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We identified a genetic variant, an 8-residue appendage, of the
α345 hexamer of collagen IV present in patients with glomerular
basement membrane diseases, Goodpasture’s disease and Alport
syndrome, and determined the long-awaited crystal structure of
the hexamer. We sought to elucidate how variants cause
glomerular basement membrane disease by exploring the mech-
anism of the hexamer assembly. Chloride ions induced in vitro
hexamer assembly in a composition-specific manner in the
presence of equimolar concentrations of α3, α4, and α5 NC1
monomers. Chloride ions, together with sulfilimine crosslinks,
stabilized the assembled hexamer. Furthermore, the chloride
ion–dependent assembly revealed the conformational plasticity
of the loop-crevice-loop bioactive sites, a critical property un-
derlying bioactivity and pathogenesis. We explored the native
mechanism by expressing recombinant α345 miniprotomers in
the cell culture and characterizing the expressed proteins. Our
findings revealedNC1-directed trimerization, formingprotomers
inside the cell; hexamerization, forming scaffolds outside the cell;
and a Cl gradient–signaled hexamerization. This assembly detail,
along with a crystal structure, provides a framework for under-
standing hexamer dysfunction. Restoration of the native confor-
mation of bioactive sites and α345 hexamer replacement are
prospective approaches to therapeutic intervention.

Prominent diseases of the glomerular basement membrane
(GBM), a specialized form of extracellular matrix, are diabetic
nephropathy (DN), Alport syndrome (AS), and Goodpasture’s
disease (GP) (1–3). The morphological abnormalities in the
GBM, ranging from thickening in DN to multilamellations in
AS, and ruptures due to specificGBMattack by antibodies inGP
involve structural alterations in collagen IV (2, 4–10), the major
GBM component. The mechanisms whereby collagen IV
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enables normal GBM function or causes GBM abnormalities
and dysfunction in disease are unknown. The understanding of
GBM diseases requires knowledge of the pathobiology of the
collagen IVα345 scaffold in relation to structure and assembly.

In Pokidysheva et al. (11), we found that the α345 hexamer,
a key connection module within the of the collagen IVα345

scaffold, is a focal point of bioactivity, enabling GBM function.
In Boudko et al. (12), we solved the crystal structure of the
collagen IVα345 hexamer, which revealed the loop-crevice-loop
(LCL) bioactive sites that include GP hypoepitope loops. The
crystal structure also revealed a ring of chloride ions at the
trimer–trimer interface, which may signal hexamer assembly
analogous to collagen IVα112 hexamer (13, 14). In α345 hex-
amer, chloride ions may play an additional role in the
conformational stability of the LCL bioactive sites, for which
perturbations can lead to GP and AS. Here, we sought to
explore these chloride roles in the collagen IVα345 hexamer.

Results

Chloride ions play key role in the assembly of the α345
hexamer, a critical step in the formation of the collagen IVα345

scaffold

The presence of chloride ions at the trimer–trimer interface
of the α345 hexamer, as described in Boudko et al. (12),
posited a key role of the chloride ring in hexamer assembly,
based on our previous finding of a signaling role of chloride
ions in the assembly of the α121 hexamer (13, 14). Thus, we
investigated the role of chloride in α345 hexamer assembly,
using recombinant human NC1 monomers, single-chain tri-
mers, and miniprotomers.

Chloride ions initiate formation and, together with sulfilimine
crosslinks, stabilize the quaternary structure of the α345 hexamer

Recombinant human α3, α4, and α5 NC1 monomers were
incubated with 150-mM NaCl at 37 �C for 24 h. Separation by
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Crystal structure of α345 hexamer
size-exclusion chromatography (SEC) revealed a new hexamer
peak and concomitant decrease of the NC1 monomer peak
(Fig. 1, left). The hexamer peak contained α3, α4, and α5 NC1
monomers (Fig. 1, middle) and its intensity directly correlated
with the concentration of chloride ions (Fig. 1, right). Addi-
tional studies revealed that specificity for assembly is encoded
in the monomer subunits, which, in the presence of chloride,
interact to form an α345 hexamer (Fig. 2, A–D). This heter-
ohexamer was a predominant species formed in the presence
of all three NC1 monomers (Fig. 2E), whereas α5NC1 homo-
hexamer was essentially absent (Fig. 2F).

