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Heat shock proteins (Hsps) function as molecular chaperones that enable

organisms to withstand stress and maintain normal life activities. In this

study, we identified heat shock protein 70 (encoded by hsp70), which

exhibits a higher expression in the mature male testis than in the unmature

testis of Ophraella communa. Tissue expression profile revealed that Ochsp70

levels in males were highest in the testis, whereas those in females were highest

in the head. Moreover, the expression ofOchsp70was found to be significantly

induced in female bursa copulatrix after mating. Double-stranded RNA

dsOchsp70 was injected into males to performance RNA interference, which

significantly decreased the male Ochsp70 expression levels within 20 d post-

injection, whereas no effect was observed on the Ochsp70 expression level in

the females after mating with dsOchsp70-injected males. However, significant

downregulation of female fertility was marked simultaneously. Furthermore,

knockdown of femaleOchsp70 expression also led to a significant reduction in

fertility. Finally, comparative transcriptomic analysis identified glucose

dehydrogenase and insulin-like growth factor binding protein as putative

downstream targets of Ochsp70. Overall, we deduced that Ochsp70 is an

indispensable gene and a potential male mating factor in O. communa, which

regulates reproduction.
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Introduction

When originating from their internal or external

environments, the heat shock response of cells is activated

to respond to the protein-damaging (proteotoxic) effects of

stress (Sørensen et al., 2003). Heat shock genes are a subset of

genes that encode for molecular chaperones called heat shock

proteins, including a stress-related groups of proteins

generated or synthesized by cells under the effect of

high temperature (heat shock) or other stress stimuli.

Hsps commonly exist in both prokaryotes and eukaryotes.

Based on molecular weight (kDa), Hsps are divided into

four types, Hsp90, Hsp70, Hsp60, and small Hsps,

which are involved in the transport, folding, unfolding,

assembly, and disassembly of multi-structured units, and in

the degradation of misfolded or aggregated proteins

(Lindquist, 1985; Feder and Hofmann, 1999; Pockley et al.,

2007).

Hsp70 is a predominant Hsp family, and the previous

studies were mainly focused on unraveling the important roles

of this family in restoring the native conformation of proteins

after experiencing stress (temperature, hypoxia, oxidative

stress, pesticides, radiation, etc.) (Morimoto, 1993). In

addition, members of the Hsp70 family are vital for the

folding and intracellular trafficking of denovo synthesized

proteins under normal conditions (Zatsepina et al., 2021).

The highly dynamic nature of Hsp70 is a key factor responsible

for its chaperone function (Clark and Peck, 2009; Mayer,

2013). Normally, Hsp70 is located in the cytoplasm,

however, when cells are stimulated by heat stress, Hsp70 in

the cytoplasm is rapidly transferred to the nucleus. Nuclear

translocation of Hsp70 protects the cells from the damaging

caused by hypoxia and high temperature (Velazquez and

Lindquist, 1984). Interestingly, hsp70 gene expression has

also been reported to determine the variation in fitness and

geographical distribution of Nucella species (Sorte and

Hofmann, 2005), and a similar phenomenon has been

noted in marine organisms (Clark and Peck, 2009). During

the evaluation of contaminated environments, the hsp70 gene

may serve as a biomarker to detect adverse circumstances

(Cristina et al., 2018). In mammals, certain Hsps have been

identified in the seminal fluid, which play important roles in

spermatogenesis, sperm-egg recognition, and the post-

testicular maturation of mammalian spermatozoa (Walsh

et al., 2008; Dun et al., 2012; Redgrove et al., 2012; Nixon

et al., 2015). In boars, Hsp70 is associated with semen quality,

which tends to decline significantly with Hsp70 levels (Huang

et al., 2000). In insects, studies regarding the functional

characterization of hsp70 are emergent. hsp70 gene is

differentially regulated in response to diapause (Macrae,

2010), and a similar change is recorded for other

influencing factors (King and MacRae, 2015). hsp70 is also

involved in midgut metamorphosis in Spodoptera litura,

wherein its expression is induced by hormones (Gu et al.,

2012). In addition, hsp70 is associated with reproductive

diapause (Baker and Russell, 2009) and aging, and has a

positive effect in prolonging the lifespan of Drosophila

melanogaster (Bourg et al., 2001).

