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Abstract

The role of the endocannabinoid system in stress-related psychiatric symptoms has been investigated in many animal and
human studies. Although most of these studies consistently report long-lasting effects of prolonged stress and trauma on the
endocannabinoid system, the nature and direction of these changes are controversial. We reviewed the available preclinical
and clinical studies investigating the endocannabinoid system alterations long after chronic stress and trauma. VWe propose
that the effects of prolonged stress or trauma on the endocannabinoid system are different based on the developmental
age of subjects at the time of experiencing the trauma and its repetitiveness and accumulative effects. The current literature
consistently demonstrates decreased levels of endocannabinoid ligands and receptors if the trauma occurs in childhood,
whereas decreased levels of endocannabinoid ligands and increased levels of cannabinoid receptors are reported when
trauma has happened in adulthood. It is important to note that these changes are region-specific in the brain and also

there are important sex differences, which are beyond the scope of this review.
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Introduction

The potential role of the endocannabinoid (¢CB) system
in the treatment of posttraumatic stress disorder (PTSD)
has attracted increasing attention over the past decade.'
The eCB system has an essential role in stress response,
and accumulating evidence suggests long-lasting eCB
system alterations in response to stress and trauma.’
These alterations seem to have a critical role in the devel-
opment and maintenance of stress-related psychopath-
ology, as these alterations usually last long after the
termination of the trauma.>* Although the vast majority
of the preclinical studies are consistent in existence of the
eCB system alterations among individuals who were
exposed to trauma,’ it seems that there is no consensus
on the nature of these changes. Interestingly, individuals
with histories of trauma and PTSD are associated with a
high rate of cannabis use®’ and PTSD is, in fact, one of
the main psychiatric indicators of medical marijuana
use.®” Nevertheless, several studies report higher rates

of anxiety and more severe PTSD symptoms in individ-
uals diagnosed with PTSD and comorbid cannabis
use.®!” At the same time, an increasing line of animal
studies demonstrate beneficial effects of cannabinoids
and eCB enhancers in improving PTSD-like symp-
toms'' '? and ongoing clinical trials have been investigat-
ing these effects in humans.

Many confounding factors or differences in research
methodologies may explain the inconsistencies in preclin-
ical and clinical studies on e¢CB system alterations in
PTSD. Here, we propose that trauma-related factors
including its repetitiveness and chronicity as well as the
developmental age of subjects when first exposed to
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trauma play an important role in the nature of induced
eCB system changes. We summarize the current preclin-
ical and clinical studies on the eCB system alterations
in response to trauma and chronic stress and categorize
them based on the trauma factors. We thus explore them
in the context of early life stress, chronic repetitive unpre-
dictable stress, and single adulthood severe trauma and
will focus on the cannabinoid receptor 1 (CBIR) and eCB
ligands alterations.

eCB System

The eCB system is a neuromodulatory system that is
comprised of CBIR and CB2R, respectively, and two
main endogenous lipid eCBs N-arachidonylethanolamine
(AEA, also called anandamide) and 2-arachidonoylgly-
cerol (2-AG). There has long been evidence that the
eCB system plays a critical role in regulating the stress
response.” The stress response acts to restore homeostasis
in an organism and to promote survival in response to
real and perceived threats, and it includes the activation
of an autonomic response through the sympathetic ner-
vous system in addition to a neuroendocrine response
primarily driven by the hypothalamic-pituitary-adrenal
(HPA) axis.> Evidence suggests that the eCB system
plays an important role in constraining this neuroendo-
crine response.'* A brief introduction to the eCB system
and the current understanding of the role the eCB system
plays in the stress response is presented here.

Cannabinoid receptors are differentially distributed
throughout the brain and periphery. CB1Rs are primarily
found within the central nervous system (with particu-
larly high densities within the cortex, amygdala, hippo-
campus, and basal ganglia), while CB2Rs are thought to
be predominantly peripheral and distributed heavily
within tissues throughout the immune system.'>'® More
recent evidence suggests that there is in fact some expres-
sion of CB2R within mammalian brains that may play an
active role in neuromodulation, but more work is needed
to further characterize the potential role CB2R activity
may play within central signaling networks. In this
review, we will focus on the CBIR since the majority of
studies on eCB signaling in trauma and stress have inves-
tigated the role and alterations of these receptors in
the brain.

