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Abstract Current pharmaceutical formulation development still strongly relies on the traditional trial-
and-error methods of pharmaceutical scientists. This approach is laborious, time-consuming and costly.
Recently, deep learning has been widely applied in many challenging domains because of its important
capability of automatic feature extraction. The aim of the present research is to apply deep learning
methods to predict pharmaceutical formulations. In this paper, two types of dosage forms were chosen as
model systems. Evaluation criteria suitable for pharmaceutics were applied to assess the performance of
the models. Moreover, an automatic dataset selection algorithm was developed for selecting the
representative data as validation and test datasets. Six machine learning methods were compared with
deep learning. Results showed that the accuracies of both two deep neural networks were above 80% and
higher than other machine learning models; the latter showed good prediction of pharmaceutical
formulations. In summary, deep learning employing an automatic data splitting algorithm and the
evaluation criteria suitable for pharmaceutical formulation data was developed for the prediction of
pharmaceutical formulations for the first time. The cross-disciplinary integration of pharmaceutics and
artificial intelligence may shift the paradigm of pharmaceutical research from experience-dependent
studies to data-driven methodologies.
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Table 1 Recent progress of mach

Machine learning techniques
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1. Introduction

The pharmaceutical industry currently faces intense pressure to
reduce healthcare costs and to reduce the number of new active
pharmaceutical ingredients (APIs). The pharmaceutical industry
should employ more efficient and systematic ways in both drug
discovery and development processes1. In the drug discovery area,
scientists now widely use high-throughput screening, combinatorial
chemistry, and computer-aided drug design to accelerate drug
discovery and development2. However, modern pharmaceutical
formulation development still strongly relies on traditional trial-
and-error approaches by pharmaceutical scientists. Such methods are
laborious, time-consuming and expensive. Moreover, it is difficult to
achieve the optimum formulations by trial-and-error studies in the
laboratory. Simplification of formulation development becomes
essential to formulation scientists. Thus, it is necessary to develop
an efficient and systematic method for formulation development to
keep pace with the requirements of the pharmaceutical industry3.

Machine learning is one of the most exciting research areas in
recent years. Machine learning can make data-driven predictions
with existed experimental data, which provides a great opportunity
for efficient formulation development4–9. A well-designed machine
learning method can greatly speed the development, optimize
formulations, save the cost, keep products consistency, and
accumulate and preserve the specific knowledge and expertise
from the experts in a well-defined domain4. Table 15,6,10–16

summarizes recent progress of machine learning in formulation
design. Expert systems (ESs) and artificial neural networks
(ANNs) are two useful tools for formulation development4–6,8,9.
An ES is an intelligent program with the ability to accumulate and
preserve the knowledge and experiences of the experts in a specific
area (e.g., pharmaceutical formulations)17. However, it is difficult
to extract the vague experiences of pharmaceutical experts into the
rules of ESs, and then to accurately predict the performance of a
formulation. ANN is the most popular machine learning tool in
pharmaceutical formulation prediction. ANN simulates the struc-
ture and functions of biological neural networks5. ANN is able to
solve problems that are difficult to solve standard expert systems5.
However, ANNs still need strong expert knowledge to design
feature extractors in the prediction process. In addition, the
formulation prediction accuracy by ANNs is relatively low due
to the limited experimental data.
ine learning in formulation design
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Deep learning is an automatic general-purpose learning proce-
dure which has been widely adopted in many domains of science,
business, and government18. Unlike other machine learning
techniques that require domain expertise to design feature extrac-
tors, deep learning can server as a feature extractor which
automatically transforms low-level features to higher and more
abstract level19. Furthermore, deep learning has ability to find out
irrelevant and particular minute variations, which allows these
methods to reach higher accuracy than other machine learning
methods20. Convolutional neural networks have the advantages of
local connection and weight sharing, which is inspired from visual
neuroscience. Convolutional neural networks usually obtain good
performance in image, video, speech and audio processing21,22.
Recurrent neural networks can process sequence of different
lengths and utilize history information of the sequence. Recurrent
neural networks have brought about the breakthrough in sequential
data (e.g. text and speech)23,24. Pharmaceutical formulation data
include formulation compositions and manufacturing processes,
neither of which are image data nor sequential data. Therefore, the
full-connected deep feed-forward network is a good choice for the
prediction of pharmaceutical formulations. A recent study showed
that deep neural networks (DNNs) outperform ANNs with one
hidden layer in oral disintegrating tablet prediction25. The Max-
imum Dissimilarity algorithm with the small group filter and
representative initial set selection (MD-FIS) selected the represen-
tative validation set from the small and imbalanced oral disin-
tegrating tablet data. However, more comparisons of deep learning
with other machine learning methods are needed for predicting
successful formulations.