Ophraella communa (Coleoptera: Chrysomelidae) is used

worldwide as an important biological control agent of the

ragweed Ambrosia artemisiifolia worldwide (Zhou et al.,

2011). Ambrosia artemisiifolia invaded China in the 1930s

(Li et al., 2015) and posed a serious threat to agriculture and

ecosystem (Zhou et al., 2011; Smith et al., 2013). The O.

communa feeds on foliage at both larval and adult stages,

and either restricts the ragweed can not enter the vegetative

genitals or die directly (Guo et al., 2011). Ragweed is spreading

rapidly in China (Guo et al., 2011), and the new areas of A.

artemisiifolia distribution lack a natural enemy population,

making it particularly dangerous. Therefore, a prompt

release of O. communa populations is required in these

areas to prevent further propagation of this weed. In

previous studies, we have investigated the biology and

physiology of O. communa (Ma et al., 2019a; Ma et al.

2019b; Ma et al. 2020; Tian et al., 2021; Zhang et al., 2021),

and found that these leaf beetles are bisexual reproductive

insects that can mate multiple times per day after sexual

maturity.

In the present study, we identified the hsp70 genes that

were highly expressed from a cDNA library of male testes in O.

communa. We noted that hsp70 is preferentially expressed in

mature testes compared to unmature ones, and is also

significantly upregulated in the bursa copulatrix (BC) of

mated females. To further elucidate the potential

functions of Ochsp70, we examined the tissue-specific

transcript abundance patterns of Ochsp70 in males

and females. Then, we used the RNA interference

(RNAi) technique to further demonstrate its role in

reproduction in males and females. Finally, a comparative

transcriptome analysis of RNAi-treated females (dsgfp

vs dshsp70) was carried out, and the potential

mechanisms by which Ochsp70 regulates reproduction were

discussed.

Materials and methods

Plant growth and O.communa rearing

The A. artemisiifolia plants used in the present study were

grown by following a previously reported method (Zhou et al.,

2010). Ophraella communa population had been raised on

ragweed plants for 1 year in the laboratory (Chinese Academy

of Agricultural Sciences, Institute of Plant Protection, Beijing,

China) at 27 ± 1°C, 70 ± 5% relative humidity, and a photoperiod

of 14/10 h (light/dark).
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Sample collection, RNA extraction and
cDNA synthesis

Diverse tissues, including head, thorax, fat body, gut, male

accessory glands (MAG), testis, bursa copulatrix (BC), were

collected from eight male and female O. communa adults at

day 5 post-eclosion. The post-mating bursa copulatrix (M-BC)

tissue was obtained from 15 females immediately after mating,

while the unmated bursa copulatrix (U-BC) tissue was

obtained from 20 unmated females of the same age. All

tissue samples collected for this study were immediately

frozen in liquid nitrogen and stored at −80 C. Three

biological replicates were used for quantitative real-time

polymerase chain reaction (qPCR) analysis. Subsequently,

total RNA from all samples was extracted following the

manufacturer’s protocol using TRIzol™ reagent (Invitrogen,

MA, United States). cDNA was synthesized using

the TransScript® One-Step RT-PCR SuperMix

(TransGen Biotech Co., Ltd, China) as per the

recommended protocol.

Cloning and sequence analysis of
Ochsp70

The rapid amplification of cDNA ends (RACE) approach

was used to amplify the full-length cDNA sequence according

to the manufacturer’s guide (SMARTer® RACE 5ʹ/3ʹ Kit,

Clontech, TaKaRa Bio Inc, United States) based on local

transcriptome data. The primer sequences are listed in

Supplementary Table S1. The complete Coding sequence

region was analyzed according to the smart website (https://

smart.embl.de/), and the conserved site was predicted using

the Prosite tool (https://prosite.expasy.org/). The full-length

cDNAs of hsp70 were used as query sequences to search for

hsp70 homologs in other insect genomes available in GenBank

using NCBI-BLASTn (http://www.ncbi.nlm.nih.gov/).

Multiple sequence alignment was performed using

DNAMAN 8.0, and phylogenetic trees were constructed by

the maximum-likelihood method using MAGE 6.06 and

phylogenetic relationships were determined by bootstrap

analysis with values of 1,000 trials.

qPCR analysis

qPCR was performed to quantify the relative Ochsp70

expression levels in different tissues, including female and

male, mating and unmating, and after double-stranded RNA

(dsRNA) treatments. For this purpose, the ABI 7500 PCR

detection system (Applied Biosystems, United States) was

used. RPL19 was used as reference gene, as described by

Zhang et al. (2020).

dsRNA synthesis and RNAi

PCR was carried out using a gene-specific primer pair

containing a T7 promoter sequence (5ʹ-TAATACGACTCA

CTATAGGG-3ʹ) at the 5′ end and a recombinant plasmid

containing OcHsp70 as template. Thereafter, the PCR product

was used as a template for dsRNA synthesis using Ambion™
MEGAscript® T7 Transcription Kit (Thermo-Fisher Scientific,

CA, United States) according to the recommended protocol. The

double-stranded green fluorescent protein (gfp) RNA, dsgfp, was

used as blank (negative) control. Finally, the quality of dsOchsp70

was assessed using 1% agarose gel electrophoresis and quantified

to 10 μg/ul. dsOcHsp70 and dsgfp were stored at −80 C for

subsequent experiments (Jin et al., 2020).