Cannabinoid receptors are presynaptic G protein-
coupled receptors'”!? expressed on axon terminals of
glutamatergic, GABAergic, and some monoaminergic
neurons.”’  Synthesis of endogenous eCB occurs
“on-demand,” meaning that the activation of cannabin-
oid receptors is coupled to endogenous eCB synthesis.>*!
Synthesis occurs in the postsynaptic neuron, followed by
retrograde signaling back onto cannabinoid receptors on
the presynaptic terminal.'®*> CBIR activation ultimately
results in suppression of neurotransmitter release

(primarily glutamate or GABA) within the synapse,
thus possessing the ability to modulate activity at both
excitatory and inhibitory synapses.*'®?*?* Disruption of
CBIR activity is associated with an increased anxiety
phenotype in animal models, while agonism of the
CBIR results in behavior changes consistent with reduced
anxiety.'**

AEA and 2-AG are the main endogenous eCBs within
the eCB system. AEA was initially discovered in 1992%°
with the discovering of 2-AG following soon after.®
Other less studied N-acylethanolamines that may repre-
sent future therapeutic targets include N-stearoylethano-
lamide (SEA), N-palmitoylethanolamide (PEA), and
N-oleoylethanolamide (OEA).?”*® These compounds
may have an “entourage” effect within the eCB system,
not themselves acting on the CB1R but instead potentiat-
ing the effect of AEA.?®*° While physiologically AEA
and 2-AG have similar actions, they seem to serve differ-
ing functional roles within the stress-response system.
Evidence suggests that AEA maintains the “tone” of
neurotransmitter release in the nonthreatened steady-
state,’™?! while 2-AG represents a more ‘phasic”
response that takes place after neuronal depolarization
and mediates return to baseline, in addition to contribut-
ing to forms of synaptic plasticity.*>3*

AEA and 2-AG are predominantly metabolized by dis-
tinct hydrolases. Fatty acid amide hydrolase (FAAH) is
the major metabolizer of AEA,** while 2-AG is primarily
degraded by monoacylglyceride lipase (MAGL).*> These
enzymes are important regulators of the eCB system and
represent an active area of research into potential
pharmacologic targets for various stress-related psychi-
atric disorders.>'® Evidence consistently shows that
pharmacologic FAAH inhibition promotes fear extinc-
tion and reduces anxious behaviors in rodent
models.>”** In humans, a loss of function allele resulting
in reduced FAAH activity (and subsequent increased
basal AEA levels) has also been shown to facilitate fear
extinction and was associated with lower trait anxiety and
stress reactivity scores as well as decreased amygdala
threat reactivity on imaging studies.*® *°

Strong evidence supports the role of eCB signaling in
regulation of the HPA axis. The accumulated evidence
suggests a model where the eCB system functions to con-
strain the HPA axis during nonstressed conditions, with
loss of that tone during acute stress resulting in increased
HPA axis activity.*>3' This loss of “tonic” inhibition by
the eCB system is thought to be mediated by a corticotro-
pin-releasing hormone (CRH) which increases FAAH
activity.”>*' Increased FAAH activity during acute stress
lowers concentrations of AEA within the basolateral
amygdala, freeing the HPA axis from the constraints of
the eCB system.*>* In addition, the eCB system partici-
pates in a delayed negative feedback response to help bring
HPA axis activity back towards homeostasis.'®**3!-3
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This negative feedback has been demonstrated at the level
of the hypothalamus within the periventricular nucleus
(PVN).'"!®  Glucocorticoid signaling mobilizes eCBs
within the PVN which suppress glutamate release into
the synapse via activation of CB1R, ultimately suppressing
further excitatory drive onto CRH neurons and buffering
the stress response.’’* Similarly, evidence suggests that
the eCB system also participates in negative feedback of
the HPA axis within the prefrontal cortex (PFC). In this
respect, stress via glucocorticoid activity increases 2-AG
content within the PFC, leading to suppression of neuro-
transmitter release and modification of inhibitory tone
locally,** ultimately contributing to blunting of the stress
response.