In the past five years there are increasing applications of deep
learning in pharmaceutical research26–29. The first such study (in
2013) was to compare deep learning with other machine learning
approaches to predict the water solubility of drugs30. The results
showed that deep learning achieved better performance vs. other
approaches. Subsequently, more pharmaceutical applications of
deep learning were reported. For example, a deep convolution
network was developed to predict the epoxidation reactivity of
molecules to reduce the drug toxicity31. Deep learning was also
applied to successfully predict drug-induced liver injury32.
Another study showed that deep learning outperformed other
computational methods (naive Bayes, support vector machines,
and random forests) in predicting toxicity in the 2016 Tox21 Data
.
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Challenge. Deep learning was also used in drug discovery33–35.
DNNs were able to make better predictions than other machine
learning approaches on quantitative structure activity relationships
(QSAR) data sets33. Moreover, multitask deep learning and one-
shot learning approaches were used in low data drug discovery,
which had better performance than single-task learning34,35. In
addition, applying deep learning to mine the increasing datasets in
drug discovery not only enables us to learn from the past but to
predict future drug repurposing36,37. Recently, the performance of
five machine learning models and four DNNs with 2, 3, 4, and
5 hidden layers were evaluated on 8 datasets38. Further analysis
was carried out by using the ranked normalized scores including
seven classic measurements of model performance. The final
results of the scores ranked by metric and by dataset indicated
that the DNNs with five and four hidden layers made outperformed
other machine learning approaches. Nearly all reports in recent
5 years suggested that deep learning had more benefits in
predictive performance than other machine learning methods.

In the present paper, deep learning was applied to predict
successful pharmaceutical formulations by constructing regression
models. One of the main difficulties in formulation prediction is
the small dataset with imbalanced input space due to the limited
experimental data. For better performance, the data splitting
algorithm and the evaluation criteria suitable for pharmaceutical
formulation data were introduced. The DNNs were trained on the
data of two types of pharmaceutical dosage forms, including oral
fast disintegrating films (OFDF) and oral sustained release matrix
tablets (SRMT). Comparisons of deep learning with other six
machine learning techniques were carried out. Compared with
other machine learning methods, deep learning can find out the
intricate correlation between pharmaceutical formulations and
in vitro characteristics, which shows wide prospects for the
application of deep learning in pharmaceutical formulation
prediction.
2. Methods

2.1. Pharmaceutical data

The pharmaceutical dataset includes 131 formulations of OFDF
and 145 formulations of SRMT. The experimental data were
extracted from Web of Science. Three different searching terms of
oral fast-dissolving films, oral disintegrating films and orodisper-
sible films were used for search literature about the development of
OFDF formulations. The searching strategy of hydroxypropyl
methyl cellulose (HPMC)-based sustained release matrix tablet
formulations was “HPMC” or “hydroxypropyl methylcellulose” or
“hydroxypropylmethylcellulose” or “hydroxypropylmethyl cellu-
lose” or “hypromellose” and “tablet” or “tablets”. The formulation
data contain types and contents of both drugs and excipients,
process parameters and in vitro characteristics of dosage forms.
The characteristics of the two dosage forms were chosen as the
prediction targets in this research, including disintegration time for
OFDF and cumulative dissolution profiles (2, 4, 6 and 8 h)
for SRMT.

The molecular descriptors were used for representing the
properties of APIs. All drugs' name were described with the nine
molecular descriptors, including molecular weight, XlogP3, hydro-
gen bond donor count, hydrogen bond acceptor count, rotatable
bond count, topological polar surface area, heavy atom count,
complexity and logS. The excipient types were encoded to
different numbers. The process parameters include weight, thick-
ness, tensile strength, elongation, folding endurance, actual drug
content of OFDF and granulation process, diameter, hardness
of SRMT.

2.2. Data splitting strategy

A three-dataset (training/validation/test datasets) splitting strategy
was used. The training set is for training models, and the validation
set is for tuning hyper-parameters to find the best model. The
accuracy of the test set shows the prediction ability on unknown
data. This strategy is widely adopted in machine learning. For each
dosage form, the pharmaceutical data were split into three subsets,
both the validation set and the test set include 20 formulations, the
rest of the data were used to train the models.

