, by using two-dimensional gel electrophoresis, Decker et al. constructed a two-
dimensional protein map of two main fractions of the latex including the cytosolic serum
and the sedimented fraction containing the alkaloid-accumulating vesicles isolated from
Papaver somniferum. Codeinone reductase, an enzyme involved in morphine biosynthesis,
within the cytosolic serum fraction was detected following the analysis of the 75 protein
spots by internal peptide microsequencing and database matching [55]. Proteins annotated
as tocopherol cyclase and prenyltransferases potentially involved in the biosynthesis of
orsellinic acid in Peperomia obtusifolia could also be identified from the soluble proteins of
the different plant tissues using LCMS–IT–TOF-based comparative proteomics analysis
coupled with transcriptomics analysis [56]. Furthermore, the recent success in discovering
FAD-dependent enzyme-catalyzed intramolecular [4 + 2] cycloaddition in the biosynthe-
sis of natural plant products using chemical probe-based proteomics analysis showcases
the utility and applicability of chemical proteomics in secondary metabolite research [57].
Targeted proteomics can also help reveal the rate-limiting steps in certain biosynthetic path-
ways [58]. At present, the discovery of structures and functions of secondary metabolites
using proteomics is often not the first choice due to its relatively higher cost compared to
RNA-seq and yet to be established methodologies in studying secondary metabolism.

2.1.5. Metabolomics—The Node of Multi-Omics for Discovering Signaling Metabolites

Metabolome covers all small molecules including primary and secondary metabo-
lites present in an organism or cell. Metabolomics refers to the systematic analysis of the
metabolome of a living system using analytical instruments including liquid
chromatography–mass spectrometry (LC–MS) [59], gas chromatography–mass spectrome-
try (GC–MS) [60] and nuclear magnetic resonance (NMR) [61]. Mass spectrometry (MS)-
based metabolomics is the most prevalent method as it can acquire sufficient structural
information for compound identification, whilst offering great sensitivity, resolution and
compound coverage. The detection of all plant metabolites using one or two methods
is impossible due to the enormously diverse chemical and physical properties of plant
metabolites. Metabolomics analysis will have to be tailored properly to enable the detection
of sufficient compounds for comparative analysis. A few methodological guides have re-
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cently been released to aid in MS-based metabolomics analysis [62]. Targeted metabolomics
approaches identify and quantify a specific subset of predefined small molecules whilst
untargeted metabolomics analysis can collect signals of metabolites (including known
and unknown metabolites) that could be detected by detectors for systematic analysis.
Comparative metabolomics analysis across different samples allows for the detection of
differentially accumulated metabolites, yielding insights into biosynthetic and catabolic
dynamics of certain small molecules or pathways. Metabolomics provides direct informa-
tion regarding the status of metabolites and, thus, serves as a core node for connecting with
other omics technologies in discovering plant signaling molecules. It is an essential tool
for discovering previously unknown signaling metabolites, especially when starting with
plant phenotypes that could possibly arise from metabolites.

2.1.6. Microbiomics—Uncovering Metabolite and Microbe Interactions

Recent studies have proven that the root microbiome, modulated by plant signal
metabolites like coumarins, flavones and benzoxazinoids, improves plant stress
resilience [63]. Microbiomics investigates all the microorganisms of a given community
under various conditions. The main approaches for studying microbial composition are
16S ribosomal RNA (16S rRNA) gene sequencing and shotgun metagenomics sequencing.
The bacterial 16S rRNA gene sequences contain species-specific hypervariable regions,
which can be amplified, sequenced and then clustered into operational taxonomic units
(OUT) for the identification, classification and quantitation of microbes. 16S rRNA am-
plicon sequencing uses primers for a relatively short genomic region (e.g., V5–V7 zone);
therefore, sequencing results can often be annotated to bacterial taxa of relatively higher
taxonomic rank. Another microbial community profiling method is next-generation se-
quencing (NGS)-based shotgun metagenomics sequencing. Total DNA in all organisms
present in a given complex mixture are sequenced. This technology compensates for the
limits of sequencing the restricted amplicon region in 16S rRNA sequencing, expanding the
coverage of microbial DNA to be sequenced, thus, capturing the protein-coding DNA frag-
ments for relatively more accurate functional annotations for microbes present in a sample.
The features of 16S rRNA amplicon sequencing and NGS-based shotgun metagenomics
sequencing analysis were nicely demonstrated in a recently published work reporting the
identification of flavones that function in recruiting the beneficial rhizosphere microbe
Oxalobacteraceae, which aided maize in acquiring nitrogen under nitrogen deprivation [15].