Consistent with the above findings, antagonism or
deletion of CBIR activity results in a particularly
robust and prolonged activation of the HPA axis by
threats.>'**** The buffering effect of the eCB system
seems to be context specific and particularly important
during episodes of acute stress; disturbed CB1R signaling
may somewhat impact basal anxiety levels under non-
stressed conditions, but under stressed conditions this
impact is dramatically increased.>**'**> This concept has
been observed in human studies; for example, human par-
ticipants receiving a cannabinoid antagonist/inverse
agonist were found to have significantly increased situ-
ational anxiety levels following a stressful event com-
pared to those receiving placebo, but prestress anxiety
levels between groups were similar.*

The Acute Effects of Stress on the eCB
System

As recently reviewed by Morena et al., stress has complex
effects on the eCB system that vary by region and time
course.” In general, as described earlier and summarized
in Figure 1, AEA is thought to represent a gatekeeper on
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Figure |. Role of eCB system in acute stress response.

CRH: corticotropin-releasing hormone; FAAH: Fatty acid amide
hydrolase; AEA: N-arachidonylethanolamine; 2-AG:
2-arachidonoylglycerol.

the HPA axis during the nonstressed state. Loss of AEA
tone during acute stress results in increased HPA activity,
facilitating the stress response. This rapid reduction in
AEA following an acute stressor has been demonstrated
in the amygdala***® and hippocampus®> and is attributed
to increased CRH-mediated hydrolysis by FAAH.*
This reduction in AEA activity following acute stress is
not consistently observed in PFC,*"** suggesting possible
site-specific variations in physiological processes as
described earlier. Consistent with the “tonic” and
“phasic” model of AEA and 2-AG function, acute
stress generally results in an increase in tissue 2-AG con-
tent.>** Increased 2-AG following an acute stressor has
been observed within the hypothalamus,®® hippocam-
pus,*? and PFC,* but not within the amygdala.*> While
reductions in AEA following stress occur rapidly, eleva-
tions in 2-AG are relatively delayed, consistent with the
current understanding that reduction in AEA is mediated
by CRH and occurs prior to the glucocorticoid response,
while increases in 2-AG following acute stress seem to be
mediated by glucocorticoids.!”** More studies are
needed to further understand the specific role of eCB
system in different brain regions in response to acute
stress. >

Long-Term Effects of Trauma on eCB
System

Preclinical Studies

Early Life Stress. Childhood trauma is associated with sev-
eral psychiatric sequela such as depression, anxiety,
PTSD, borderline personality disorder (BPD), and psych-
osis. Maternal deprivation (MD) early in life has been
used as a model of childhood trauma and has been
shown to induce depressive-like and psychotic-like symp-
toms. In these studies, rodents’ mother is typically
removed from their cage on postnatal day (PND) 9 for
24 h. Several investigators have explored the effects of
MD on the eCB system. Here, we summarize these stu-
dies based on the developmental age of rodents at the
time of analyzing the eCB system: childhood, adoles-
cence, or adulthood.

eCB alterations induced by early life stress in
childhood. A few studies have investigated the effects of
early life MD on the eCB system in childhood. In 2008,
Llorente et al. exposed rats to MD at PND 9 and
reported elevated levels of 2-AG in the hippocampus in
male rats at PND 13, which was reversed with OMDM-2,
an eCB reuptake inhibitor. They reported no changes in
the levels of AEA in MD rats.*® Using the same para-
digm, Suarez et al. investigated the effects of MD at day 9
on the eCB system in rats at PND 13, focusing on the
CBIR and CB2R in the hippocampus (dentate gyrus,
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CA1, and CA3). The results of the study showed that MD
animals had a significant decrease in CB1R immunoreac-
tivity and an increase in CB2R immunoreactivity in the
hippocampus.*’ To understand the underlying mechan-
isms, in another study, Suarez et al. analyzed the enzymes
involved in 2-AG metabolism, diacylglycerol lipase
(DAGL) and MAGL, in the hippocampus at PND 13
of rodents with MD at PND 9. In this study, they
found that MD induced a significant increase in DAGL
immunoreactivity (the enzyme that produces 2-AG) in
the CA3 and a significant decrease in MAGL immunor-
eactivity (the enzyme that degrades 2-AG) in hippocam-
pal CA3 and CAl areas.* Increasing levels of DAGL
and decreasing levels of MAGL in hippocampus could
explain the elevated levels of 2-AG and possibly down-
regulation of CBIR in hippocampus of young rodents
with early life adversity. It is important to note that
these studies all analyzed the eCB system on PND 13,
only four days after the occurrence of MD. In the next
section, we describe other studies that investigated
eCB system of MD rodents during adolescence and
adulthood.