2.3. Hyperparameters of machine learning methods

Six machine learning methods were introduced to construct
regression models to compare with DNNs, including multiple
linear regression (MLR), partial least squared regression (PLSR),
support vector machine (SVM), ANNs, random forest (RF) and
k-nearest neighbors (k-NN). These regression models were trained
using the scikit-learn package39. For OFDF, in PLSR, the number
of components was set to 8. In ANNs, the networks contained
1 hidden layer with 80 hidden nodes. In RF, the maximum depth
of the tree was set to 3. In k-NN, the number of neighbors was set
to 5. For SRMT, 4 models were trained simultaneously for 4 time
points (2, 4, 6 and 8 h) by using each machine learning method.
The 4 models were developed using the same hyperparameters. In
PLSR, the number of components was set to 10. In ANNs, the
networks contained 1 hidden layer with 60 hidden nodes. In RF,
the maximum depth of the tree was set to 5. In k-NN, the number
of neighbors was set to 3.

2.4. Hyperparameters of deep neural networks

DeepLearning4j machine learning framework (https://deeplear
ning4j.org/) was used to train the deep neural networks. For
OFDF, a feed-forward neural network with 10 layers and 900
epochs was adopted. This network contained 50 hidden neurons on
each layer. For SRMT, a feed-forward neural network with 9
layers and 2600 epochs was adopted. This network contained 30
hidden neurons on each layer. All networks chose tanh as the
activation function of the hidden layers and sigmoid activation
function for the last layer. Learning rate was 0.01. Batch gradient
descent with the 0.8 momentum was used as the optimization
algorithm.

2.5. Evaluation criteria

In machine learning, correlation coefficient and coefficient of
determination are usually adopted as evaluation metrics for
regression problems. Correlation coefficient indicates the linear
relationship between two variables. The coefficient of determi-
nation shows the correlation between the predicted values and
the real values. However, the correlation coefficient and the
coefficient of determination cannot properly evaluate the
performance of the pharmaceutical formulation prediction
models. In pharmaceutics the good models for predicting drug
dissolution profiles should have less than 10% error40. Thus,

https://deeplearning4j.org/
https://deeplearning4j.org/


Figure 1 The workflow of MD-FIS algorithm.
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specific criteria suitable for pharmaceutics should be introduced
to evaluate the model performance.

Following the FDA (the U.S. Food and Drug Administration)
recommendation using the similarity factor f2 to evaluate the
similarity of drug dissolution profiles40, the similarity factor f2 was
introduced to evaluate the performance of the models for predict-
ing the cumulative drug release curves. If the f2 is greater than or
equal to 50, it is considered a successful prediction. The accuracy
of the cumulative drug release curve prediction (Eq. (1)) is the
percentage of the successful predictions in all predictions:

AccuracyCDRC ¼Number ð f 2Z50Þ
All predictions

ð1Þ

The European Pharmacopoeia stipulates that orodispersible
tablets are the tablets that should disperse within 3 min (180 s). In
our dataset, the disintegration time of OFDF ranges from 0 to
100 s. Usually, the successful prediction is that the error between
the predicated time and the experiment time is not higher than 10 s.
The accuracy of the disintegration time prediction (Eq. (2)) is the
percentage of the successful predictions in all predictions:

AccuracyDT ¼
Number ðj f 0 � f r10j Þ

All predictions
ð2Þ

where, f 0 is the predicted value and f is the experimental value.
3. Results and discussion

Deep learning is a type of representation learning with multiple
levels of transform modules, which contains more parameters than
other learning algorithms and requires more data for training.
However, one of the main difficulties in pharmaceutical formula-
tion prediction is the small dataset with imbalanced input space
due to the limited experimental data. Each dosage form has only
around 140 formulations. There are 13 APIs in the OFDF dataset,
29 APIs in the SRMT dataset. But near half of the APIs include
less than four formulations. Therefore, selecting representative
datasets for training and test is very important for the formulation
prediction. In our research, the specific evaluation criteria were
introduced and several data splitting methods were investigated.
Moreover, deep learning was compared with other machine
learning techniques for the formulation prediction.
3.1. Random data splitting

30% data were randomly selected as the validation set, with the
remaining data used as the training set. This procedure was repeated
1000 times. However, entirely different accuracy results were
obtained, the maximum variation of accuracy was more than
40%, and the average accuracy was less than 60%. In the whole
dataset, near half of the APIs include less than four formulations.
Therefore, random data splitting algorithm has near 50% probability
to select these APIs with less formulations, which may make
prediction accuracy quite low and high variation. In short, the
random selection algorithm is not suitable for our research and a
new approach need to be developed to select the representative data.

