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Abstract

Background: Detecting homologous protein sequences and computing multiple sequence alignments (MSA) are
fundamental tasks in molecular bioinformatics. These tasks usually require a substitution matrix for modeling
evolutionary substitution events derived from a set of aligned sequences. Over the last years, the known sequence
space increased drastically and several publications demonstrated that this can lead to significantly better performing
matrices. Interestingly, matrices based on dated sequence datasets are still the de facto standard for both tasks even
though their data basis may limit their capabilities.

We address these aspects by presenting a new substitution matrix series called PFASUM. These matrices are derived
from Pfam seed MSAs using a novel algorithm and thus build upon expert ground truth data covering a large and
diverse sequence space.

Results: We show results for two use cases: First, we tested the homology search performance of PFASUM matrices
on up-to-date ASTRAL databases with varying sequence similarity. Our study shows that the usage of PFASUM
matrices can lead to significantly better homology search results when compared to conventional matrices. PFASUM
matrices with comparable relative entropies to the commonly used substitution matrices BLOSUM50, BLOSUM62,
PAM250, VTML160 and VTML200 outperformed their corresponding counterparts in 93% of all test cases. A general
assessment also comparing matrices with different relative entropies showed that PFASUM matrices delivered the
best homology search performance in the test set.

Second, our results demonstrate that the usage of PFASUM matrices for MSA construction improves their quality
when compared to conventional matrices. On up-to-date MSA benchmarks, at least 60% of all MSAs were
reconstructed in an equal or higher quality when using MUSCLE with PFASUM31, PFASUM43 and PFASUM60 matrices
instead of conventional matrices. This rate even increases to at least 76% for MSAs containing similar sequences.

Conclusions: We present the novel PFASUM substitution matrices derived from manually curated MSA ground truth
data covering the currently known sequence space. Our results imply that PFASUM matrices improve homology
search performance as well as MSA quality in many cases when compared to conventional substitution matrices.
Hence, we encourage the usage of PFASUM matrices and especially PFASUM60 for these specific tasks.
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Background

The detection of homologous protein sequences and the
construction of protein multiple sequence alignments
(MSA) are two of the most fundamental tasks in mod-
ern bioinformatics to analyze evolutionary relationships
or to infer functional information. Search tools (BLAST
[3], FASTA [33], and PSI-BLAST [4]) or MSA algorithms
(MUSCLE [14] and MAFFT [28]) require a scoring model
to represent evolutionary insertion, deletion and substitu-
tion events. While the former two are usually modeled by
a specific gap penalty model [5, 11, 44], amino acid substi-
tution events are represented by substitution matrices.

For each two different types of amino acids A and B,
these matrices provide a score which represents the likeli-
hood of amino acid A mutating to amino acid B in relation
to independent evolution. The likelihood of preserving an
amino acid type is represented on the diagonal of a sub-
stitution matrix. These odds-ratios are normally derived
by counting amino acid substitution frequencies in (auto-
matically) aligned sets of sequences. Notably, these sets
are usually filtered to remove all parts containing gaps and
only focus on highly conserved regions which potentially
discards valuable information.

Over the last years, several types of substitution matri-
ces have been developed which differ in construction
methodology, underlying data base and field of appli-
cation. The Point Accepted Mutation matrices (PAM)
[10] represent amino acid mutation probabilities for spe-
cific evolutionary distances generated through Markov
chain models. Starting from an initial distance of 1%
amino acid changes on average for the construction of
the transition matrix, evolutionary distance is captured
in point accepted mutations, ranging from 1 (PAM1) to
n (PAMn). Hereby, the transition matrix is multiplied #-
times with itself to obtain the #n-step Markov chain neces-
sary for PAM#n. The PAM1 probabilities are derived from
1572 amino acid changes between very closely related
sequences. Even though this dataset is very small and
quite old, PAM matrices are still commonly used for
the detection and alignment of closely related sequences.
They cannot, however, reliably detect remote homologs
[23] or align sequences with low similarity.

Based on the PAM series, further matrices have been
developed covering a larger and/or more diverse sequence
space [19, 26]. One of the most recent PAM siblings is the
VTML matrix series [30, 31] which was originally devel-
oped for a better detection of remote homologs but is also
used to construct high quality MSAs [14]. VITML matri-
ces are constructed by iteratively estimating evolutionary
distances and substitution rates from a set of pairwise
sequence alignments using a maximum likelihood esti-
mator. Dayhoff’s model is used as the initial rate matrix.
The pairwise alignments are obtained by randomly sam-
pling two pre-aligned sequences from each protein family
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in the SYSTERS database [29]. This dataset is much
larger and more diverse compared to PAM which allows
VTML matrices to provide a more reliable detection of
remote homologs. However, only pairwise alignments are
considered to prevent bias from oversampling and the
covered sequence space is still rather small compared to
the sequence space available today with only 2.7 million
amino acid pairs considered in the VTML generation.

One of the most commonly used matrix series are
the BLOSUM matrices [22] which are derived from
highly conserved but also distantly related amino acid
blocks [21]. To prevent bias from redundant informa-
tion, similar sequences are clustered. Instead of count-
ing all substitution frequencies fully, they are weighted
by the cluster sizes of their corresponding sequences.
The matrix numbers, e.g. BLOSUM®62, indicate the cho-
sen similarity threshold for the sequence clustering step.
The BLOSUMS50 and BLOSUMG62 matrices are the de
facto standard for homology search tasks, e.g. in BLAST,
PSI-BLAST and FASTA. They are also commonly used
for MSA construction and are available as standard
parameter in most alignment programs. However, the
originating database is quite small with 22.2 million amino
acid pairings in its 1992 release and the matrices are
known to be substantially biased due to implementation
problems [25, 41]. Similar to the PAM series, BLOSUM
matrices have also been used as basis for other matri-
ces. Examples are the OPTIMAS5 [27] and PBLOSUM [40]
matrices which are reported to show improved substitu-
tion matrix performance. However, these still rely on the
same outdated and small sequence data as BLOSUM.