eCB alterations induced by early life stress in
adolescence. Marco et al. investigated the effects of MD
(at PND 9) on eCB system gene expression in adolescent
rats (PND 46), including the expression of genes encoding
for CBIR and CB2R, TRPVI1 and GPRS5S5, the major
enzymes of synthesis, N-acyl phosphatidyl-ethanolamine
phospholipase D (NAPE-PLD) and DAGL, and degrad-
ation, FAAH and MAGL, in the frontal cortex, ventral
and dorsal striatum, dorsal hippocampus, and amygdala.
The results showed that MD increased the genetic expres-
sion of all eCB genes in the frontal cortex in adolescent
males, and in the hippocampus in adolescent females.*’
In another study, Portero-Tresserra et al. exposed mice to
maternal separation from PND 2 to PND 16 (4-8 h/day)
and weaned them at PND 21 Maternal Separated- Early
weaned (MSEW) and investigated their eCB system at
PND 41. The results demonstrated that mice with
MSEW showed deceased levels of AEA in the striatum
and decreased levels of 2-AG in the PFC compared to the
control group.>

eCB alterations induced by early life stress in
adulthood. Romano-Lopez et al. investigated the effects
of maternal separation (2 x 3 h/day separation from PND
2 to PND 15) on the eCB system in adulthood (PND 75)
and reported that adult rats had a significant decrease in
CBIR in frontal cortex and a significant increase in ven-
tral striatum, but no difference was found in the hippo-
campus.”’ Using the same procedure in another study
(MD at PND 2-15, ¢CB system analysis at PND 100),
Romano-Lopez et al. reported lower presentation of
MAGL and FAAH in the nucleus accumbens (NAcc)

but found no alterations in the frontal cortex.>?
In another study, Llorente-Berzal et al. exposed neonatal
rats to MD for 24 h at PND 9 and investigated the eCB
system in adulthood (PND 85). As a result of MD in
childhood, adult rats exhibited higher levels of CBIR
expression in the substantia nigra (both males and
females), whereas CBIR had lower function in NAcc,
PFC, and hypothalamus, as well as lower expression in
thalamus in males. Notably, CBIR activity (males) and
expression (females) was increased in the cerebellum.
Opverall, these studies demonstrate long-lasting effects of
early life adversity on the eCB system in adulthood.
However, the studies have some inconsistencies:
decreased levels of CB1R are reported in frontal cortex,
PFC, NAcc, and hypothalamus, which also fit well with
decreased expression of MAGL and FAAH in NAcc and
also result in increased levels of AEA and 2-AG. On the
other hand, increased levels of CB1R were also seen in
ventral striatum, substantia nigra, and cerebellum.

Taken together, it appears that the effects of early
life trauma on the ¢eCB system are different in each
developmental period, despite some inconsistencies.
Table 1 summarizes these studies and Figure 2 illus-
trates the summary of developmental effects of early
life trauma.

Chronic Unpredictable Mild Stress. Another factor that
modulates the effects of trauma on the eCB system is
the chronicity of the trauma and its accumulative effects.
Exposure to several mild and moderate traumatic experi-
ences which occur on a daily basis such as work-related
stressors or marital issues have long-lasting severe
adverse consequences on mental health.