The different features of each single omics mentioned above can be synergistically.
oriented for discovering signaling metabolites, in terms of both structures and func-
tions [64–69]. We have seen a surge in plant signaling metabolites being discovered with the
aid of multi-omics, particularly in the area of plant–microbe interactions [70–74]. We will
illustrate below in more detail how multi-omics techniques were integrated to unveil plant
signaling molecules with different levels of knowledge using recent works as examples
(Figure 2) to help improve the design of experiments and the application of multi-omics
tools in future research.
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Figure 2. Illustration of the various omics techniques employed in recent discoveries of plant signaling
metabolites. The overall experimental designs and key techniques applied for discovering signaling
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metabolites with different knowledge are depicted in Figure 2. Details for content depicted in (a–f)
can be found in references [75], [15], [76], [77], [78] and [79] respectively.

2.2. Multi-Omics-Based Discovery of New Functions of Known Molecules

The integration of multi-omics analysis into studies designed to uncover the metabolic
basis of certain phenotypes or traits could lead to the discovery of new functions for some
well-known molecules. Coumarins, a family of benzopyrones (1,2-benzopyrones or 2H-
1-benzopyran-2-ones), well-known for their defensive role in nature [80], were recently
found to act as signaling metabolites in plant–microbe interactions in response to iron defi-
ciency [75,81]. As a well-known class of defense phytochemicals, coumarins protect plants
from predation and pathogen infection [80]. The integration analysis of 16S rRNA gene
amplicon sequencing along with RNA-seq uncovered that coumarin helps plants to deal
with iron limitation by recruiting beneficial soil microbiota. When the culture-independent
16S rRNA gene amplicon sequencing analysis was employed, the impact of coumarin
on the root microbiota could be systematically evaluated. Unconstrained principal coor-
dinate analysis (PCoA) of beta diversity constrained (CPCoA) and bacterial community
profiles analysis of 16S rRNA sequencing data results indicate that coumarin biosynthesis
is important for plant growth and root microbiota assembly in naturally iron-limiting
calcareous soil. Moreover, comparative analysis of the amplicon sequence variant (ASV)
level in coumarin-deficient mutants with wild type (WT) plants revealed that coumarin
fraxetin exerts variable antimicrobial activity on Burkholderiaceae strains in iron-limiting soil.
Through further root transcriptional profiles and elemental analysis of Col-0 and coumarin-
deficient mutant f6′h1 plants under available iron or the unavailable form of FeCl3 media
with live or heat-killed synthetic community (SynCom), the role of coumarins, especially
fraxetin, in mediating root microbiota for improving plant performance under iron-limiting
conditions, was uncovered [75] (Figure 2a). This new function of coumarins would have
not been discovered had the integrated analysis of microbiomics and transcriptomics were
not applied.

Combined transcriptomics, metabolomics and microbiomics analysis were also em-
ployed to discover the hidden roles of other signaling molecules such as flavones [15],
benzoxazinoids [82] and strigolactones [73] in mediating plant and microbe interactions.
Flavones are phenolic compounds that have functions in plant signaling, defense and
adaptation to stress conditions [83]. In a recent study designed to unlock mechanisms un-
derlying beneficial interactions between plants and rhizosphere microorganisms, flavones
synthesized in maize roots were found to be capable of recruiting rhizosphere Oxalobacter-
aceae bacteria to improve maize performance under nitrogen deprivation [15]. Hundreds of
RNA-seq datasets together with their corresponding rhizosphere microbiome data from
three longitudinal zones of the crown roots of 20 inbred lines of maize with significantly
different genetic backgrounds were generated. Using WGCNA network analyses on root
RNA-seq datasets, phylogenetic and genotype-specific gene modules that contained gene
sets with similar expression patterns across all samples were identified. Correlation anal-
ysis of the expression module with maize genotypes, phenotypes and microbiome data
enabled the authors to target a specific module that displayed the highest correlation with
Oxalobacteraceae enriched in the root of the high-performance inbred line of maize 787
under nitrogen deprivation. The fact the flavone synthase displayed the highest modu-
lar connectivity within this module further suggests that flavones might play a role in
mediating the assembly of a beneficial root microbiota for the high-performance inbred
line of maize 787. To further confirm whether flavones act as a signaling molecule under
nitrogen deprivation, targeted metabolite profiling of maize root extracts of the high- and
low-performance maize genotypes, together with comparative phenotypic assays of wild
type maize and chalcone synthesis mutants as well as complementation experiments with
exogenous flavonoids further identified the roles of root-secreted flavones, especially api-
genin, in recruiting Oxalobacteraceae bacteria for promoting lateral root development and
nitrogen uptake in maize [15] (Figure 2b). The new function of flavones would not have



Metabolites 2022, 12, 76 10 of 17

been identified without an in-depth correlation analysis of transcriptomics and microbiome
16S rRNA sequencing data. Therefore, new functions of known plant metabolites could
potentially be uncovered from the studies aiming to explore the mechanisms underpinning
certain phenomena or traits.