The selection of the right substitution matrix and cor-
responding gap parameters is an intricate task essential
in homology search, construction of MSAs and phylogeny
[1, 18, 24, 35, 37]. While most of the commonly used
matrices deliver reasonable results, there are still sit-
uations where the sensitivity of these matrices is not
sufficient. A possible explanation for this issue is that
these matrices are derived from too small and simi-
lar datasets that do not contain enough variety. This
is in concordance with common knowledge that matri-
ces derived from a larger and more diverse sequence
space can lead to significantly better homology search
performance [25, 35].

In this paper, we address this sensitivity issue by pre-
senting a novel type of substitution matrix based on
structural alignments. Our Pfam substitution matrix
(PFASUM) series is derived from the manually curated
Pfam seed alignments (version 29.0) [16] using a novel
algorithm. Thus, our PEASUM matrices rely on state-of-
the-art expert ground truth data which covers a much
larger and diverse sequence space than conventional sub-
stitution matrices with 47.3 billion amino acid pairings
in 16,295 MSA (as of release 29.0). Additionally, most
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existing substitution matrices are derived only from highly
conserved or filtered sequence data by omitting parts con-
taining gaps or ambiguous amino acids. In contrast, the
PFASUM construction takes all information into account.
A thorough evaluation of PFASUM’ homology search
performance and its capability to produce MSAs shows
that this enables PFASUM matrices to significantly out-
perform commonly used substitution matrices, especially
when dealing with sequences of low similarity.

In the following, we will describe the methods for
constructing the PFASUM matrices in detail as well as
thoroughly discuss their capabilities in comparison to fre-
quently used matrices for two common use cases: Homol-
ogous sequence search and MSA construction.

Method

PFASUM construction

Database selection

As discussed in the introduction, commonly used substi-
tution matrices are derived from quite old and incomplete
(filtered) datasets. It is also known that larger and more
diverse sequence datasets can produce significantly bet-
ter performing substitution matrices [25, 35]. Hence, we
chose the Pfam seed alignment dataset [16] as basis for
our PFASUM substitution matrices. This dataset con-
sists of numerous MSAs (16,295 MSAs in Pfam release
29.0 [16]) covering the currently known sequence space.
Each MSA contains a set of representative sequences for
a specific group of proteins such as a protein family or
domain. This allows our algorithm to capture substitu-
tion events between closely related sequences. Combin-
ing all MSAs, and thus different groups of sequences,
into a single matrix enables us to apply derived substi-
tution events on protein sequences with distant relation-
ships. Furthermore, all Pfam MSAs are manually curated
by experts and thus represent ground truth structural
alignments.

PFASUM algorithm

Substitution matrices usually represent substitution rates
in form of rounded log-odds scores derived from aligned
and filtered sequence data. For two different amino
acids o; and «; the unrounded score Sa,-,a,- corresponds
to Suje; = log, p(ai,aj) — log, (p(ai)p(ot]-)). The term
pla;, ) denotes the substitution frequencies for o; and
aj which are derived by counting all a;a; pairings
n(a;, &) and relating these to all counted pairs, i.e. N =
eri,a,- n(ay, ;). The terms p(o;) and p(o;) represent the
marginals for observing amino acid «; and «; respec-
tively. These can be directly derived by summing over
the probability of conservation p(v;, ;) and all substitu-
tion events (Zj £i p(a;, a))). The resulting real-numbered
log-odds score Sy, 0, is then rounded to the next integer
value.
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Our PFASUM algorithm and the corresponding matri-
ces also follow this basic principle. We process each
MSA in the Pfam seed dataset separately, accumulate the
counted substitution frequencies in a single matrix and
subsequently transform these to the final rounded log-
odds scores. In order to process unfiltered Pfam seed
alignments and to handle special cases such as oversam-
pling issues and ambiguous amino acid symbols, it is,
however, necessary to introduce additional steps in the
matrix generation.

Sequence clustering

Counting amino acid substitutions in a set of highly
redundant sequences may result in potential bias from
oversampling. To mitigate this problem, Henikoff and
Henikoff [22] uses a clustering algorithm for the
BLOSUM-¢t matrix calculation to group sequences of
equal length A depending on their relative similarity ® and
a preset clustering threshold ¢.

Instead of counting the observed amino acid substitu-
tions n(a;, ;) for each sequence pair A and B fully, each
substitution is counted as n(a;, @;)/|cx| * |cy|. Thereby,
¢y corresponds to the cluster that contains sequence A
and ¢, to the cluster containing sequence B. The cardi-
nalities |cx| and |cy| represent the corresponding cluster
sizes, i.e. the number of sequences within the clusters.
If both sequences A and B belong to the same clus-
ter, i.e. ¢y = ¢y, all substitutions between A and B
are ignored in counting pairs. In other words, a single
cluster is considered as a single sequence in counting
pairs.

