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Abstract
Ewing sarcoma is an aggressive, poorly differentiated neoplasm of solid bone
that disproportionally afflicts the young. Despite intensive multi-modal therapy
and valiant efforts, 70% of patients with relapsed and metastatic Ewing
sarcoma will succumb to their disease. The persistent failure to improve overall
survival for this subset of patients highlights the urgent need for rapid
translation of novel therapeutic strategies. As Ewing sarcoma is associated with
a paucity of mutations in readily targetable signal transduction pathways,
targeting the key genetic aberration and master regulator of Ewing sarcoma,
the EWS/ETS fusion, remains an important goal.
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Introduction
Despite our burgeoning knowledge of the molecular and  
pathognomonic foundation of Ewing sarcoma oncogenesis, 
improvement in the survival of patients with primary metastatic 
or relapsed disease remains obstinately poor, with long-term sur-
vival rates of less than 30%1. Ewing sarcoma is an aggressive, rare 
bone malignancy that primarily afflicts young adolescents in the 
second decade of life. Approximately 20–25% of patients present 
with clinically detectable metastases at diagnosis2, and those lack-
ing overt disease likely harbor micro-metastases as evident by 
the high rate of relapse at distant sites following surgical resec-
tion. Although the advent of multi-agent adjuvant chemotherapy 
has achieved remarkable progress in the treatment of localized 
disease (65–75% 5-year survival rate), no standard therapy 
exists for second-line treatment of relapsed and refractory Ewing 
sarcoma, despite extensive protocol-driven clinical research 
evaluating dose intensification and schedule optimization.

Ewing sarcoma is an orphan cancer; its parental lineage is unknown 
and is frequently disputed still to this day3. The oncogenic phe-
notype is primarily driven by one underlying prototypical chro-
mosomal translocation, fusion of the EWS gene on chromosome 
22q24 with one of five E-twenty-six (ETS) transcription factor 
gene family members (FLI4, ERG5, ETV16, E1AF7,8, and FEV9). Of 
the EWS/ETS translocations, 85% of Ewing’s tumors harbor the 
EWS/FLI reciprocal translocation t(11;22)(q24;q12), which links 
the strong transcriptional activation domain of the EWS protein 
to the ETS DNA-binding domain of the FLI protein10. The result-
ing chimeric EWS/FLI fusion functions as a constitutively active 
transcription factor which regulates a myriad of genes required for 
the oncogenic behavior of Ewing sarcoma. EWS/FLI binds DNA 
at either ETS-like consensus purine-rich sites containing a core 
GGAA motif or repetitive GGAA-microsatellite elements embed-
ded within promoter/enhancer regions of numerous target genes. 
Indeed, 40–50% of genomic EWS/FLI-binding sites are associated 
with GGAA-microsatellites11.

As Ewing sarcoma possesses one of the lowest mutation rates 
among all cancers (0.15 mutations per megabase)12,13, the nefari-
ous activity of EWS/FLI has long been considered the ideal thera-
peutic target. Although the t(11;22)(q24;q12) translocation was 
first described 33 years ago14 and numerous studies have validated 
that the tumorigenic phenotype of Ewing sarcoma is dependent on 
this master regulator, EWS/FLI-targeted therapies are only now 
beginning to be clinically evaluated. Constraining the Achilles’ 
heel of Ewing sarcoma has proven to be extremely problematic. 
Fusion proteins are notoriously challenging targets because of their 
disordered protein nature and lack of intrinsic enzymatic activity.

The primary focus of this review is to highlight the recent advances 
and new therapeutic developments for this aggressive neoplasm, 
and the particular focus is on four classes of experimental agents: 
(i) targeted agents that disrupt the binding of EWS/FLI to key func-
tional protein partners, (ii) agents that reverse the transcriptional 
signature of EWS/FLI, (iii) inhibitors of LSD1 (lysine-specific 
demethylase 1), and (iv) inhibitors of PARP-1 (poly ADP ribose 
polymerase-1).