3.2. Manual data splitting

In the manual dataset selection, formulation experts picked up 20
representative data as the validation set for each dosage form. All
prediction accuracies on both the training set and the validation set
were greater than 90%. However, the manual selection method
requires domain knowledge of experts, which is not suitable for
large datasets and may vary across experts. Therefore, a selection
algorithm should be developed to select the validation set
automatically.

3.3. Maximum dissimilarity for data splitting

Previous research showed rational selection algorithm can
generate better statistical results for the validation set than
random selection41. Another study indicated that the maximum
dissimilarity algorithm was able to select representative test data
of compounds from chemical databases42. The original max-
imum dissimilarity algorithm was published in the Caret library
of R language43. In our research, the maximum dissimilarity
algorithm was also used to select the validation set. However,
test results showed that the maximum dissimilarity algorithm
didn't work well on our data, because the accuracies of the
validation set were only 83.46% for OFDF and 78.85% for
SRMT. After analyzing the splitting results, it was found that the
maximum dissimilarity algorithm preferred to select the data
from a) the formulations in small API groups, b) boundary
formulations, and c) formulations with extraordinary values. The
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possible reason is that the small API group data, the boundary
data or the abnormal data have bigger dissimilar values than
other data. Moreover, the maximum dissimilarity algorithm
adopts the randomly generated initial set to compute the
dissimilarity degree, which is still highly various and not robust
due to the small dataset. Therefore, the original maximum
dissimilarity algorithm should be improved to select the repre-
sentative formulation data.
3.4. MD-FIS algorithm for data splitting

A new algorithm in the R language was developed for selecting the
best representative data to validate the models. Fig. 1 shows the
improved Maximum Dissimilarity algorithm with the small group filter
and representative initial set selection (MD-FIS). The MD-FIS algo-
rithm contains 3 steps. In step 1, the data go through a filter to get rid
of the small API group data. In step 2, the MD-FIS algorithm
randomly generates 10,000 initial datasets, computes the similarity
values between the initial datasets and the remaining datasets, and
chooses the initial set with the highest similarity value as the final initial
set. In step 3, the final initial set and the remaining data set are used as
the input to the dissimilarity algorithm with new cost function.
Different from the original cost function, new cost function not only
includes the distances (originalDistance) between the candidate data
and the initial set, but also contains the distances (subMeanDistance)
between the candidate data and the remaining data in the same API
group. The new cost function is:

Cost¼OriginalDistance�α � SubMeanDistance ð3Þ
where, α can control the proportion of SubMeanDistance, the
maximum dissimilarity algorithm selects the data with the
maximum cost. The new cost function will prevent the selection
Table 2 Results of the conventional machine learning models and the

Machine learning technique Training set Vali

Accuracy (%) RMSE MAE Accu

MLR 90.11 0.0671 0.0508 60.0
PLSR 76.92 0.0917 0.0705 70.0
SVM 79.12 0.1136 0.0711 70.0
ANN 74.73 0.1140 0.0809 70.0
RF 84.62 0.0775 0.0567 80.0
k-NN 80.22 0.0975 0.0649 75.0
DNN 97.80 0.0420 0.0307 80.0

Table 3 Results of the conventional machine learning models and
test sets.

Machine learning technique Training set Vali

Accuracy (%) RMSE MAE Accu

MLR 52.38 0.1356 0.1031 35.0
PLSR 55.24 0.1446 0.1066 55.0
SVM 60.95 0.1568 0.1013 50.0
ANN 57.14 0.1330 0.0998 50.0
RF 76.19 0.0975 0.0692 55.0
k-NN 64.76 0.1229 0.0825 45.0
DNN 99.05 0.0335 0.0237 80.0
of the boundary data. The result was much better than that of the
original maximum dissimilarity algorithm. The prediction accura-
cies were 95.57% for OFDF and 82.02% for SRMT on the
validation set.

3.5. Comparison of deep learning and conventional machine
learning methods

In this study, the models of MLR, PLSR, SVM, ANNs, RF, k-NN
and deep learning were developed on the formulation data. Here,
three datasets were split by using the MD-FIS algorithm twice
without the need of personal expertise. In the prediction of SRMT,
4 models were built for the 4 time points (2, 4, 6 and 8 h) by using
each of the machine learning methods. The final results of accuracies,
root mean squared errors (RMSE) and mean absolute errors (MAE)
were shown in Tables 2 and 3. In the prediction of OFDF, for all the
models based on the linear or nonlinear conventional machine
learning methods, the accuracies only reach around 70% on the
OFDF validation and test sets. As to the MLR model, the accuracies
are relatively low than other conventional machine learning models
on the OFDF validation and test sets. In the prediction of SRMT, the
conventional machine learning models made predictions with the
accuracies ranging from 25% to 55% on the SRMT validation and
test sets, which are far from the satisfied prediction for the
formulation development. In summary, all these six conventional
machine learning methods could not achieve enough performance for
the OFDF and SRMT formulation prediction.