First, the clustering algorithm calculates the similarity
®(A,B) between two sequences A and B. The similar-
ity ®(A, B) between two sequences A and B is measured
by counting the number of aligned positions that share
the same amino acid type, normalized by the length A
of both sequences. The similarity value is then compared
against the preset clustering threshold ¢ to decide whether
the sequences should be grouped or not. For example, if
sequences A and B are ®(A,B) = 73.5% identical and
the clustering threshold is set to ¢ = 62, the sequences
are grouped within a cluster. Additional sequences C are
assigned to this cluster if there exists at least one sequence
X inside the cluster that is at least ¢ % similar to C, i.e.
P(C,X) >t

The PFASUM algorithm incorporates this method
to mitigate oversampling problems. Analogous to
the BLOSUM matrices, the number suffix in a matrix’
name, e.g. PFASUMA43, indicates the chosen clus-
tering threshold used for the construction of the
matrix. However, we had to adapt the similarity mea-
sure to cope with the aligned sequences found in
the Pfam seed dataset as explained in the following
section.
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Sequence similarity

Two aligned sequences A and B from a Pfam seed align-
ment can be directly compared as both can be consid-
ered as correctly aligned. A gap symbol found in these
alignments is denoted as y. We define A as a vector of
amino acid and gap symbols with the length L, i.e. A =
(a1, . ..,ar). The number of amino acid symbols in A, i.e
without the gap symbol y, is denoted as A4. Similarly, B
is defined as (B, . . ., Br) and X p represents the number of
amino acids in B. The unnormalized similarity ¢ between
A and B is defined as:

L
$(AB) =Y 8y, B) [1— 8y, ) [1 = 8(Bp, v)]

=1

1)

Hereby, §(x, y) is the Kronecker delta which equals one
if x = y, and zero otherwise. In other words, we omit all
pairings that contain at least one gap symbol and count
only pairs with identical one letter codes. The fractional
similarity value ® is computed by normalizing ¢ (A, B)
with the length of the shorter sequence, i.e. min(iy4, Ap).

Group size normalization

Generally, Pfam alignments represent groups of related
protein regions. For our purpose, these groups of
sequences are collections of related proteins. Within
the broad term “group” we encapsulate protein families,
domains, and similar organizational structures. Substi-
tution matrices derived from Pfam seed alignments aim
at capturing the average evolutionary behavior, while the
number of sequences within each group can vary widely.
To avoid over-representing groups with high sequence
counts, the PFASUM algorithm derives group-specific
pair frequency counts p;(a;, @;) for each sequence group
k. These py(w;, ;) are obtained by normalizing the pair
counts 7y (Oli, oz,») found in group k with the number of
sequences i in this group. Pair frequencies p(o;, o) for
the entire database are then obtained by summing over all
normalized pg (o, o).

Gaps

The Pfam seed dataset contains complete MSAs and
thus gaps occur frequently to compensate for different
sequence lengths induced by deletions and insertions of
amino acids. This is contrary to the data basis of most
conventional substitution matrices, e.g. the BLOCKS
database used for the BLOSUM construction [21]. These
datasets are usually filtered by omitting alignment parts
containing gaps. Rather than neglecting MSA columns
with at least one gap, the PFASUM algorithm simply
neglects gap/amino acid (as well as gap/gap) pairings in
counting substitution frequencies. Hence, the PFASUM
algorithm considers all found amino acid pairings even in

Page 4 of 14

gap-rich columns with few amino acids. This allows us
to extract unique information about substitution events
even within insertion/deletion regions (indels) since these
regions are also manually curated and thus can be consid-
ered as reliably aligned.

Ambiguous amino acids

Ambiguous amino acid characters — such as B, J, Z and X
— occur rarely in most sequence databases, especially in
older databases. This consequently results in very low fre-
quencies for pairs that involve ambiguous amino acids so
that the computed relative pair frequencies often vanish.
Hence, most substitution matrix algorithms fully ignore
observed ambiguous amino acids when counting pair fre-
quencies. Instead, matrix entries for these characters are
subsequently generated from averaging the pair frequen-
cies of the canonic amino acids, following the translation
scheme shown in Table 1. The number of ambiguous
amino acids can be, however, larger in modern sequence
databases such as Pfam and thus can have a greater influ-
ence on the observed substitution frequencies.

To correctly account for this, PEASUM fully processes
ambiguous amino acids in counting substitution frequen-
cies. As ambiguous amino acids encode at least two
canonic amino acids, it is necessary to redefine amino
acids as a set ®, of symbols with x representing the one
letter code of the amino acid. Canonic amino acids are
thus represented as sets with a cardinality of one, e.g.
®4 = {A}. Ambiguous amino acids are defined as sets
containing their encoded canonic acids, e.g. ®p = {N, D}.

The PFASUM algorithm distributes pair counts 0,0,
of any found ambiguous amino acid equally among their
canonic amino acids, again following Table 1. Also, we
count the observed ©,0, directly. For example, each
found amino acid substitution ®4®p in group k is
counted as 0.5 ® 40y, 0.5040p, and 1.0 O4Op.

Afterwards, the final pair frequency counts for all acid-
to-acid combinations ¥, y are obtained using the following
formula which accounts for counting ®,0, more than
once if an ambiguous amino acid is involved:

[ S Y o (ai,a»} e (00,0))
a,-e@x O[/'E@y

|Ox|6y]

i (O, ©y) + 1 (O, ©))
Ni

1tk (s, ®y) =

i (O, 0y) =
(2)

Table 1 Ambiguous amino acids and their designated canonic
amino acids shown as one letter codes

Ambiguous amino acid B J z X

Canonic amino acid N, D EQ I L all
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In py, we add a correction term 14 (®y, ®,) to the number
of observed amino acid pairings 7 (@x, ®y). This term
equates to zero for pairings of canonic amino acids. For
pairings involving ambiguous amino acids, © copes with
adding these pairings to both canonic amino acids pair
counts as well as ambiguous acid pair counts. This ensures
that each observed amino acid pairing is only counted
once. The normalization factor Nj corresponds to the
total number of observed amino acid pairings in group k.

Using the example from above, a single observed
AB substitution would result in frequency counts
i (O4,0n) = m(©4,0p) = 0.5 and ni(A,B) = 1.
The resulting relative frequencies using the formula above
yield then pr(®4,0n) = pi(®4,0p) = 0.5 and
Pk(B4,0p) = 1.