For the RNAi experiment, newly emerged adults (males and

females <12 h after eclosing) were injected with 500 ng of dsRNA
in 100 nL water solution at the abdomen using the Nanoject III

Programmable Nanoliter Injector (Drummond Scientific Co.,

Inc, PA, United States). At 5, 10, 15, and 20 d post injection (PI),

the five injected adults of each biological replicate were collected

for the evaluation of silencing efficiency using qPCR. The primers

used in this study are listed in Supplementary Table S1.

Bioassay for O.communa fecundity

Fecundity was assayed using single male-female mating pairs.

The dsRNA (dshsp70 or dsgfp) injected adults (male or female)

were mated with virgin (unmated) adults of the opposite sex and

same age without dsRNA injection at 3 d PI. Each pair of adults

was grouped in a Petri dish containing robust A. artemisiifolia

leaves with wet cotton. The number of eggs laid from per pair per

day was recorded every day until 20 d PI. The egg hatching rate

was calculated as the percentage of hatched larvae among the

total number of the eggs laid in the first 5 days.

RNA-sequencing

To identify the potential interactors of hsp70 particularly

related to reproduction, the global transcriptome profiles of

dsOchsp70-treated and dsgfp-treated females were investigated

and compared using high-throughput sequencing. To this end,

RNA was extracted from all samples, and the Ochsp70-silencing

efficiency of each sample was evaluated via qPCR before

transcriptome sequencing.

Data analysis

Data from qPCR and bioassays were analyzed using SAS

System for Windows V8. The qPCR data was analyzed using the

2−ΔΔCt method (Schmittgen, 2008). One-way ANOVA was
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performed to compare the variation between PCR data and

bioassays, followed by a least significant difference (LSD) test

for multiple comparisons. Differences among mean values were

determined using a LSD test at p < 0.05.

Results

Ochsp70 identification and sequence
analysis

The full-length cDNA of Ochsp70 was obtained by RACE-

PCR and submitted to GenBank (GenBank number:

OM162158), which consists of a 2,472 bp-long open

reading frame encoding a polypeptide of 824 amino acids,

and 186 bp long 5′ and 247 bp long 3′ untranslated regions.

The molecular weight of OcHsp70 was predicted to be

91.98 kDa and the isoelectric point was 5.63, according to

the ExPasy tools. The motif VEIVGGSSRIPAIKQ was found

to be highly conserved in Ochsp70 and its homologs from

other coleopteran species (Supplementary Figure S1), and

Ochsp70 shares the HSPA4_like_NDB domain with these

species. Homology analysis showed that the highest

sequence similarity among OcHsp70 and other coleopteran

Hsp70 proteins was 81.12% (Supplementary Figure S2).

Meanwhile, phylogenetic analysis revealed that the

Hsp70 clustered with strong bootstrapping support on the

basis of the insect order of origin, whereas the amino acid

sequences derived from insects of different orders were

clustered in one clade, indicating that these Hsp70 are

conserved within the same order of insects. The Ochsp70

sequence displayed the highest homology with that of

Diabrotica virgifera (Supplementary Figure S1).

Ochsp70 is highly expressed in the female
ovaries and male testes and is induced by
mating

The relative expression of Ochsp70 in male testes was

significantly higher in mature testes than in unmature testes

(Figure 1A). We also observed that the expression level of

OcHsp70 in BC (the female organ for storage of

sperm and seminal fluid protein) increased significantly

after mating (Figure 1B). Furthermore, the expression

domain analysis of Ochsp70 revealed the highest expression

in the testes in males and in the heads in females

(Figure 1C,D).