2.3. Multi-Omics-Based Discovery of Unknown Molecules with Known Functions

An untargeted metabolomics approach is essential to uncover novel molecules that
might have given rise to certain biological functions. The comparative metabolic profiling of
samples with and without biological activities can capture the chemical differences in these
samples unbiasedly, enabling the design of experiments to further investigate the structures
and biological activities of these chemicals. Many previously unknown molecules have
recently been identified using an untargeted metabolomics approach [76,77,84,85]. One
notable example is the discovery of N-hydroxy-pipecolic acid as a mobile signaling metabo-
lite that induces systemic disease resistance in Arabidopsis [76] (Figure 2c). This metabolite
was identified via comparative metabolic profiling of the Arabidopsis Flavin-Dependent
Monooxygenase 1 (FMO1) mutant that is deficient in systemic acquired resistance (SAR)
with wild type Arabidopsis plants. Although FMO1 has been identified as a key component
in mediating the SAR against pathogens for Arabidopsis [86], the chemical basis of FMO1
remains elusive, primarily due to the unprecedented nature of the biosynthetic pathway.
Untargeted metabolomics analysis nicely revealed a major mass signal present in wild type
plants in response to Pseudomonas syringae treatment but absent from all fmo1 mutant plants.
Further structural elucidation based on mass spectra fragmentation and synthetic standards
confirmed the chemical identity of the mass signal as glycosylated N-hydroxy-pipecolic
acid, suggesting that FMO could hydroxylate pipecolic acid to form N-hydroxy-pipecolic
acid, which can be further glycosylated in planta [87]. Having mutant plants of genes
involved in certain biological events would be very helpful for uncovering the chemical
basis contributing to the biological activity of the gene under investigation. The discovery
of isochorismate-9-glutamate as an important intermediary in the biosynthesis of salicylic
acid exemplifies this strategy [77]. The disease compromised Arabidopsis mutant npr1
(nonexpressor of pathogenesis-related genes, NPR1) with reduced salicylic acid content
and the snc2 (suppressor of npr1-1, constitutive 2) mutant which displays an autoimmune
phenotype with an excess of salicylic acid were used to perform comparative untargeted
metabolomics analysis, which successfully identified new intermediaries for salicylic acid
biosynthesis [77] (Figure 2d). MS-based untargeted metabolomics analysis provides ample
structural information regarding the chemical signals being detected, enabling annotation
of the metabolites with different levels of confidence, though it is still challenging to anno-
tate most of the chemical signatures detected by untargeted MS [88]. Synthetic standards
or the NMR spectra of purified chemicals are normally required to confirm the identity
of unknown compounds. Nevertheless, advances in plant metabolomics, both technical
and computational, will greatly facilitate the identification and delineation of chemical
signals underlying gene functions [89], leading to the discovery of novel compounds that
contribute to certain biological functions.

2.4. Multi-Omics-Based Discovery of Unknown Molecules with Unknown Functions

Discovering novel molecules with defined biological activities has been an ongoing
task in natural product research. The advent and development of multi-omics technol-
ogy, especially genomics, have revolutionized the way unknown natural products are
discovered [17,90], shifting from phytochemistry-based isolation and functional evalua-
tion to genome- and transcriptome-based structural and functional mining. Genomic and
transcriptomic features underlying the biosynthesis of plant natural products can enable
the fast discovery of previously unknown plant metabolites when coupled with efficient
heterologous expression systems. Alternatively, function oriented/guided studies of genes
predicted to be involved in metabolite biosynthesis, regulation or transport can often un-
earth unknown metabolites with novel functions. Notable examples include the recent
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discovery of a previously unknown specialized triterpene biosynthetic network involved
in selectively modulating Arabidopsis root microbiota [78], a new cyanogenic metabolite in
Arabidopsis required for inducible pathogen defense [84] and hydroxylated diterpenoids
involved in plant defense [79].