Evaluation of homology search performance

One of the most common tasks employing substitution
matrices is the identification of homologous sequences.
We thus evaluated the capabilities of PFASUM matrices
for this particular task in two different scenarios. First,
we compare the performance of commonly used substitu-
tion matrices such as BLOSUMG62 with PFASUM matri-
ces of similar relative entropy. This scenario represents
the state-of-the-art approach for comparing substitution
matrices as per Altschul [2] on basis of their general com-
positional properties. Secondly, we investigate homology
search performance in a more user centered way by ana-
lyzing which of the tested matrices performed best on
different databases, while ignoring their relative entropies.
The following sections describe the different matrix test
sets and databases used for this evaluation as well as the
underlying methodology in detail.

Tested substitution matrices

We calculated PFASUM matrices using integer clustering
thresholds ranging from 0 to 100. Depending on the input
data, too small clustering thresholds can lead to clustering
results only containing a single large “super-cluster”. Since
amino acid substitutions are only counted between dif-
ferent clusters and not within the clusters, this can result
in matrices that do not report substitution rates for all
possible amino acid substitutions. Hence, we omitted all
PFASUM matrices with clustering thresholds < 10. We
denote the finally obtained matrix set in the following as
PFEASUM Search Matrices (Table 2).

In order to evaluate the homology search performance
of PFASUM Search Matrices against state-of-the-art sub-
stitution matrices, we focus on a set of commonly used
substitution matrices denoted as Standard Search Matri-
ces (Table 2). This set contains various BLOSUM, MD,
Optima, PAM, and VTML matrices which are used, e.g.,
as default parameter in popular homology search tools
such as SSEARCH/FASTA [33] and BLAST [3].
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Table 2 The matrix test sets assessed in the homology search
performance evaluation

Test set Algorithm Matrix numbers
PFASUM Search PFASUM [11,100]
Matrices
Standard Search BLOSUM 50,62,80
Matrices MD 10,20, 40
Optima 5
PAM 120,250
VTML 10, 20,40, 80, 120, 160, 200
Databases

To investigate the performance differences between
PFASUM Search Matrices and Standard Search Matrices
we conducted homology search experiments on basis of
the most recent ASTRAL 2.06 [8, 9] datasets, a subset
of sequences of the SCOP/SCOPe database [17, 32]. The
ASTRAL database, and especially its ASTRAL40 subset
containing sequences with a maximum similarity of 40%,
has been commonly suggested as the gold standard for
homology search performance evaluation [7, 20, 35, 41].
In order to evaluate substitution matrix performance for
different application purposes, we differentiated between
three distinct test scenarios and thus ASTRAL database
subsets.

While the ASTRAL40 subset represents the state-of-
the-art homology search benchmark, the ASTRAL70
dataset emulates database searches against very similar
and closely related sequences. We also conducted per-
formance evaluation on basis of the ASTRAL20 dataset,
which simulates homology searches of novel proteins with
unknown structural features and few known homologs.
Effectively, these three datasets allow us to evaluate the
performance of substitution matrices for different evolu-
tionary distances.

Search methods

In order to obtain the most accurate results for the eval-
uation of homology search performance we employed the
SSEARCH [33] algorithm of FASTA (Version: 36.3.8d).
SSEARCH was reported previously to possess higher accu-
racy than BLAST [20, 22, 41]. In order to avoid potential
bias introduced through inaccurate gap parameter set-
tings, we varied gap opening and gap extension penalties
from —5 to —20 and —1 to —3, respectively. For each
gap parameter and substitution matrix combination, we
generated a list of found potential homologous relations
when searching all sequences of an ASTRAL dataset to
the entire database. These relations were ordered based
on their E-values, i.e. the probability of obtaining a hit for
an unrelated sequence with equal length by pure chance.
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Performance evaluation

We evaluated the homology search performance of the
tested substitution matrices using the coverage measure
Q [7]. For a list of homologous search results ordered by
their E-values, this measure represents the fraction of the
correctly found, true positive superfamily relations which
remain after cutting the list in order to restrict the number
of false positives to a certain amount. We set this thresh-
old to 0.01 errors per query (epq) in concordance to other
studies [25, 35]. This effectively restricts the number of
false positives found within 100 queries to a single false
positive. To reduce the bias introduced by different super-
family sizes, we used the quadratically normalized version
of the coverage as suggested by Price et al. [35]:

Q=1 i d (3)
S i=1 (S12 - Si)
S represents the number of superfamilies and ¢; the num-
ber of true positive relations in superfamily i which con-
tains s; sequences.

In order to estimate the significance of the calculated
coverages Q and the differences between them, we used
a Concerted Bayesian bootstrapping approach to estimate
variance and mean of the underlying coverage distribution
[20, 35]. Through variation of the prior distribution, this
allows us to evaluate changes in the database composition
and accompanying variation in coverage. We obtained
sequence weights of the prior from the Dirichlet distri-
bution and conducted the quadratic normalization of the
resulting bootstraps as described in Hess et al. [25]. Prior
distributions were generated 500 times.

The significance of the coverage differences were mea-
sured through Z-score statistics which express the signif-
icance of the difference between distribution M and P as:

Om — Qp
/ a]%,l-}—ag
N

Here, Q_M represents the mean coverage for distribution
M with its corresponding variance cr}%,l and N the number
of bootstrap steps, i.e. 500 in our case.

(4)

Zyp =

Evaluation of MSA construction

Another popular task for employing substitution matri-
ces is the construction of Multiple Sequence Alignments
(MSA). Hence, we also evaluated the impact of PFASUM
matrices on the quality of MSAs using state-of-the-art
MSA benchmarks. The following sections describe this
evaluation in detail.