Targeting EWS/FLI: the untouchable Achilles’ heel of 
Ewing sarcoma
The EWS/FLI translocation primarily serves as the most reliable 
diagnostic marker and, in the majority of cases, sole genetic aber-
ration that drives Ewing sarcoma oncogenesis. Despite this prime 
candidate vulnerability, clinical translation of therapeutic strate-
gies directed toward eliminating or inactivating EWS/FLI has been 
largely unsuccessful. Since the cloning of the EWS/FLI transloca-
tion in 19924, several studies have demonstrated the critical nature 
of EWS/FLI to maintain the oncogenic growth of Ewing sarcoma 
cells. Reduction of EWS/FLI fusion levels through anti-sense/small 
interfering RNA (siRNA) or oligodeoxynucleotides significantly 
impairs the proliferative, invasive, and tumorigenic phenotype 
of Ewing sarcoma both in vitro and in vivo15–19. However, owing 
to poor pharmacokinetic properties, these approaches are not 
currently clinically feasible. An inherent disadvantage of onco-
genic transcription factors such as EWS/FLI in terms of “drugga-
bility” is their lack of intrinsic enzymatic activity. This, coupled 
with the disordered nature of the EWS/FLI protein (inability to 
form rigid three-dimensional structures under physiological con-
ditions), which is due to low overall hydrophobicity, preludes 
standard structure-based small-molecule inhibitor design through  
crystallographic structural assessment20,21. As EWS/FLI requires 
disorder to achieve maximal transactivation of transcription and to 
facilitate the protein-protein complexes that lead to oncogenesis, 
directed small-molecule disruption of EWS/FLI from key func-
tional protein partners or transcriptional complexes (or both) has 
gained considerable attention over the past decade.

To define proteins that directly interact and functionally modulate 
EWS/FLI, Toretsky et al. undertook phage library screening to 
identify peptides that could bind recombinant EWS/FLI22. From 
the 28 peptides identified, EWS/FLI was shown to bind to the 
distal portion of the helicase domain of RNA helicase A (RHA) 
(K

D
 of 9.48 µM). Given that RHA enhanced EWS/FLI-modulated 

transcription, subsequent surface plasmon resonance screening of 
3,000 compounds capable of binding monomeric EWS/FLI identi-
fied YK-4-279, a small molecule that could effectively dissociate 
EWS/FLI from RHA (Figure 1). Owing to the chiral center 
of YK-4-279, comparisons of (S) and (R)-YK-4-279 enanti-
omer forms revealed that only racemic and the (S)-YK-4-279 
enantiomer are able to block the interaction of EWS/FLI with 
RHA resulting in cell cytotoxicity and reduced EWS/FLI-driven 
transcriptional activation23. Although Ewing sarcoma cell lines 
were highly sensitive to (S)-YK-4-279 compared with racemic, the 
short plasma half-life (0.585 and 0.583 hours, respectively) and 
low oral bioavailability of YK-4-279 could pose significant clini-
cal challenges. Rates of absolute bioavailability of (S)-YK-4-279 
following oral gavage in rats and intraperitoneal injection in mice 
were only 2–6% and 26%, respectively24.

Although YK-4-279 was first thought to directly impede EWS/
FLI-driven transcriptional activation, Selvanathan et al. recently 
demonstrated that the precise mechanism of action of YK-4-279 
is through disruption of EWS/FLI protein interactions within the 
spliceosome leading to alternative splicing events that mirror 
EWS/FLI reduction25. Indeed, initial Ewing sarcoma cell line 
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viability assays demonstrated YK-4-279 anti-proliferative IC
50

 
(half maximal inhibitory concentration) values of 0.5–2 µM, 
yet dissociation of EWS/FLI from RHA was achieved only 
following 10 µM YK-4-279 treatment22. In verification of this 
new mechanism of action, YK-4-279 treatment did not mimic 
the transcriptional effects of EWS/FLI reduction, as only VEGFA 
and TGFβR2 transcripts were altered in a fashion consistent with 
EWS/FLI reduction25.