Chronic unpredictable stress (CUS) is an animal
model of repetitive stressors, during which rodents are
exposed to a series of mild, but unpredictable, different
stressors such as swimming, cage rotations (social stress),
social isolation with damp bedding, food and/or water
deprivation, physical restraint, strobe light exposure,
cage soiling with water, group housing in a confined
space, intermittent lighting, reversal of light/dark cycle,
cage tilting to 45°, and exposure to loud white noise.
None of these stressors are considered severe, but when
rodents are exposed to these stressors 8§—12h every day
for about three weeks, they show decreased responsive-
ness to rewarding stimuli such as food and weight loss,
enhanced fearfulness, impaired sleep, and decreased self-
care.”® Moreover, CUS induces cognitive impairments,
including perseveratory behavior and impairments in
extinction in a variety cognitive tasks, without affecting
acquisition of learning.”’ CUS enhances hippocampal-
dependent episodic fear memories, which in turn
increases the susceptibility of developing PTSD. These
conditions improve with CBI1 receptor agonists, which
suggests the potential role of eCB system deficiency in
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Continued.

Table I.

Subject type

Brain region
(if applicable)

Description eCB System
markers

of trauma

(Sample size

Findings

Age of trauma

if provided)

References

1 2-AG and AEA in indi-

Not applicable

Serum levels of

Mean age PTSD group:

Childhood

Patients with PTSD

Schaefer et al.>®

viduals with BPD.
4 OEA in PTSD with his-

36.6 endocannabinoids
Mean age BPD group:

sexual abuse

and history of

childhood sexual
abuse (n=21),

tory of childhood

trauma.

27.3
Mean age healthy con-

patients with bor-
derline personality

disorder (n=26),

trols: 31.5

and healthy controls

(n = 30)

AEA: N-arachidonylethanolamine (also called anandamide); 2-AG: 2-arachidonoylglycerol; CBI: cannabinoid receptor |; CB2: cannabinoid receptor 2; DG: dentate gyrus; CAl: Cornu Ammonis |; CA3: Cornu

Ammonis |; DAGL: diacylglycerol lipase; MAGL: monoacylglyceride lipase; eCB: endocannabinoid; FAAH: Fatty acid amide hydrolase; NAcc: nucleus accumbens; PFC: prefrontal cortex; SEA: N-stearoy-

lethanolamide; |-AG: |-arachidonoylglycerol; OEA: N-oleoylethanolamide; PTSD: posttraumatic stress disorder; BPD: borderline personality disorder.

PTSD vulnerability in individuals with history of expos-
ure to chronic stress.”

Accumulating evidence reliably demonstrate eCB
alterations as a result of CUS. Robust reductions in
both 2-AG content (about 40% reduction) and CBIR
density (about 50% reduction) within the hippocampus,
but not limbic forebrain, have been reported in rats after
21 days of CUS.”" In this study, stressed animals showed
perseveratory behaviors and impairments in extinction
learning similar to CB1R knocked out animals, which
was completely reversed by pre-treatment with CBIR
agonist injection.’’ Another study found significant
decreased levels of AEA in all brain areas as well as
reduction of CBIR in the hippocampus, hypothalamus
and ventral striatum, but an increase in CBIR in PFC
(57). Reduction of CBIR has been also reported in
nucleus accumbens after five to six weeks of CUS.”
CUS-induced symptoms improve with inhibitors of eCB
degrading enzymes such as FAAH (degrading AEA)®
and MAGL (degrading 2-AG).%!

In an important study, Reich et al. investigated the
effects of cannabinoid receptor agonists in rodents after
three weeks of daily CUS.®* The findings of the study
demonstrated that exogenous activation of CBIR by
WIN in stressed animals resulted in a ~135% increase in
excitatory neurotransmission, whereas CB1R activation in
nonstressed animals induced a ~30% decrease in glutama-
tergic neurotransmission. They also reported that during
the blockade of GABA neurotransmission, CBIR activa-
tion yielded a ~35% decrease glutamatergic neurotrans-
mission in stressed animals, which suggests that CUS does
not directly affect glutamatergic neurotransmission but
sensitizes CBIR function on GABAergic terminals, lead-
ing to less inhibition and an increase in excitatory neuro-
transmission in stressed animals.®?