Tested substitution matrices

The calculation of pairwise sequence alignments forms
the basis of many homology search tools and MSA pro-
grams. For example, the search tools SSEARCH [33] and
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BLAST [3] employ pairwise alignments for calculating
the similarity between sequences. MSA programs such as
MUSCLE [14] and MAFFT [28] use pairwise alignments,
e.g., during guide tree construction or when generat-
ing profile-profile alignments. This suggests that matrices
which are suitable for either task may also be useful for the
other task. Hence, we assess PFASUM’s MSA construc-
tion capabilities by focusing on the three best performing
PFASUM Search Matrices in our homology search perfor-
mance evaluation, namely PFASUM31, PFASUM43 and
PFASUMS60 (Additional file 2: Figure S2; Additional file 3:
Figure S3; Additional file 4: Figure S4). We refer to this
matrix subset in the following as PFASUM MSA Matrices
(Table 3).

Out of the set of Standard Search Matrices, we chose
the PAM250, BLOSUM50, BLOSUM62, VMTL160, and
VTML200 matrices for this evaluation. These matrices are
used as default matrix by several MSA algorithm such as
MUSCLE and MAFFT. We refer to this matrix subset in the
following as Standard MSA Matrices (Table 3).

Benchmark datasets

To compare the quality of MSAs generated using our
novel PFASUM matrices with those created with conven-
tional matrices, we used the MSA benchmark collection
bench provided by R.C. Edgar [12]. This collection of
benchmark datasets consists of commonly used MSA
benchmarks stored in FASTA [34] format. From these,
we selected the unmodified BAIIBASE 3.0 [42], SABmark
1.65 [43] and OXBench [36] benchmarks for our evalu-
ation. Each benchmark consists of reference MSAs and
corresponding unaligned sequence sets.

BAIiBASE 3.0 is one of the most widely used MSA
benchmarks and provides 386 MSAs categorized in five
different sets. Each set represents a specific MSA use case,
e.g. a set of very divergent sequences (Reference 1) or
sequence families that are aligned to a distantly related
sequence (Reference 2). The MSAs in each set were gen-
erated using a combination of sequence- and structure-
based methods with manual refinement [15]. SABmark
1.65 provides two sets of MSAs, a “Twighlight Zone” set
(209 MSAs) and a “Superfamilies” set (425 MSAs) which
are derived from a consensus of SOFI and CE [6]. While
the sequences in the first set share a maximum similarity

Table 3 The matrix test sets assessed in the MSA construction

evaluation
Test set Algorithm Matrix numbers
PFASUM MSA Matrices PFASUM 31,43,60
Standard MSA Matrices BLOSUM 50,62

PAM 250

VTML 160,200
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of 25%, the second set contains sequences with a maxi-
mum similarity of 50%. The underlying sequences were
selected using fold information from the SCOP database
and thus possess known structure. The last benchmark
used in our evaluation is OXBench. It provides a set of 395
structural MSAs constructed using STAMP [38] and 3D
structural information from the 3Dee database [39].

MSA methods

For our evaluation, we constructed 543,360 MSAs in total
using the popular MUSCLE algorithm (v3.8.425) [14] in
combination with the aforementioned substitution matri-
ces and different gap penalties. Similar to our homology
search performance evaluation, we varied the gap opening
and gap extension penalties between —5 and —20 and —1
and —3, respectively, to prevent the bias from potentially
inaccurate gap penalty settings.

MUSCLE constructs MSAs in three steps, i.e. a draft
progressive, an improved progressive and an iterative
refinement step. In order to mitigate MSA quality dif-
ferences solely induced by refinement steps, we set the
maximum number of iterations to one. The MSAs are thus
computed using a matrix independent guide tree and a
single progressive alignment step only based on our cho-
sen parameters. Hence, the quality of the generated MSAs
only depends on the evaluated substitution matrix and gap
penalties.

MSA quality evaluation

We measured the quality differences between our gen-
erated MSAs and the reference MSAs using the g-score
measure [14] implemented in the identically named tool
gscore by R.C. Edgar [13]. This measure describes the
fraction of identically and thus correctly aligned amino
acid pairs between a test and a reference MSA. In other
words, the quality of a test MSA can be expressed as a
number between 0 and 1.

We use the g-score in two different evaluation scenar-
ios. First, we calculate the average g-score g over all MSAs
in a benchmark dataset for each substitution matrix sep-
arately. This allows a general comparison but is obviously
sensitive to strong outliers. To compensate this issue, we
provide a second evaluation scenario. Here, we count the
number of times that a specific PFASUM matrix in the
PFASUM MSA Matrices set produced an MSA of at least
as good quality as a specific matrix out of the Standard
MSA Matrices set.

Results

In the following we will first show the results for the
performance of matrices in the PFASUM Search Matri-
ces and Standard Search Matrices sets for homologous
sequence search (Table 2). The performance of these will
be evaluated on the de facto gold standard for homologous
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sequence search, the ASTRAL database. In the second
part of this section, we will examine the MSA gen-
eration capabilities of PFASUM matrices compared to
conventional matrices using the PFASUM MSA Matrices
and Standard MSA Matrices sets. Here, we investigate
three distinct scenarios for computing MSAs from differ-
ent sequence compositions using the benchmark datasets
BAIiBASE 3.0, OXBench and SABmark 1.65.

Homologous sequence search

In order to gauge the performance of PFASUM substi-
tution matrices in the context of homologous sequence
search, we first present results for matrices with compa-
rable relative entropies. As the relative entropy describes
the divergence of observed substitution events and inde-
pendent evolution captured within a substitution matrix,
a fair performance comparison between matrices can only
be achieved if they possess similar relative entropies [2]. In
the second part, we present the results of our general and
entropy-independent performance evaluation. While the
former part evaluates general compositional properties of
substitution matrices (and to some extend the underlying
algorithm), the latter part highlights which substitution
matrices performed best in our test settings.