A near-universal problem in the era of targeted therapy is the 
emergence of primary or secondary drug resistance that permits 
tumor progression. Regardless of the route of YK-4-279 adminis-
tration, sustained complete responses were not documented across 
a complete cohort of treated animals22,24,26. As such, Lamhamedi-
Cherradi et al. recently investigated both de novo and acquired 
mechanism(s) in which Ewing sarcoma cells evade YK-4-279-
mediated apoptosis26. YK-4-279 drug-resistant clones demon-
strated enhanced proliferative rate over their parental cell lines and 
overexpressed c-Kit, cyclin D1, pStat3 (Y705) protein, and PKC 
isoforms β and δ. In contrast, pro-apoptotic proteins (such as Bim, 
Bax, Bid, and Bak) were significantly downregulated26. In addition, 
YK-4-279 drug-resistant cells displayed significant cross-resistance 
to both the PKC inhibitor enzastaurin and the US Food and Drug 
Administration-approved c-Kit inhibitor imatinib.

YK-4-279 is the first EWS/FLI precision-guided drug candidate 
to show preclinical activity in Ewing sarcoma, and a phase 1 
dose escalation study of intravenous TK216 (clinical deriva-
tive of YK-4-279) in patients with relapsed or refractory Ewing 
sarcoma (NCT02657005) is currently active for patient recruitment 
(Table 1). The dosing schedule, administration route, and decision 
to use either racemic or (S)-YK-4-279 will have profound implica-
tions for clinical efficacy and resistance. It is with great anticipation 
that YK-4-279 can change the perceived dogma that transcription 
factors such as EWS/FLI are ubiquitously “undruggable”.

Reversing EWS/FLI gene signatures
The oncogenic phenotype of Ewing sarcoma is driven by the 
activating and repressive transcriptional functions of EWS/FLI27. 
As such, therapeutic agents that can potentially reverse EWS/FLI-
driven signatures and subsequently block the malignant proclivity 

of Ewing sarcoma have been an area of active interest by several 
groups. Trabectedin (ET-743, Yondelis), a synthetic alkaloid origi-
nally isolated from the marine ascidian Ecteinascidia turbinata, 
was recently shown to reverse the myxoid liposarcoma transcrip-
tional program through DNA-binding inhibition of the oncogenic 
transcription factor FUS-CHOP28–30. It is proposed that trabectedin 
(Figure 1) binds and alkylates DNA at the N2 position of guanine 
in the minor groove31. Once bound, this reversible covalent adduct 
bends DNA toward the major groove, interferes directly with 
activated transcription, inhibits transcription-coupled nucleotide 
excision repair, promotes degradation of RNA polymerase II, and 
generates DNA double-strand breaks, leading to S and G

2
 cell cycle 

arrest32. Grohar et al. demonstrated that Ewing sarcoma cell lines, 
in addition to myxoid liposarcomas, are particularly sensitive to the 
apoptotic effects of trabectedin compared with other fusion tran-
scription factor-driven tumors, including embryonal/alveolar rhab-
domyosarcoma and synovial sarcoma33. Although protein levels of 
EWS/FLI remained unaffected following treatment, trabectedin 
reversed the EWS/FLI-induced gene expression signature, result-
ing in blockade of promoter activity and suppressed expression of 
critical EWS/FLI downstream targets such as NR0B1. Interestingly, 
of the four Ewing sarcoma cell lines tested, 5838 cells harboring 
the EWS/ERG translocation were the least sensitive. The authors 
suggest that this differential sensitivity may be attributed to the 
ERG transcription factor-binding domain which does not have a 
preferred trabectedin-binding site (CGG) overlapping its binding 
domain.

To develop trabectedin-based combination therapy with improved 
EWS/FLI suppression, Grohar et al. sought to identify genes 
driven by EWS/FLI that were suppressed following trabectedin  
treatment34. A significant reduction in mRNA expression of the 
DNA damage response (DDR) REC Q helicase Werner syndrome 
protein (WRN) was observed following trabectedin treatment. 
Several studies have demonstrated that camptothecins can also 
directly suppress critical EWS/FLI downstream targets, including 
ID2 and NR0B135. Since cells deficient in WRN are hypersensitive 
to the cytotoxic effects of camptothecins36,37, Grohar et al. investi-
gated whether trabectedin could selectively sensitize Ewing sarcoma 
cells to the DNA-damaging effects of SN38 (active metabolite 
of irinotecan)34. Compared with single-agent treatment in vivo,  