Lomazzo et al. investigated the epigenetic changes in
mice exposed to CUS and found that CBIR expression is
decreased in non-GABAergic low-expressing CBIR neu-
rons in the cingulate cortex. They reported anxiety-like
and depressive-like behaviors in CUS animals and
demonstrated that FAAH inhibitors improve the anxi-
ety-like behaviors.®® The aforementioned studies are sum-
marized in Table 2.

PTSD Animal Models. Exposure to a single severe traumatic
event in adulthood is another form of trauma that has
been studied in animal research as a potential model for
PTSD.

Shock and reminder stress. The formation of fear
memory after a traumatic event and impairment in its
extinction are at the core of development of PTSD symp-
toms. To investigate the underlying mechanism, severe
foot shock, followed by situational reminders, has been
shown to induce long-term impairment of fear
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Figure 2. Effects of childhood and adulthood trauma on eCB in childhood, adolescence, and adulthood. eCB: endocannabinoid; CBIR:

cannabinoid receptor |.

extinction and enhancement of startle response and is
used as an animal model of PTSD."" Using the same
model, Korem et al. found decreased levels of AEA in
NAcc in traumatized rats. They also reported that micro-
injection of CBIR agonist, WINS55,212-2, into NAcc
facilitates the extinction response in shocked rats.®

In a recent study, Fidelman et al. used this model to
investigate the effects of FAAH inhibitor, URB597, and
synthetic cannabinoid, WIN 5212-2, on PTSD-like symp-
toms. The results of the study showed significant
improvement of startle response and fear extinction
after three weeks administration of FAAH inhibitors,
whereas WIN only reversed the startle response, and
did not affect fear extinction. Both compounds affected
PTSD-like symptoms through CBIR and were blocked
with the administration of CBIR antagonist. Moreover,
URB597, but not WIN, normalized the CBI1R upregula-
tion in the basolateral amygdala and CA1."' In another
study using the same model, administration of FAAH
inhibitor, AM3506, before extinction training decreased
fear response during a retrieval test. Moreover, ananda-
mide levels in the basolateral amygdala were increased by
extinction training and augmented by AM3506. These
effects were blocked by intra-amygdala infusion of
CBIR antagonist.*®

Single prolonged stress. Single prolonged stress (SPS)
model was also used as an animal model of PTSD. Using
this model, Zer-Aviv and Akirav exposed rodents to
restraint, forced swim, and sedation and investigated their
eCB system after 10 days. The results demonstrated an
increase in the levels of CBIR in amygdala, PFC, and hippo-
campus. Moreover, FAAH inhibitor, URB597, was able to
normalize the SPS-induced upregulation in CBIR levels in
the amygdala, PFC, and hippocampus in males, and in the
amygdala and PFC, but not hippocampus, in females.®

Life-threatening trauma. Exposure to 2,5-dihydro-2.,4,5-
trimethylthiazoline (TMT), a chemical constituent of fox
feces, produces robust anxiety-like behaviors in rats,
which last for weeks and has been used as a model of
posttraumatic long-term anxiety state. In a recent study,
Danandeh et al. used this model to investigate the effects

of FAAH inhibitor, URB597, on these anxiety-like
behaviors, and reported that the administration of
URBS597 increases the brain levels of AEA and effectively
prevents the development of posttraumatic anxiety-like
behaviors in a CBIR-dependent manner.'® Using the
same model, Lim et al. reported increased levels of
2-AG in the amygdala in traumatized rodents with anxi-
ety-like behaviors, which effectively improved with the
administration of MAGL inhibitor after the trauma.'?
Table 3 summarizes studies exploring eCB system alter-
ations following adulthood trauma.

Clinical Studies

There has been increasing attention to the role of eCB
alterations in PTSD symptomatology in humans over the
past decade and an increasing number of studies have been
published on alterations in the eCB system among individ-
uals diagnosed with PTSD over the past few years.
However, most of these studies measured peripheral
levels of e¢CB ligands and have reported inconsistent
results. Moreover, these studies have been mainly designed
to investigate the eCB system in individuals with PTSD
and did not differentiate the effects of childhood or chronic
trauma exposure from one single severe trauma in adult-
hood. Next, we will summarize these studies, based on our
preclinical model of differentiated developmental and
accumulative effects of trauma on the eCB system.