Comparison based on relative entropy

In order to properly assess the performance of substitu-
tion matrices, Altschul [2] suggested comparing matri-
ces with similar relative entropy. The entropy repre-
sents the information divergence between independent
and observed evolutionary relations. The relative entropy
for PFASUM Search Matrices ranges between 0.0668 bits
(PFASUM11) and 0.7319 bits (PFASUM100). Standard
Search Matrices such as VTML10, VTML20, VTML40,
VTML80, PAM120 and BLOSUMS0 thus cannot be
directly compared to PFASUM Search Matrices, since
their entropies differ drastically from the PFASUM Search
Matrices entropy range (Additional file 5: Table S1).

For all other matrices, we compared their performance
on the three ASTRAL datasets for varying gap penalty set-
tings. Figure 1 shows the highest achieved coverages at
0.01 errors per query (epq) for Standard Search Matri-
ces and their comparable PFASUM counterparts each
using individual best performing gap penalties (Additional
file 6: Table S2). The significance of the results was esti-
mated with Z-score statistics using Concerted Bayesian
bootstrap (Additional file 7: Table S3).

The obtained coverage results and Z-Scores show
that PEFASUM Search Matrices always perform at least
as good or significantly better than their comparable
Standard Search Matrices with one single exception:
The VIML160 matrix performs slightly better on the
ASTRAL70 dataset. This performance difference can be
related to the different matrix compositions. While the
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diagonal entries of VITML160 and its counterpart PFA-
SUMS67 are very similar, there are numerous differences
of up to four log-odds scores in PFASUM67 when com-
paring the off-diagonal entries. PFASUM67 thus favors
more substitution events than VTML160 which may be
useful when searching for remote homologs. For datasets
containing similar sequences such as ASTRAL70, how-
ever, this can result in more false positive relationships
identified.

On a global level, the performance advantage of
PFASUM Search Matrices over the tested Standard Search
Matrices grows with decreasing sequence similarity in
the test databases. While the performance differences on
ASTRAL70 and ASTRAL40 are only marginal but still sig-
nificant, the coverage differences for ASTRAL20 are much
greater. This indicates that PEFASUM Search Matrices are
especially useful for detecting remote homologs.

Entropy-independent search performance comparison
Henikoff and Henikoff [23] showed that substitution
matrices of a given matrix family perform best around a
relative entropy H of ~ 0.7 bit. We chose to re-evaluate
this hypothesis on basis of the Pfam seed database. Sim-
ilar to Hess et al. [25], our results show that the best
performing substitution matrices — including PFASUM
Search Matrices — possess relative entropies well below
the suggested 0.7 bit.

Figure 2, shows the performance comparison of all
Standard Search Matrices with the three best-performing
PFASUM Search Matrices on the tested ASTRAL
datasets. The values represent the highest achieved cov-
erage at 0.01 errors per query for any gap opening and
extension penalty combination (parameters are listed in
Additional file 8: Table S4). The best performing matri-
ces on the datasets ASTRAL40 and ASTRAL70 are
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Fig. 2 Comparison of the performance of all Standard Search Matrices with the novel PFASUM Search Matrices on three different ASTRAL datasets.
The highest achieved coverage at 0.01 errors per query for any gap opening and extension penalty combination is shown (parameters are listed in
Additional file 8: Table S4). With the exception of two performance differences, all shown coverage values are significantly different according to our
Z-score analysis shown in Additional file 9: Table S5

PFASUMA43 (H = 0.3354 bit, Additional file 3: Figure S3)
and PFASUM31 (H = 0.2297 bit, Additional file 2: Figure S2).

We also find that PFASUM matrices with higher matrix
number perform better on sequence data with lower
sequence similarity than matrices with lower matrix num-
ber (Additional file 1: Figure S1). Whereas PFASUM60
shows the best performance on the ASTRAL20 dataset,
the best performing PFASUM matrices for sequences with
relatively high sequence similarity can be found at low
clustering thresholds with PFASUM31 outperforming all
others on the ASTRAL70 dataset.

When comparing the three top performing PFASUM
Search Matrices to all Standard Search Matrices, we find
that PFASUM Search Matrices deliver superior homology
search performance with significantly greater coverage
values (Fig. 2) as indicated by the corresponding Z-scores
(Additional file 9: Table S5). The highest improvements
in coverage over Standard MSA Matrices were achieved
on the ASTRAL20 dataset. Similar to our findings in

the evaluation based on similar entropy, this indicates
that PFASUM Search Matrices are especially useful when
searching for remote homologs. Surprisingly, the often
used BLOSUM matrices are outperformed by VTML200
and the OPTIMAS5 matrix. Additionally, BLOSUMS80 —
often suggested as matrix of choice for sequence data
sets with high similarity — is outperformed by BLO-
SUM50 and BLOSUMBS62 on all three test datasets. Both
PAM matrices exhibit relative good performance on
the high similarity dataset (ASTRAL70), but either is
under-performing for sequences with more remote evo-
lutionary relation (ASTRAL20). The MD [26] matrices
deliver similar results to the lower numbered VTML
matrices.

While VTML200 tends to be an universally good choice
for homology search as the best performing matrix out
of the Standard Search Matrices set on all three datasets,
PFASUM Search Matrices can still achieve higher cov-
erage values (Table 4). In general, the best performing
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Table 4 Best performing substitution matrices of the PFASUM
Search Matrices and Standard Search Matrices sets for the three
test scenarios

Database Matrix Gap parameters Coverage
ASTRAL20 VTML200 -14/-1 0.1598
PFASUM60 -16/-1 0.1706
ASTRAL40 VTML200 -14/-1 04392
PFASUMA43 -13/-1 04448
ASTRAL70 VTML200 -9/-2 0.5459
PFASUM31 -13/-2 0.5508

PFASUM Search Matrices for the ASTRAL20, ASTRAL40
and ASTRAL70 datasets outperform all Standard Search
Matrices on a statistical significant level (Additional file 9:
Table S5).