Figure 1. Chemical structures of Ewing sarcoma investigational agents.
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combinatorial treatment synergistically augmented the suppression 
of EWS/FLI targets, leading to enhanced formation of γH2AX  
foci (DNA double-strand breaks) and accumulation of cells in  
S phase. Furthermore, marked complete regression of xenograft 
tumors that persisted following withdrawal of treatment was 
observed with combination therapy that was more pronounced than 
treatment with either agent alone. In addition to camptothecins, 
insulin-like growth factor 1 receptor (IGF-1R) inhibitors (AVE1642 
human antibody and linsitinib) significantly potentiated the effi-
cacy of trabectedin both in vitro and in vivo. This highly synergistic 
cytotoxic combination was attributed to the ability of trabectedin 
to increase the occupancy of EWS/FLI to IGF-1R promoters, lead-
ing to IGF-1R upregulation. In contrast, binding of EWS/FLI (type 
I and type II) to the TGFβR2 and CD99 genes was strongly sup-
pressed following both trabectedin and doxorubicin treatment38. 
Indeed, EWS/FLI has been shown to directly affect IGF-1R sign-
aling through suppression of IGFBP-3 (insulin-like growth factor-
binding protein-3), leading to constitutive activation of the IGF-1 
pathway39,40.

Despite the nanomolar sensitivity of Ewing sarcoma cells in vitro, 
trabectedin did not demonstrate sufficient single-agent activity 
in the recent Children’s Oncology Group (COG) phase II trial of 

trabectedin in children with recurrent Ewing sarcoma41. Of the  
10 evaluable patients with Ewing sarcoma, one patient achieved 
stable disease (15 cycles), and progressive disease was reported 
for the remaining nine patients. Grohar et al. hypothesized that 
these disappointing clinical results may be attributed to a nar-
row therapeutic index that limited or transiently achieved the 
required serum levels necessary to sufficiently inhibit EWS/FLI 
activity34. Patient maximum concentration (Cmax) plasma levels of 
2.49 ± 2.25 ng/ml (1.5 mg/m2 dose) were attained and this was 
significantly lower than the 5–10 nmol/L trabectedin concentra-
tion required to suppress EWS/FLI downstream target expression 
in vitro34,41. In the initial phase I refractory solid tumor COG 
pharmacokinetic study of trabectedin, the only complete response 
documented was observed from a patient with Ewing sarcoma 
and was sustained for 10 months before recurrence 3 months 
after cessation of treatment42. Unlike those in the phase II trial, 
patients in the phase I trial achieved Cmax plasma levels of 
10.52 ± 5.00 ng/ml (1.3 mg/m2 dose). Although trabectedin in 
combination with olaparib is currently being assessed in a phase 
1b clinical trial for patients with unresectable advanced/metastatic 
sarcomas (NCT02398058) (Table 1), camptothecins should also be 
considered to suppress the EWS/FLI-mediated tumorigenic gene 
signature.

Table 1. Current Ewing sarcoma clinical trials.

Agent Trial identifier Sponsor Phase Age, years Status

PARP inhibition

Talazoparib and temozolomide NCT02116777 NCI I/II 1–30 Recruiting

Niraparib and temozolomide NCT02044120 SARC I >13 Recruiting

Talazoparib (BMN-673) NCT01286987 Medivation I >18 Active

Olaparib and temozolomide NCT01858168 MGH I >18 Recruiting

Olaparib and trabectedin NCT02398058 Italian Sarcoma Group I >18 Recruiting

Kinase inhibition

Pazopanib NCT01956669 Novartis/COG II 1–18 Recruiting

Cabozantinib-s-malate NCT02243605 NCI II >12 Recruiting

Regorafenib NCT02389244 UniCancer II >18 Recruiting

Regorafenib NCT02048371 SARC II >18 Recruiting

EWS/FLI inhibition

TK216 NCT02657005 Tokalas I >12 Active

Miscellaneous

Erlotinib in combination with temozolomide NCT02689336 Washington University II 1–21 Not Open

Abemaciclib (LY2835219) (CDK4/6 inhibition) NCT02644460 Cynthia Wetmore I 2–21 Recruiting

hu14.18K322A (anti-GD2 antibody) NCT00743496 St. Jude Hospital I <21 Recruiting

Nivolumab with or without ipilimumab (IgG4 
anti-PD-1 antibody)