Gene clustering is increasingly demonstrated to be an important genomic feature that
can be utilized for the facile discovery of plant signaling metabolites [91]. Plant biosynthetic
gene clusters provide a great entry point to discover and elucidate previously unknown
biosynthetic pathways as multiple biosynthetic genes functioning in the same pathway
can be easily identified at the same time. The specialized triterpene biosynthetic network
operating in Arabidopsis roots was recently discovered using this approach, starting with
the heterologous functional characterization and untargeted metabolomics analysis of
root-expressed triterpene biosynthetic cluster genes and their mutants to uncover novel
triterpene chemical structures. This was followed by 16S rRNA microbiomics analysis
of triterpene-deficient mutants and wild type Arabidopsis root microbial communities to
delineate the function of the triterpene biosynthetic network in modulating Arabidopsis
root microbiota [78] (Figure 2e). Transcriptomics data enabled the discovery of other
co-expressed biosynthetic genes that are not clustered with the core cluster genes but
function in the same thalianin and arabidin biosynthetic pathways. This provided hints
on the functions of the triterpene biosynthetic network, leading to further microbiomics
analysis [78].

Similar to genomic features, transcriptomic features underlying plant metabolite
biosynthesis can serve as an entry point to probe unknown plant metabolisms. The fact
that the synthesis of plant signaling metabolites is responsive to external stimuli allows
investigation of the transcriptomic alteration of biosynthetic genes coding for the synthesis
of cryptic metabolites. Using transcriptomics data as the entry point for discovering plant
signaling metabolites offers many advantages: (i) relative low cost of RNA-seq sequencing
and ease of transcriptome assembly as compared to genome sequencing and assembly;
(ii) amplifiable signals of transcriptomic changes can be captured with high accuracy
and relatively low amounts of plant materials in contrast to the relatively large quantity
required for untargeted metabolomics analysis; (iii) functional annotation of transcriptomics
sequences with higher prediction accuracy in comparison to untargeted metabolomics
analysis. The new cyanogenic metabolite in Arabidopsis required for inducible pathogen
defense was discovered based on the untargeted metabolomics analysis of mutants of
genes involved in defense against pathogens as identified from the pathogen-induced
transcriptomics data analysis [84].

It is clear that untargeted metabolomics analysis has to be carried out to correlate with
transcriptomics data for the identification of structurally unknown compounds. In some
cases, untargeted metabolomics analysis on the organism (e.g., insects) interacting with
plants can also provide cues leading to the identification of unknown metabolites with
novel functions [79,89]. In a recent study aiming to uncover the metabolic basis for de-
fense and autotoxicity of 17-hydroxygeranyllinalool diterpene glycosides (17-HGL-DTGs),
the authors identified the ceramide synthase inhibition activity of modified diterpene
glycosides via untargeted metabolomics analysis of the insect Manduca sexta fed with to-
bacco plants containing normal and compromised diterpene glycoside levels as well as its
frass [79,89]. Manduca sexta fed with tobacco plants containing normal diterpene glycoside
levels accumulated significantly more long chain bases, which are substrates of ceramide
synthase inhibited by the diterpene glycosides, than those fed with compromised levels
of the diterpene glycosides. Moreover, the frass of M. sexta fed with tobacco containing
the normal level of diterpene glycosides also accumulated more modified 17-HGL-DTGs
than those fed with tobacco containing compromised levels of diterpene glycosides. The
identification of modified 17-HGL-DTGs as novel compounds and their activities in inhibit-
ing ceramide synthase led to the further discovery of the toxicity of modified diterpenes
(i.e., hydroxylated hydroxygeranyllinalool diterpenes) on tobacco plants. It is interesting
to note that the ceramide synthase inhibition activity of 17-HGL-DTGs on M. sexta was



Metabolites 2022, 12, 76 12 of 17

identified based on cues obtained from comparative transcriptomics analysis of wild type
tobacco and autotoxic tobacco mutant plants [79] (Figure 2f). Therefore, an untargeted
metabolomics approach is indispensable for the identification of unknown compounds,
and when coupled with transcriptomics analysis can often unearth unknown compounds
with novel biological activities.