Childhood Trauma. We found only one study that specific-
ally investigated the effects of childhood trauma on periph-
eral eCB system markers. In this study, Koenig et al.
assessed the association between history of childhood
trauma in 142 pregnant mothers with the concentration
of eCBs in their hair samples. The results showed that
hair of mothers with childhood trauma contained signifi-
cantly higher levels of 1-AG and lower levels of SEA. They
also reported that history of more severe childhood trauma
was associated with the lower levels of SEA levels.>*
Another study that we would like to include in this
section is an investigation of peripheral ¢CB ligands in
individuals diagnosed with BPD and PTSD with history
of childhood sexual abuse. In this study, Schaefer et al.
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Chronic Stress

enrolled 21 patients with PTSD, 26 patients with BPD,
and 30 matched healthy controls. They measured periph-
eral levels of eCB and found increased levels of 2-AG and
AEA in individuals with BPD and increased levels of
OEA in PTSD (with history of childhood trauma).>
These two studies are consistent with animal studies on
eCB system alterations in rodents with early life trauma
(reviewed earlier). Taken together, it seems that if trauma
happens early in life, significant changes in eCB are present
in adulthood, with mainly increased levels of eCB ligands (1-
AG, 2-AG, or AEA) and decreased presentations of CBIR.

Chronic ~ Repetitive ~ Unpredictable ~ Mild ~ Stress  in
Adulthood. Currently, aside from chronic childhood
abuse studies noted earlier, there are no other clinical
studies that examine the effects of chronic (prolonged)
repetitive unpredictable mild stress on ¢eCB system.

Severe Trauma in Adulthood. There are a few studies published
on the eCB system in individuals exposed to a major single
trauma or prolonged severe stress in adulthood.

Single severe trauma. Hill et al. investigated the periph-
eral eCB markers (2-AG, AEA, OEA, and PEA), in indi-
viduals (n = 46) exposed to the World Trade Center (WTC)
Attack (9/11), four to six years after the trauma. The results
of the study showed reduced plasma 2-AG levels in indi-
viduals meeting diagnostic criteria for PTSD compared to
those who were exposed to the trauma but did not meet
diagnostic criteria for PTSD. The association between
PTSD diagnosis and reduced 2-AG levels remained signifi-
cant after controlling for the stress of exposure to the WTC
collapse, gender, depression, and alcohol abuse.®’

In addition to the peripheral levels of eCB ligands,
CBIR alterations in individuals with history of trauma
and PTSD have been investigated using CBl-selective
radioligand [11CJOMAR and PET imaging evaluations.
Neumeister et al. measured CB1 receptor availability as
well as peripheral levels of AEA, 2-AG, OEA, and PEA
in individuals with PTSD (n=25), trauma-exposed indi-
viduals without PTSD (n=12) and healthy individuals
without history of trauma (n=23). The results of the
study showed increased brain-wide availability of CBIR
and reduced peripheral levels of AEA in individuals with
PTSD compared to the other two groups.”” Using the
same methods, Pietrzak et al. reported that increased
availability of CB1R in amygdala in individuals with his-
tory of trauma was associated with increased attentional
bias to threat and increased severity of threat which was
measured using a dot-probe task. In this study, they
found that lower peripheral AEA levels were associated
with higher levels of attentional bias to threat.”!

Prolonged severe trauma. An important study on the
effects of severe prolonged adulthood trauma on the eCB

system is conducted by Yi et al. on six healthy individuals
who were exposed to 520 days of extreme social isolation
and confinement as a simulated model of a flight to Mars
(Mars520). The results of the study showed a significant
decrease in the blood levels of 2-AG (present after 360
days) with no significant changes in the AEA levels com-
pared to the baseline levels.®®

In another study, eCB concentrations in hair samples
of 38 rebel war survivors from Northern Uganda with
PTSD was compared with 38 healthy rebel war survivors
without current and lifetime PTSD. The authors reported
they could not reliably measure the AEA and 2-AG
concentrations but found decreased concentrations of
OEA in individuals with PTSD and a negative relation-
ship between all eCB levels and the severity of PTSD
symptoms.*’