NCT02304458 NCI I/II 1–30 Recruiting

Lurbinectedin (PM01183) NCT02454972 PharmaMar II >18 Recruiting

Linsitinib (anti-IGF-1R) NCT02546544 University of Oxford II 18–70 years Recruiting

COG, Children’s Oncology Group; MGH, Massachusetts General Hospital; NCI, National Cancer Institute; PARP, poly ADP ribose polymerase; 
SARC, Sarcoma Alliance for Research through Collaboration.
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Recently, Hensel et al. demonstrated that EWS/FLI expression 
levels are significantly reduced in Ewing sarcoma cell lines follow-
ing treatment with the BET (bromo and extraterminal) inhibitor 
JQ143. It is proposed that JQ1 binds competitively to acetyl-lysine 
recognition motifs, thereby displacing bromodomain fusion onco-
proteins such as BRD4 from chromatin44. In addition to caspase-
dependent apoptosis, microarray analysis of JQ1-treated Ewing 
sarcoma cell lines demonstrated significant downregulation of 
EWS/FLI transcriptional targets, including DKK2, EZH2, GPR64, 
STEAP1, and STK32B. This reversal of EWS/FLI gene expres-
sion pattern was exclusively mirrored through siRNA-mediated 
knockdown of BRD3 and BRD4 but not BRD2, suggesting that 
BRD3 and BRD4 may be critical epigenetic regulators in Ewing 
sarcoma. Although complete Ewing sarcoma xenograft tumor 
response was not observed following single-agent JQ1 treatment, 
these early preclinical findings suggest that combination treat-
ment with epigenetic inhibitors that block BET bromodomain 
activity and the associated EWS/FLI transcriptional program may  
represent a potential therapeutic platform for Ewing sarcoma.

Inhibitors of lysine-specific demethylase 1
Gene expression profiling and tissue microarray analysis of 
more than 500 sarcomas by Bennani-Baiti et al. revealed that the 
FAD monoamine oxidase LSD1 (lysine-specific demethylase 1, 
KDM1A) is highly overexpressed in Ewing sarcoma45. Indeed, 
analysis of the Broad Institute Cell Line Encyclopedia46 indicates 
that Ewing sarcoma is the second highest LSD1-expressing malig-
nancy out of a comprehensive panel of 36 cancer subtypes. Previous 
mechanistic studies conducted by our laboratory suggested that the 
transcriptional repressive function of EWS/FLI is mediated through 
interaction with the NuRD co-repressor complex in which LSD1 
functions as a key component27. As such, the high expression of 
LSD1 in Ewing sarcoma, coupled with the absence of mutations47 
and its critical role in EWS/FLI transcriptional repression, provides 
a strong case for therapeutic intervention. Although the develop-
ment of specific LSD1 inhibitors is still in its infancy, treatment 
of Ewing sarcoma cell lines with the specific and non-competitive 
reversible LSD1 inhibitor HCI-2509 (Figure 1) comprehensively 
reversed the transcriptional signature driven by both EWS/FLI 
and EWS/ERG27,48. In addition, cells expressing EWS/FLI were 
approximately 10-fold more susceptible to the apoptotic cytotoxic 
effects of HCI-2509, underscoring the specificity of HCI-2509 
for the treatment of Ewing sarcoma. Currently, three irreversible 
LSD1 inhibitory agents—tranylcypromine, GSK-2879552, and 
ORY-100—are undergoing clinical evaluation primarily in patients 
with acute myeloid leukemia47, and clinical formulations of 
HCI-2509 are expected to enter phase I testing in 2017. Find-
ings from these trials will guide the impetus for targeting LSD1- 
overexpressing cancers and have the potential to be a significant 
component in the armamentarium arsenal for the treatment of 
Ewing sarcoma.

Inhibitors of poly ADP ribose polymerase
The PARP superfamily of multi-functional enzymes comprises 
18 members, and PARP-1 is the most abundant (>85% of PARP 
activity)49. The most well-established role of PARP-1 is the spatial 
and temporal organization of DNA single-strand break base exci-
sion repair with inhibition leading to stalled/collapsed replication 
forks and consequently catastrophic DNA double-strand breaks. 