Multiple sequence alignments

Whereas homologous sequence search assessment aims
at evaluating the performance of substitution matrices for
pairwise sequence alignments, the alignment of multi-
ple sequences in MSAs is another field of application for
substitution matrices. We will first compare the average
performance of matrices in the PFASUM MSA Matri-
ces set to conventional substitution matrices grouped in
the Standard MSA Matrices set (Table 3) on three popu-
lar MSA benchmark datasets. In the second part, we will
dissect these results and investigate how PFASUM MSA
Matrices fare on single MSAs in comparison to Standard
MSA Matrices.

Average matrix performance
To properly evaluate the capabilities of PEASUM MSA
Matrices in comparison to Standard MSA Matrices
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for MSA construction, we computed MSAs based on
three different MSA benchmark datasets using the MSA
program MUSCLE in combination with the aforemen-
tioned matrices and varying gap penalties. The quality
differences between these MSAs and their benchmark
reference MSAs were measured afterwards using the g-
score measure. Figure 3 shows the results for the aver-
age g-score (q) for all tested matrices on the BAIiBASE,
OXBench and SABmark datasets.

As expected, we observed a significantly higher g for all
matrices on the OXBench dataset than on BAIiBASE 3.0
and SABmark since > 73% of the MSAs in this dataset
consist of sequences with at least 40% sequence iden-
tity. Contrarily, the SABmark dataset presents a decisively
more difficult challenge for all matrices with > 93% of
all alignments possessing less than 40% sequence similar-
ity. The BALiBASE 3.0 dataset can be placed in between
SABmark and OXBench in terms of sequence identity
with > 63% at less then 40% similarity.

Even though we analyze the alignment quality of sub-
stantially different test datasets, we find our PFASUM
MSA Matrices in the top three performing matrices on
all datasets. On BAIiBASE 3.0, PFASUM31 achieved the
highest g of all matrices with gprasums1 = 0.8128, closely
followed by PFASUM60 with gprasumeo = 0.8110 and
VTML160 with gvrmrieo = 0.8093. The highest align-
ment quality on OXBench is reported for VITML200 (at
gvtmi200 = 0.9102) only marginally besting PFASUM60
with gppasumeo = 0.9095. For the SABmark dataset
we find the highest two performances for PFASUM31
(g = 0.5808) and PFASUMG60 (g = 0.5804). In this case,
the next highest average alignment quality by a matrix
out of the Standard MSA Matrices set was achieved by
VTML160 (g = 0.5771).

The SABmark dataset allows us to delve deeper in the
performance of substitution matrices on alignments with

BAIIBASE 3.0 OXBench SABmark 1.65
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Fig. 3 General comparison of MSA matrix performance based on the average g-score g per benchmark database. PFASUM MSA Matrices outperform
the tested Standard MSA Matrices on all three benchmarks. PFASUM31 achieved the highest g for BAIIBASE 3.0 and SABmark 1.65, while VTML200
leads all matrices on the OXBench dataset. The red dotted line indicates the maximum g separately for each benchmark
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very low sequence identity (‘twilight zone’ dataset) and
moderately difficult alignments (superfamily dataset). On
both datasets, we observe that PFASUM MSA Matrices
outperform the Standard MSA Matrices with PFASUMG60
achieving the highest g for the ’twilight zone’ dataset,
while PFASUM31 performed the best for the superfamily
alignments (Additional file 10: Table S6).

In summary, PFASUM MSA Matrices outperform all
analyzed Standard MSA Matrices on average on bench-
mark datasets with low sequence identity with PFA-
SUM60 being the matrix of choice for very difficult
alignments of sequences with low sequence identity. For
alignments with moderate complexity and medium
sequence similarity, PFASUM31 proofs to generate
better alignments than any of the Standard MSA
Matrices.

Quality improvements over Standard MSA Matrices

While the average g-score is an overall assessment of the
alignment quality, directly comparing the performance
between two matrices on alignments can yield insights
on whether the average is dominated by strong outliers.
Hence, we chose to compare PFASUM MSA Matrices with
Standard MSA Matrices on a per alignment level based
on their reported g-score values. For this, we count the
number of times that a specific tested PFASUM matrix
produced an MSA of at least as good or higher quality as
a specific matrix out of the Standard MSA Matrices set.
The results for this comparison on basis of BAIiBASE 3.0,
OXBench and SABmark are shown in percent in Table 5.

PFASUM MSA Matrices achieved a g-score at least as
good as the Standard MSA Matrices in over 60% of all
BAIiBASE 3.0 alignments, outperforming them in at least
50% of the test cases.

In comparison to PAM250, the usage of PFASUM MSA
Matrices even resulted in higher quality in over 63% of
the test cases. Similar to BAIiBASE 3.0, over 60% of all
SABmark alignments reconstructed using PEFASUM MSA
Matrices show a comparable quality than those gener-
ated with Standard MSA Matrices and at least 42% are of
higher quality.