In contrast with the aforementioned studies, another
study was performed to investigate the peripheral
eCB system markers in 19 trauma-exposed individuals
(10 with PTSD and 9 without PTSD) compared to
healthy controls. Trauma-exposed individuals in this
study were refugees, and most of them (84.2%) had his-
tory of persecution, war, and torture experiences in their
early or late adulthood. The results of analyzing periph-
eral eCB in these individuals showed higher levels of
AEA, 2-AG, OEA, SEA, and PEA in individuals with
PTSD compared to trauma without PTSD and controls.
However, it is important to note that individuals with
PTSD significantly had experienced higher numbers of
traumatic events, specially torture and war-related
events, compared to the trauma without PTSD group.
Moreover, the participants in this study had heterogen-
ous race/ethnicity, with some comorbid psychiatric dis-
orders including depression (positive in 9 out of 19
trauma-exposed participants), or other medical disorders
such as rheumatic disorder or hepatitis B (4 out of 19
trauma-exposed individuals). Although authors con-
ducted several comparison studies and reported no effects
of these comorbidities or psychiatric medications on the
eCB levels, the sample size of each group was small.”?
These comorbidities and heterogenicity in the amount
and type of trauma may explain the contradictory results
compared to the two other studies.

Conclusion

Long-lasting eCB system alterations have been consist-
ently reported both in animal and human studies.
However, it is critically important to consider the develop-
mental and accumulative effects of trauma when investi-
gating the nature and direction of these observed changes.
Although some of the inconsistencies are explained with
different brain regions of study or technical differences in
measuring the markers, the persistent effects of trauma on
the eCB system seem to be different when the trauma is
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experienced during childhood compared to adulthood.
Animal models of childhood trauma demonstrate different
effects of trauma on the eCB system, depending on the
developmental stage when investigating the eCB system.
As illustrated in Figure 2, childhood trauma results in
increased levels of eCB ligands and decreased levels of
CBIR in childhood, decreased levels of ligands and
increased levels of CBIR in adolescence, and increased
levels of eCB ligands and decreased levels of CBIR in
adulthood. On the other hand, the nature of childhood
trauma in humans is usually chronic and repetitive. CUS
in rodents induces downregulation of CBIR as well as
lower levels of eCB ligands. There is only one human
study on eCB system alterations in individuals with history
of childhood trauma, and the results are consistent with
animal models, with increased levels of eCB ligands.
Similarly, another study on individuals with BPD and
PTSD with history of childhood trauma reported
increased levels of 2-AG and AEA in individuals with
BPD and increased levels of OEA in PTSD with history
of childhood trauma. Taken together, it seems that both
preclinical and clinical studies consistently demonstrate
increased levels of eCB ligands and decreased levels of
CBIR in adults with history of childhood trauma
and PTSD.

In contrast, adulthood severe trauma induces decreased
levels of eCB ligands and increased presentation of CB1R
in both animal models and the majority of human studies.
It seems that based on the developmental age when expos-
ure to trauma occurs, long-lasting induced eCB alterations
shifts the eCB system into opposite directions. To date,
there is no available preclinical or clinical study investigat-
ing the effects of developmental age of subjects at the time
of trauma on the long-lasting induced eCB system alter-
ations. It is important to note that though in this review we
categorized the studies based on the developmental age of
subjects at the time of trauma to differentiate the eCB
alterations induced by childhood versus adulthood
trauma, several other factors may contribute to these dif-
ferences such as type or duration of trauma or technical
differences in research methodology.

More studies are needed to compare the effects of child-
hood and adulthood trauma, with or without PTSD pres-
entations, on the eCB system. These studies would have
important clinical implications, not only for individuals
with trauma and PTSD who commonly have comorbid
recreational cannabis use, and medical marijuana users
with PTSD being one of its main indicators but also for
studies investigating the potential therapeutic use of can-
nabinoids and eCB enhancers in PTSD treatment.
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