Analysis of the Broad Institute Cell Line Encyclopedia46 indi-
cates that Ewing sarcoma is the fifth highest PARP-1-expressing 
malignancy and that expression is significantly higher than that 
of other solid bone sarcomas such as osteosarcoma (P = 0.0400) 
and chondrosarcoma (P = 0.0176) (Figure 2a). Oncomine tumor 
microarray analysis also indicates that PARP-1 is highly expressed 
in Ewing tumors50–53 (Figure 2b) but is not associated with overall 
or event-free survival, even though significantly higher expression 
was observed in relapsed patients (P = 0.0252)51 (Figure 2b, c). In 
addition, mutations in PARP-1 and PARP-2 are seldom observed in 
Ewing sarcoma (Table 2). Recent whole genome/exome sequenc-
ing studies of Ewing sarcoma tumors12,13,54–56 identified PARP-1/2  
mutations in only 1 out of 279 (0.36%) and 2 out of 279 (0.72%) 
patient tumor samples, respectively. This empirical evidence, 
coupled with two landmark studies that highlighted the exquisite 
hypersensitivity of Ewing sarcoma cell lines to PARP inhibitors57,58, 
provided the premise for targeted PARP intervention for the  
treatment of Ewing sarcoma.

Comprehensive drug screening (130 compounds) across 639 
human tumor cell lines by Garnett et al.57 identified a highly signifi-
cant association between the presence of the EWS/FLI rearrange-
ment and olaparib (Lynparza) sensitivity (geometric mean IC50 for 
EWS/FLI = 4.7 versus 64 µM for non-EWS/FLI lines). Indeed, 
sensitivity of Ewing sarcoma cell lines to both olaparib and the 
structurally distinct PARP inhibitor AG-014699 was comparable 
to that observed in BRCA-deficient cell lines and greater than that 
observed from other solid bone and soft tissue sarcomas. Mecha-
nistic investigations by Brenner et al. validated that the marked 
sensitivity of Ewing sarcoma cell lines to olaparib could be 
attributed to a positive feedback loop in which the EWS/FLI fusion 
drives and maintains PARP-1 expression, which in turn further 
promotes transcriptional activation by EWS/FLI58. Knockdown 
of EWS/FLI in Ewing sarcoma cells led to a significant reduction 
in both PARP-1 protein expression and promoter activity. Sur-
prisingly, marked differences in single-agent cytotoxicity across 
several PARP inhibitors (talazoparib, niraparib, olaparib, and 
veliparib) has been documented, and talazoparib (BMN-673) and 
veliparib are the most and least active compounds in Ewing 
sarcoma, respectively59–61. In addition to catalytic inhibition, PARP 
inhibitors exert their cytotoxicity by tightly trapping PARP-1 
and PARP-2 to DNA at sites of single-strand breaks, and in vitro 
Ewing sarcoma inhibitor sensitivity correlates with PARP trap-
ping potential60,62. Whole exome sequencing of Ewing sarcoma cell 
lines revealed an absence of mutations in DNA repair genes, and 
as both ATM and ATR DDR signaling pathways remain functional 
in Ewing sarcoma, PARP inhibitor sensitivity is not underpinned 
by mutational defects in DNA repair by homologous recombina-
tion but perhaps through hypersensitivity to trapped PARP-1 DNA 
complexes61.