In contrast to the other two benchmarks, the perfor-
mance gain of PFASUM MSA Matrices over Standard
MSA Matrices on OXBench MSAs is rather small.
Only 20 to 33% of the MSAs generated with PFASUM
MSA Matrices show larger g-scores than those con-
structed with Standard MSA Matrices. However, between
76% and 84% of the PFASUM generated MSAs are at
least as good as their counterparts. Interestingly, while
VTML200 achieves a higher average g-score g than any
of the PFASUM MSA Matrices on OXBench alignments,
PFASUM MSA Matrices still produced higher or equal
quality MSAs than VTML200 in over 76% of these align-
ments.
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Discussion

PFASUM Search Matrices perform significantly better
than Standard Search Matrices in homologous sequence
search, especially on datasets with small or limited
sequence similarity such as ASTRAL20. The best per-
forming matrix on this dataset is the PFASUM60 matrix
with a relative entropy of H = 0.4941bit. Interest-
ingly, this matrix performs slightly worse on more similar
datasets such as ASTRAL40 and ASTRAL70 compared to
PFASUM43 and PFASUM31 which have much lower rel-
ative entropies of only H = 0.3354 bit and H = 0.2297 bit.
For ungapped alignments matrices with higher relative
entropy are usually more suitable for detecting homologs
within similar sequences than matrices with lower relative
entropies [2]. This is apparently not the case when using
PFASUM matrices on the tested ASTRAL datasets.

A possible explanation for these findings can be drawn
from the composition of the Pfam seed alignments, the
basis for PFASUM Search Matrices. Pfam seed align-
ments consist of representative sequences for each fam-
ily that are aligned based on their structural properties.
The sequences within a family are thus structurally sim-
ilar but do not necessarily possess a similar amino acid
composition. When clustering these potentially dissimi-
lar sequences using low clustering thresholds, substitu-
tion events between them are thus attenuated. PFASUM
Search Matrices with lower matrix number, i.e. lower

Table 5 Fraction of times (in percent) that a specific matrix in the
PFASUM MSA Matrices set produced an MSA of at least as good (>)
quality as a specific matrix out of the Standard MSA Matrices set

PFASUM31 PFASUM43  PFASUME0
BAIIBASE 3.0 BLOSUM50  67.36 (59.07) 62.69 (54.92) 62.44(51.81)
BLOSUM62 7150 (65.03) 6943 (62.44) 67.88 (58.03)
PAM250 7539 (7021) 71.76 (63.73) 70.73 (66.84)
VIML160 6347 (54.92) 61.14(50.52) 61.66 (4845)
VITML200 68.13(57.77) 6321 (51.81) 61.92 (50.00)
OXBench BLOSUM50  81.52(25.06) 8329 (26.84) 84.30(23.80)
BLOSUME2  79.24 (23.04) 81.01(22.03) 80.76 (21.52)
PAM250 80.00 (32.41) 82.03(31.65) 7949 (33.16)
VIML160 7924 (24.81) 83.80(2861) 82.53(25.32)
VTML200 76.96 (20.76) 82.03 (22.53) 80.00 (20.51)
SABmark 1.65 ~ BLOSUMS50  67.85 (47.52) 63.36 (44.21) 65.96 (43.74)
BLOSUME2  63.59 (48.23) 64.30(47.28) 64.30 (45.86)
PAM250 72.58(59.57) 70.21(56.97) 72.81 (60.05)
VIML160 64.78 (45.39) 60.76 (43.50) 65.25 (42.08)
VTML200 66.67 (47.99) 63.83(44.21) 68.56 (44.21)

The comparison for better-than-relations (>) are shown in brackets. Values are
shown for all PFASUM MSA Matrices vs. Standard MSA Matrices comparisons on all
three different benchmark datasets
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clustering thresholds, thus apparently favor pairs of iden-
tical amino acids over substitution events and are more
suited for similar sequence datasets despite their rela-
tive entropy being small. A full assessment of this effect
requires a deep and thorough analysis of the amino acid
compositions in the ASTRAL dataset and Pfam seed
sequences. This is, however, beyond the scope of this
article and recommended for future research.

Our performance evaluation shows that SSEARCH
using PFASUM Search Matrices provides significantly bet-
ter search results and as such also higher quality pairwise
sequence alignments. Since these form the basis for many
state-of-the-art MSA algorithms such as MUSCLE and
MAFFT, we also consequently tested the capabilities of a
selection of the aforementioned matrices for MSA con-
struction. Our results indicate that the tested PFASUM
MSA Matrices perform exceptionally well when aligning
sequences with medium to low sequence similarity such
as in the BAIiBASE 3.0 and SABmark 1.65 benchmarks.
However, the performance differences between PFASUM
MSA Matrices and the best performing Standard MSA
Matrices on datasets containing similar sequences such as
OXBench is rather small.

This effect can be related to compositional similarities
between the matrices which in particular affects the align-
ment of similar sequences. All tested matrices in our MSA
evaluation, with the exception of PAM250, share com-
parable scoring ratios between diagonal and off-diagonal
entries per amino acid, favoring amino acid conservation
over substitutions. Since similar sequences are usually
more conserved and the majority of the matrix differences
can be on the off-diagonal, the alignments generated with
PFASUM MSA Matrices or Standard MSA Matrices only
show minor differences.

Conclusion

We presented the novel PFASUM substitution matri-
ces for the accurate detection of homologous protein
sequences and for scoring and constructing high qual-
ity protein MSAs. Our PFASUM matrices are based on
the Pfam seed dataset [16] (version 29.0) which repre-
sents the currently known sequence space covering a large
variety of related and divergent sequences. The MSAs
in this dataset are also manually curated by experts.
Hence, the data basis for PFASUM substitution matri-
ces is not only much larger and diverse than those of
conventional substitution matrices, but also represents
ground truth data instead of automatically generated and
thus potentially biased data. In contrast to conventional
construction methods, our algorithm can also effectively
handle unfiltered MSAs and ambiguous amino acid sym-
bols and thus prevents the loss of potentially important
information. An in-depth evaluation showed, that these
features enable PFASUM substitution matrices to deliver
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significantly better homology search results and produce
more accurate MSAs than conventional matrices. One
of the best performing PFASUM matrix for homologous
sequence search is PEASUMG60, especially when searching
for distantly related homologs. PFASUMG60 also showed
reasonable quality improvements for MSA construction.
We thus recommend PFASUMG60 as a general choice for
these particular tasks.
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