FIGURE 1
A) Expression levels of Ochsp70 in male testicular tissues; the expression patterns validation validate of theOchsp70 transcriptome data in the
male reproductive system. (B) Expression level of Ochsp70 in mating-bursa copulatrix (mating-BC) than unmating-bursa copulatrix (unmatingm-
BC). (C) Expression profiles of Ochsp70 in different tissues of males beetles O. communa. (D) Expression profiles of Ochsp70 in different tissues of
females beetles O. communa. Values are represent means ± SD. The data were analyzed usingby one-way ANOVA followed by the least
significant difference (LSD) test. p*p < 0.05, pp**p < 0.01.
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FIGURE 2
Functional characterization of Ochsp70 and evaluation of RNA silencing efficiency in males. (A) Expression levels of Ochsp70 (5, 10, 15, and
20 d) after dsRNAwas injected into themales. (B) Expression levels ofOchsp70 in the reproductive systemof females copulatedwith dsRNA-injected
males, 3 h post-mating (Pm-3h). (C) Expression levels of Ochsp70 in the reproductive system of females copulated with dsRNA-injected males, 3 d
post-mating (Pm-3d). (D) Effect ofOchsp70 onO. communa fecundity. Bars with the same letter are not significantly different from each other
at p < 0.05, as per the LSD test.

FIGURE 3
Functional characterization of Ochsp70 and evaluation of RNA silencing efficiency in females. (A) Expression levels of Ochsp70 (5, 10, 15, and
20 d) after dsRNA was injected dsRNA was injected into the females. (B) Effect of Ochsp70 on female fecundity. Bars with the same letter are not
significantly different from each other at p < 0.05 level, as per the LSD test.
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The knockdown of Ochsp70 reduces the
fertility of O. communa males

TheOchsp70 expression was significantly reduced on the fifth

day PI until 20th day PI in males (Figure 2A). In the meantime,

we also tested the expression of Ochsp70 in the reproductive

system of females that mated with males injected with dsOchsp70,

and the results showed no significant changes (Figure 2B,C).

However, the fecundity of these females was 26% lower than

those administered dsgfp (Figure 2D). These results indicate that

Ochsp70 is a putative male mating factor that plays an important

role in reproduction.

The knockdown of Ochsp70 reduces the
fertility of O. communa females

To illustrate whether Ochsp70 was involved in regulating

reproduction in females, dsOchsp70 was injected into freshly

emerged females of O. communa. Similar to their male

counterparts, the females displayed a significant reduction in

Ochsp70 expression from the fifth to the 20th day PI (Figure 3A).

Furthermore, the number of eggs laid by the dshsp70-treated

females decreased by 56% compared to the control (Figure 3B).

These results further suggest thatOchsp70 has a crucial role in the

regulating the reproduction of O. communa females.

Ochsp70 knockdown impacts fertility-
related pathways in O. communa

To elucidate the potential pathway of Ochsp70 mediated

regulation of the reproduction in O. communa, total RNA was

extracted fromRNAi-treatedmated female adults andwas subjected

to transcriptome sequencing (Supplementary Table S2). The raw

data has been uploaded to NCBI (BioProject accession:

PRJNA796368). Comparative transcriptomic analysis revealed

significant alterations in the expression profiles of multiple genes

associated with pathways involved in stress, reproductive

development, and reproduction. Among the differentially

expressed genes, we noticed that two fecundity-related genes,

glucose dehydrogenase (evm.TU.chr5.700, GDH) and insulin-like

growth factor binding protein (novel. 2003, IGF-BP) were

downregulated 5.046 and 7.8136 times, respectively, after

dsOchsp70 treatment. These results were subsequently validated

by the relative expression levels quantified using qPCR (Figure 4).

Discussion

Insects produce Hsps in response to stress such as heat, cold,

crowding, and anoxia. In concert with cochaperones and

accessory proteins, Hsps mediate essential activities such as

folding, assembly, intracellular localization, secretion,

regulation, and degradation of other proteins (Hendrick and

Hartl 1993). Previous studies have reported that Hsp exhibits

characteristic and distinctive expression patterns during various

stages of development, including gametogenesis (Dix, 1997) and

embryogenesis (Heikkila, 1993; Krone et al., 2003), However, the

role and significance of the high Hsp levels in the absence of

stress stimuli remain unclear. In this study, theOchsp70 gene was

successfully isolated and was found to display a constitutive and

preferential expres sion profile in male testes. Interestingly,

knocking down male Ochsp70 resulted in diminished fertility

in their female mates. A similar observation was made in

Tribolium castaneum, wherein Hsp70 was found to be

involved in reproductive regulation when Tchsp70 knock-

down males were examined (Xu et al., 2013). In addition,

FIGURE 4
Verification of differential gene expression between two RNA interference-treated groups by quantitative real-time polymerase chain reaction
represented as heat maps. (A) dshsp70-ov vs. dsgfp-ov. (B) dshsp70-female vs. dsgfp-female.
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Ochsp70 expression is highest in the female heads, which is