Once assembled, chloride ions stabilize the hexamer struc-
ture, as revealed by the dissociation of uncrosslinked hexamer
into subunits upon removal of chloride ions (Fig. 3A). In
contrast, removal of chloride does not induce dissociation of a
crosslinked hexamer, revealing that sulfilimine crosslinks (15)
reinforce the hexamer for stability (Fig. 3, B and C).

We sought to validate these in vitro results in a biological
system. To this end, we expressed and characterized a re-
combinant α345 miniprotomer in CHO cells in culture. The
purified miniprotomer was confirmed to be composed of the
α345 chains (Fig. 4). Rotary shadowing and atomic force mi-
croscopy (AFM) revealed individual molecules, characterized
as �70-nm-long miniprotomers containing the triple helical
collagenous domain with the globular NC1 trimer at the end
(Figs. 4C and 5). In the presence of chloride, the mini-
protomers associated head-to-head (Fig. 5), indicating that
chloride ions mediate the protomer dimerization, a key step in
scaffold assembly outside the cell (16) (see Supplementary
Section 3 for additional data).

Collectively, these studies demonstrate that the α3, α4, and
α5 NC1 monomers are encoded with structural determinants
that govern both chain selection in protomer assembly and
chloride-dependent oligomerizations of specific protomers
into the collagen IVα345 scaffold in the GBM.
Chloride induces NC1 mon
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Chloride ions stabilize the conformation of the α345 hexamer
and reveal conformational plasticity of the LCL sites

Based on our previous findings, a conformational transition
occurs upon dissociations of α345 hexamer with 6 M GuHCl, a
strong protein denaturant. This conformational transition was
revealed by GP autoantibodies, which bound only the dis-
associated monomer and crosslinked subunits (17, 18). Herein,
we observed that, under nondenaturing conditions, the
removal of chloride ions also induced GP antibody binding to
both α3 and α5 subunits (Fig. 6A), concomitantly with the
dissociation of the noncrosslinked hexamer (Fig. 3A). More-
over, removal of chloride ions also induced antibody binding
to the α3 and α5 subunits within a cross-linked hexamer
(Fig. 6B), even without hexamer dissociation (Fig. 3B). There
was a dose-dependent increase in binding of α3-GP autoan-
tibody up to 20-fold upon decreasing of the chloride concen-
tration (Figs. 6B and S5).

In contrast, chloride removal did not impact the binding of
human Alport post-transplant anti-GBM nephritis alloanti-
body to the α5 subunit of the crosslinked hexamer (Fig. 6C,
left). Our previous work has established that the epitope for
Alport post-transplant anti-GBM nephritis alloantibody and
hypoepitope for the GP autoantibody have the same primary
structures but differ in their conformations based on hexamer
dissociation using strong denaturants (19–21). This confor-
mational distinction was now verified under nondenaturing
conditions by the differential effect of chloride on binding of
these two antibodies to the crosslinked hexamer. Furthermore,
chloride removal also did not affect the binding of mouse mAb
Mab3 (Fig. 6C). This antibody targets the α3 GP hypoepitopes
in the intact hexamer and the GP neoepitopes in the dissoci-
ated hexamer and can block GP autoantibody binding (22).
Thus, only a few residues may account for a critical confor-
mational transition from hypoepitope to neoepitope required
for GP autoantibody binding within the LCL site.
omers into α345 hexamer
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Figure 2. Specificity of monomer composition in chloride induced α345 hexamer assembly. Chloride induces assembly of the homohexamer from
human recombinant α5NC1 (C), but not α3NC1 (A) or α4NC1 (B) monomers as demonstrated by SEC after preincubation of monomers in the presence of
150-mM NaCl (red lines). Blue lines show elution profiles of the original NC1 monomers monitored by absorbance at 280 nm. D, assembly of the α345
heterohexamer from the equimolar mixture of α3, α4, and α5 NC1 monomers in the presence of chloride as a positive control. Color-coded pictograms
above elution profiles show position of the hexamer and monomer peaks. E, heterohexamer assembled in the presence of chloride from the equimolar mix
of recombinant α3, α4, and α5 NC1 monomers binds the fragment antigen-binding (Fab) fragment of monoclonal antibody (Mab) 26-20 as indicated by the
disappearance of hexamer peak at 12 ml concomitant with the formation of the hexamer–Fab complex peak at 10.5 ml and reduction of the free Fab peak
at 15.6 ml. F, in contrast, 26-20 Fab does not bind to isolated α5NC1 homohexamer as indicated by the absence of changes in the position and areas of the
hexamer or Fab peaks. SEC, size-exclusion chromatography.