Despite the acute hypersensitivity of Ewing sarcoma cell lines 
to numerous PARP inhibitors in vitro, these results did not trans-
late directly to single-agent xenograft responses in vivo58,60,63–65. 
Olaparib monotherapy only led to a significant delay in Ewing sar-
coma xenograft models. However, combined treatment with the 
DNA-alkylating agent temozolomide resulted in sustained com-
plete responses without observable recurrence58. Consistent with 
the minimal activity of single-agent olaparib in Ewing sarcoma 
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Figure 2. PARP-1 is highly expressed in Ewing sarcoma tumors and cell lines. (a) Broad Institute PARP-1 expression across a panel of 
1,036 cell lines. (b) PARP-1 expression (microarray) in Ewing sarcoma tumors and cell lines. (c) PARP-1 expression is not correlated with 
overall or event-free survival in Ewing sarcoma (n = 20). Survival data sourced from Ohali et al.51 (2004). PARP-1, poly ADP ribose polymerase 1.
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xenografts, no objective responses (partial or complete) were 
observed from the first phase II study of olaparib (NCT01583543) 
in 12 patients with refractory Ewing sarcoma, median time to 
progression was 5.7 weeks66, thus underscoring the requirement 
for combination therapies. To investigate the ability of PARP 
inhibitors to modulate the chemosensitivity of Ewing sarcoma, 
Engert et al. screened PARP synergistic drug interactions with 
Ewing sarcoma chemotherapeutic backbone cassettes59. Indeed, 
the strongest synergism was observed in combination with temo-
zolomide followed by SN38, with diminutive synergistic effects 
observed with actinomycin D and vincristine. Of note, triple 
therapy comprising olaparib, temozolomide, and SN38 signifi-
cantly reduced the viability of Ewing sarcoma cells compared 
with single-agent or co-treatment with temozolomide or SN38 
in vitro. Consistent with these findings, no significant difference 
was observed in overall survival in a phase III preclinical ortho-
tropic mouse model of Ewing sarcoma treated with placebo or 
single-agent PARP inhibitors veliparib, olaparib, and talazoparib60. 
However, combination of PARP inhibitors (olaparib or BMN-673) 
with temozolomide and irinotecan gave complete and durable 
responses in 71–88% of mice respectively.

Inhibitors of PARP have emerged as a novel class of agents to treat 
Ewing sarcoma, and several clinical studies are underway (Table 1). 
It is clear that single-agent PARP treatment is ineffective and will 
require strategic combinatorial strategies with temozolomide, 
topoisomerase I poisons, or radiotherapy to achieve maximal 
therapeutic effect. Results from these ongoing adult studies 
are eagerly awaited to help guide future trials for pediatric and 
adolescent patients with Ewing sarcoma.

Conclusions
Though Ewing sarcoma was first described 95 years ago, its treat-
ment still relies on conventional multi-agent chemotherapeutic 
regiments in combination with surgery or radiotherapy or both. 
This current backbone is associated with considerable acute and 
long-term toxicities, and since further modification of the five-drug 
chemotherapeutic cassette seems unlikely to produce additional 
benefits, successful integration of novel targeted agents is urgently 
required in order to improve outcomes for patients with relapsed 

and metastatic disease. The first attempt of targeted therapy inte-
gration is currently being undertaken in a randomized phase II 
trial evaluating the addition of ganitumab (IGF-1R human mono-
clonal antibody) to multi-agent chemotherapy (vincristine, doxo-
rubicin, cyclophosphamide, ifosfamide, and etoposide) for patients 
with newly diagnosed metastatic Ewing sarcoma (AEWS1221/
NCT02306161). It is hoped that combining IGF-1R targeted agents 
with conventional therapy may lower the effective dosage of radio-
therapy and chemotherapy in addition to minimizing side effects 
while maintaining efficacy.

Metastatic disease at the time of presentation or at relapse remains 
the single most powerful predictor of outcome in Ewing sarcoma, 
and the mechanisms that drive metastasis remain largely unknown. 
Whether targeted agents that directly inhibit critical EWS/FLI 
protein-protein interactions or reverse the EWS/FLI transcriptional 
signature can successfully prevent or delay tumor progression 
remains as yet unanswered and will be the focus of the next genera-
tion of phase I/II trials, whose ultimate goal is to determine whether 
these novel therapies can significantly improve survival outcomes 
for patients with Ewing sarcoma.
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Table 2. Frequency of PARP-1 and PARP-2 mutations in Ewing sarcoma.

Study Sequencing platform Patient cohort PARP-1 mutations PARP-2 mutations

Crompton et al.13 WES n = 92 n = 1 (1.1%) (K203R) n = 2 (E222Q, H428H)

Tirode et al.56 WGS n = 112 n = 0 (0%) n = 0 (0%)

Agelopoulos et al.54 WES n = 50 n = 0 (0%) n = 0 (0%)

Huether et al.55 WGS n = 19 n = 0 (0%) n = 0 (0%)

Brohl et al.12 WGS n = 6 n = 0 (0%) n = 0 (0%)

Total n = 1/279 (0.36%) n = 2/279 (0.72%)

PARP, poly ADP ribose polymerase; WES, whole exome sequencing; WGS, whole genome sequencing.
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