similar with Nilaparvata lugens (Lu et al., 2018) and Cydia

pomonellao (Yang et al., 2016), and some small hsp genes are

also abundant in head (Sun et al., 2014; Li et al., 2019). As a

chaperone, hsp might play an important role in maintaining the

normal function of the insect brain, either olfaction or neuro/

developmental processing (Yang et al., 2016). More importantly,

Ochsp70 expression is highly in the female ovaries, which is

consistent with the ovary-specific expression of Tchsp70 and

Dmhsp70 (Marin and Tanguay, 1996; Xie et al., 2019), and

constitutive expression of Hsp70 has been confirmed in

mammalian oocytes (Dix, 1997), and hsp expression in female

reproduction tissue and spermatogenesis was showed to correlate

with HSP reproduction function (Neuer et al., 2000). Our results

also revealed that the knockdown of female Ochsp70 expression

led to reduced reproduction both males and females. This finding

supports the previous prediction that the shsp and hsp70 genes

may regulate reproduction in T. castaneum (Xie et al., 2019) and

Agasicles hygrophila (Jin et al., 2020). However, expression level

of hsp70 gene might be a balancer of benefits and costs. During

the response of D. melanogaster against heat shock, the

hsp70 expression increases, whereas the fecundity decreases

(Krebs and Loeschcke, 1994; Huang et al., 2007), and growth

and cell division are impeded (Feder, 1997).

In general, males offer male mating factors (e.g., seminal fluid

proteins or other synthesized secretions) to females to ensure

successful mating or to signify paternal investment (Thornhill,

1983; Avila et al., 2011). In the Hsp family, hsp60 was present in

the upregulated gene cluster obtained from the mated females of

D. melanogaster (Mack et al., 2006), and Hsp70 was identified as

a seminal fluid protein in T. castaneum (Xu et al., 2013). In this

study, female Ochsp70 expression was also induced through

mating, which combined with the high expression levels of

male Ochsp70 in the mature testis, suggests that Ochsp70 may

functions as a male mating factor in O. communa. Similarly,

32 HSPs constitute a group of most abundant proteins in the

adult testis proteomics of Bombyx mori, a 94.4 kDa Hsp70was

also included (Zhang et al., 2014), which were considered to be

associated with spermatogenesis, reproduction, mitosis, and

fertilization. This phenomenon is even more comprehensible

in mammals (Boelens et al., 2004; Jha et al., 2013; Zhang et al.,

2014), wherein several hsp70 genes are expressed specifically in

male germ cells (Dix, 1997; Neuer et al., 2000; Carreira and

Santos, 2020). Testicular sperms are the most diverse of all cell

types, so it is not surprising that spermatogenesis is accompanied

by the expression of hsp gene different expression.

However, the knockdown of female Ochsp70 led to a

reduction in egg production, suggesting that Ochsp70 may

also be related to protein transport and nutrient supply in

females, as observed previously (Marin and Tanguay, 1996).

Hsp70 does not function independently and is associated with

a team of cochaperones. In addition, hsp expression results from

the activation of various intracellular signaling pathways (Feder

and Hofmann, 1999). Liu et al. (2013) has been predicted that

hsp90 is involved in regulating 20E and JH-inducible gene

expression in Helicoverpa armigera, which may be another

possible pathway for Hsp family-mediated reproductive

regulation. In the present study, several pathways were

revealed via RNA-sequencing analysis as potential

downstream targets of Ochsp70 involved in the regulating the

reproduction in O. communa, such as Foxo signaling pathway,

MAPK signaling pathway and insect hormone biosynthesis.

Particularly, we noticed that both GDH and IGF-BP were

maximally down-regulated with decreasing expression of

hsp70. Previous studies showed that GDH and IGF-BP are

involved in reproduction-related pathways and homeostasis

(Smykal and Raikhel, 2015), while GDH is also associated

with lifespan regulation (Von Wyschetzki et al., 2015).

Unfortunately, in our study, after we silenced Gdh and Igf-bp,

respectively or combined, the female fertility was non-different

(Supplementary materials). Meanwhile, when the expression of

hsp70, Gdh and Igf-bp in female of O. communa was interfered

simultaneously, the female fecundity decreased obviously,

compared with the control (Supplementary materials). Hence,

GDH and IGF-BPmay be not directly regulate reproduction, and

are not directly related to Hsp70. The process of Hsp70 involved

in reproduction is multimodulated in males and females of O.

communa, next we will contribute to explore and find out this

mechanism.

Conclusion

Our study provides evidence that hsp70 is a regulator of O.

communa reproduction. Our findings also supports the notion

that Ochsp70 is a potential male mating factor. A high-

throughput approach was used to analyze the potential

regulatory mechanism of the function of Hsp family in

reproduction. However, further studies are required to

elucidate the gene regulatory network involved in Hsp-

mediated regulation of reproduction.
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