3. Breaking the Limitation of Multi-Omics: Future Perspective for Accelerated
Discovery of Plant Signaling Molecules

Multi-omics technology has greatly facilitated the discovery of plant signaling metabo-
lites in many aspects; however, technical limitations in individual omics techniques still
pose challenges to their application. With regard to genomics, although long-read sequenc-
ing such as PacBio [92] and Nanopore [93] sequencing technologies have improved read
length and, therefore, genome assembly, to some extent, the high levels of heterozygos-
ity, complex polyploidy and the unusually high repeat content of plant genomes are still
challenges impeding accurate genome assembly and annotation [94,95]. An increasing
number of plant genomes have been sequenced, yet a reasonable number of which were
poorly assembled and annotated (both structurally and functionally) or with low sequence
quality. Functional genomics relies heavily on the sequence information of a genome;
assembly errors create hurdles for the functional prediction of biosynthetic genes or gene
clusters, leading to incorrect identification of plant biosynthetic gene clusters for functional
validation using currently available bioinformatics tools. For instance, the discovery of
plausible functional biosynthetic gene clusters would be undermined if the assembly is
only at the scaffold level rather than chromosome level as the biosynthetic genes potentially
forming a gene cluster might span across multiple scaffolds. Moreover, incorrect sequence
information can also result in cloning issues due to not being able to design appropriate
primers as a result of missing or incorrect sequence information of a gene in a plant genome.
Therefore, further technical development is desired to improve read length and the accuracy
of genome sequencing techniques.

Similarly, sequencing read length and accuracy also affect de novo transcriptome
assembly, functional annotation, gene cloning and functional validation, especially for
those plant species without a sequenced genome. Currently, RNA-seq data are primarily
generated using second-generation Illumina sequencing due to the low cost and relatively
well-developed analysis pipeline [96]. Single-molecule Nanopore RNA and PacBio se-
quencing can significantly improve read length [97], yet the cost is still relatively high in
comparison to Illumina sequencing. These problems are expected to be resolved in the
near future with the development of long read sequencing technologies and continuously
deceasing sequencing cost. Another limitation associated with transcriptomics mining
for signaling molecule discovery is the resolution of data. RNA-seq data were previously
generated from the bulk RNA of plant tissues, which inevitably include much transcript
noise from cells where the gene of interest is not expressed [98]. The development of the
single-cell sequencing technique has enabled RNA sequencing at single-cell or cell-type
levels, removing undesired transcript noise from unwanted cells, thereby yielding the much
finer resolution of data for dissecting gene functions in specific cells and allowing better
correlations of gene functions using co-expression analysis [99]. This will be particularly
useful for dissecting the functions of known/unknown metabolites as well as uncovering
their biosynthesis.

Although single-cell RNA sequencing techniques have greatly expanded multi-omics
application, yielding hidden and more complete mechanistic insights, the development
of single-cell metabolomics, in comparison, still lags far behind. This is primarily due
to the fact that metabolite signals could not be amplified the same way as DNA and
RNA and instrument sensitivity is not yet up to the point of detecting comprehensive sets
of metabolites within a single cell [100]. MS-based metabolomics is the most prevalent
metabolomics approach, yet detection of metabolites with current instrument settings
including ionization methods still face many challenges, although sophisticated sensitive
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instruments such as Orbitrap and time-of-flight (ToF) mass spectrometers have been widely
applied. Besides sensitivity issues, the annotation of the metabolite signals from MS-based
metabolomics data also represents a significant problem for metabolomics analysis [59].
Currently, the compound identity of MS-based metabolomics is assigned primarily based
on accurate mass and MS/MS fragmentation data available from various databases, includ-
ing METLIN [101], PubChem [102] and mzCloud. The confidence level and accuracy for
such annotation are still relatively low, especially for the numerous unknown metabolites
present in a plant matrix. The annotation issue is expected to be alleviated with the expan-
sion of characterized chemical entities in the databases, standardization of instrumentation
parameters and newly developed artificial intelligence including machine learning algo-
rithms that can also be incorporated to aid in the annotation of metabolites based on mass
features, especially MS/MS fragmentation patterns from metabolomics experiments [103].
The power of extracting features from metabolomics data is already evident from the
development of the molecular networking approach, which clusters mass fragments with
different degrees of similarities to facilitate the annotation of mass spectrum signals and has
already found applications in many areas [86,104]. Integrating patterns and features from
different levels of omics for machine learning may generate models that can streamline the
process of multi-omics analysis and speed up the process of the discovery of plant signaling
molecules [105].

It is foreseeable that the discovery of plant signaling molecules will accelerate in the
near future with the increasing availability of omics tools. Novel entities and functions
of plant signaling molecules at single-cell or cell-type levels will be an important research
direction going forward. In addition, the discovery of plant signaling molecules involved
in the interaction between plants and environments or other living organisms will also be a
trend in the field with future research. With a better understanding of the functions of plant
signaling molecules, their utility will be further exploited, increasing the potential of com-
mercialization, especially in agriculture-related areas. This will also fuel the development
of sustainable production technologies including synthetic biology.
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