Crystal structure of α345 hexamer
Discussion

Collectively, our findings reveal details of the assembly
mechanisms of the collagen IVα345 hexamer. These includeNC1-
directed oligomerization, chloride signaling and stabilization of
conformation, and sulfilimine crosslink reinforcement as
summarized in Figure 7. Furthermore, a dynamic feature of
conformational plasticity of the LCL bioactive site on the surface
of the α345 hexamer was demonstrated (Fig. 7). This assembly
detail, along with the crystal structure (12), provides a framework
for understanding how genetic variants cause hexamer
J. Biol. Chem. (2021) 296 100592 3
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Crystal structure of α345 hexamer
dysfunction and for the development of therapy. The variants
could interfere with multiple assembly steps, including the for-
mation and conformation of the LCL bioactive sites. This
conformation can be perturbed by the Z-appendage and other
genetic variants that occur in the hexamer inAS, endogenous and
exogenous triggers inGP, and hyperglycemia inDN (11, 12). The
restoration of the native conformation of these sites and/or
replacement of the hexamer are prospective approaches to
therapeutic intervention.
Experimental procedures

Design, expression, and purification of α345 miniprotomers

Codon-optimized synthetic DNA–encoding collagen IV
α3, α4, and α5 minichains extended with chain-specific
4 J. Biol. Chem. (2021) 296 100592
tags were cloned into proprietary vectors and used for
transient coexpression in ExpiCHO-S cells (performed at
Aragen Bioscience, Inc). Secreted proteins were purified on
a Ni column, and α345 miniprotomer was purified using
anti-FLAG M2-Agarose (Sigma). The chain composition
was confirmed by Western blotting using NC1 chain-
specific antibodies H3 (anti-α3), H4 (anti-α4), and Mab5
(anti-α5).

Expression and purification of α3, α4, and α5 NC1 monomers

Recombinant human NC1 domains were amplified by PCR
from human kidney cDNA library, cloned in the derivative of
pRc-CMV mammalian expression vector that includes BM-40
signal peptide and N-terminal FLAG tag, and transfected into
HEK-293 cells using Hepes-calcium phosphate (ProFection,



Figure 4. Productionand characterizationofa recombinantα345miniprotomer.A, theα345miniprotomerwas engineered andexpressed inmammalian cells
and is schematically shown in comparison to a full-length α345 protomer. B, purified α345miniprotomer after binding and elution from anti-FLAGM2-agrose. SDS-
PAGE under nonreducing and reducing conditions revealed formation of the trimer stabilized by interchain disulfide bonds. Bands corresponding tomonomer (M)
and trimer (T) are indicated. C, rotary shadowing of the α345miniprotomer. The rotary shadowing electronmicroscopy data showing individual�70-nm-long α345
miniprotomers each containing a triple helical collagenous domain (arrows) with a globular NC1 trimer (triangles) at the end. D, CD spectrum of the α345 mini-
protomer in 20-mM sodium phosphate buffer, pH 6.5, at 15 �C. E, thermal unfolding upon heating and partial refolding upon cooling of the triple helical part of the
miniprotomer. The apparent melting temperature is 43 �C at the heating rate of 0.2 �C/min. Hysteresis observed between heating and cooling transitions is a
characteristic feature for collagen triple helix transitions (26). F, size-exclusion chromatography of α345 miniprotomer digested with collagenase. The column was
equilibrated and operated in tris-buffered saline (TBS) buffer containing 150-mM Cl-. The position of a major peak at 13.15 ml corresponds to the NC1 hexamer. G,
Westernblot of themajorpeak (lane3,�10ng/lane)usingchain-specificantibodies againstα3,α4, andα5NC1. Recombinantmurineα1andα2NC1domains (50ng/
lane) were loaded as negative controls in lanes 1 and 2.
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Promega). Stable clones were selected using neomycin
(0.4 mg/ml), and clones with the highest levels of NC1
expression after testing by Western blotting were expanded
into T225 culture flasks. The conditioned medium was
collected from confluent cultures two times a week, and re-
combinant proteins were purified by passing through anti-
FLAG M2-agarose (Sigma) columns with subsequent elution
with FLAG peptide (100 μg/ml, Sigma) and concentration on
ultrafiltration concentrators (Amicon 10MWCO, Millipore) to
2 to 4 mg/ml. Proteins were further purified by SEC on
Superdex 200 column in the TBS buffer (23).

Rotary shadowing electron microscopy

The sample was dialyzed against a volatile buffer, 50-mM
ammonium bicarbonate, pH 6.8. The concentration was
adjusted to 100 μg/ml. 30 μl of the sample was mixed with
70 μl of pure glycerol and sprayed onto a freshly cleaved mica
surface as �50 μm drops. The mica was then placed into a
vacuum evaporator and dried under vacuum. Contrast was
affected by evaporating Pt-C at a 6o angle relative to the mica
surface as the sample rotated. Further processing and electron
microscope imaging was performed as described (24).

AFM

The sample preparation for AFM was performed on mica
(Highest Grade V1 AFM Mica Discs, 10 mm, Ted Pella). The
protein samples were diluted to a 1 to 2 μg/ml, and 50 μl was
deposited onto freshly cleaved mica. After a 30-s incubation,
the excess of unbound proteins was washed off with the ul-
trapure water for �10 s, and the mica was immediately dried
under filtered air. All proteins were imaged under dry condi-
tions, and the solution conditions of the samples refer to the
conditions in which they were deposited onto mica. AFM
imaging was performed on Asylum Research MFP-3D atomic
force microscope using the AC tapping mode in air. AFM tips
with a 160-kHz resonance frequency and 5 N/m force constant
(MikroMasch, HQ: NSC14/AL BS) were used.

CD spectroscopy

CD spectra were recorded on a Jasco model J-810 spec-
trometer equipped with a Peltier temperature control unit
6 J. Biol. Chem. (2021) 296 100592
(JASCO Corp.) using a quartz cell of 1-mm path length at
15 �C. The spectra were normalized for the concentration and
path length to obtain the mean molar residue ellipticity.
Thermal scanning curves were recorded at 225 nm with the
heating rate of 0.2 �C/min.
SEC

SEC of tissue-extracted and recombinant NC1 hexamers was
conducted with a Superdex 200 Increase 10/300GL gel filtration
column (GE Healthcare), using an ÄKTA purifier (GE
Healthcare) at a flow rate of 0.5 ml/min using 25-mM Tris HCl,
pH 7.5, 150-mM NaCl (TBS, +Cl− buffer), 25-mM Tris acetic
acid, pH 7.5, or 150-mM sodium acetate (Cl−-free buffer).
Eluting proteins were monitored by absorbance at 280 nm.
Apparent sizes were calculated using a calibration curve where
logarithm of the molecular mass of protein standards (Bio-Rad)
was plotted against normalized retention volume (25). The area
of hexamer peak was integrated using Unicorn software (GE
Healthcare) and expressed as a percentage of the total peak area
for quantitation of hexamer assembly.

α345 hexamer assembly

In vitro assembly of the recombinant NC1 monomers and
trimers was initiated by the addition of NaCl to concentrated
proteins (2 mg/ml) in 25-mM Tris acetic acid buffer, pH 7.5,
followed by incubation for 24 h at 37 �C. The products of
reaction were fractionated and analyzed by SEC FPLC in TBS
as described above.

Data availability

All data described in this article are available in the main
text or supporting information. The atomic coordinates and
structure factors (code 6wku) have been deposited in the
Protein Data Bank (http://www.pdb.org/).

Supporting information—This article contains supporting
information.
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