Here, the training, validation and test sets for training the DNNs
are the same as the datasets used for training the previous machine
learning models. A multi-label model was built for the 4 time
points (2, 4, 6 and 8 h) using deep learning techniques. As shown
in Tables 2 and 3, all prediction accuracies of the deep neural
deep neural network on the OFDF training, validation and test sets.

dation set Test set

racy (%) RMSE MAE Accuracy (%) RMSE MAE

0 0.1311 0.0999 65.00 0.1778 0.1183
0 0.1136 0.0835 70.00 0.0970 0.0705
0 0.1308 0.0959 75.00 0.1039 0.0795
0 0.1105 0.0846 70.00 0.0959 0.0772
0 0.0917 0.0721 70.00 0.1068 0.0774
0 0.1025 0.0727 75.00 0.0877 0.0608
0 0.0842 0.0705 80.00 0.0714 0.0565

the deep neural network on the SRMT training, validation, and

dation set Test set

racy (%) RMSE MAE Accuracy (%) RMSE MAE

0 0.1212 0.1042 25.00 0.2182 0.1685
0 0.1175 0.0961 45.00 0.1609 0.1203
0 0.1170 0.0960 45.00 0.1559 0.1147
0 0.1389 0.1137 50.00 0.1497 0.1124
0 0.1308 0.1045 55.00 0.1170 0.0908
0 0.1526 0.1264 40.00 0.1565 0.1306
0 0.0967 0.0660 80.00 0.0902 0.0673



Table 4 f2 values between the experimental and the deep
learning predicted cumulative drug released curves of the
formulations in the SRMT test set.

Formulation f2 value Formulation f2 value

1 77.42 11 65.72
2 63.35 12 90.05
3 64.84 13 57.05
4 67.21 14 41.91
5 59.75 15 55.06
6 50.85 16 65.84
7 77.77 17 51.08
8 30.39 18 49.57
9 44.56 19 64.42
10 74.47 20 59.35

Figure 2 Comparing the experimental- and the deep learning-
predicted disintegration time of the formulations in the OFDF test set.

Figure 4 Relationship between the experimental- and the deep learn-
ing-predicted values of the cumulative drug release percentages at 2, 4, 6,
and 8 h on the SRMT training set. A is for the values at 2 h, B is for the
values at 4 h, C is for the values at 6 h, D is for the values at 8 h.
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networks were over 80%, which could satisfy the requirements of
the formulation prediction. In both OFDF and SRMT predictions,
deep learning got the highest accuracies on the training, validation
and test sets. Deep learning surpassed other conventional machine
learning methods because deep learning including multiple hidden
layers could transform the low level representation to higher level
features without artificial feature engineering. In SRMT prediction,
huge performance improvements of deep learning were found than
other machine learning methods. The result indicates that deep
Figure 3 Relationship between the experimental- and the deep learnin
validation and test sets. The dotted line indicates experimental values 71
learning can greatly improve the model accuracy in multi-label
formulation prediction, because deep learning can leverage the
shared information among the multiple tasks. Fig. 2 shows the
experimental and the deep learning predicted disintegration time of
the formulations in the OFDF test set. Table 4 lists the f2 values
between the experimental and the deep learning predicted cumu-
lative drug released curves of the formulations in the SRMT test
set. From these figures and tables, it is quite clear that the
prediction performance of deep learning is satisfied.

Figs. 3–6 show the relationship between the experimental and
the deep learning predicted results on the OFDF and SRMT
training, validation and test sets. It could be seen from these
g-predicted values of the disintegration time on the OFDF training,
0 s.



Figure 5 Relationship between the experimental- and the deep learn-
ing-predicted values of the cumulative drug release percentages at 2, 4, 6,
and 8 h on the SRMT validation set. A is for the values at 2 h, B is for the
values at 4 h, C is for the values at 6 h, D is for the values at 8 h.

Figure 6 Relationship between the experimental- and the deep
learning-predicted values of the cumulative drug release percentages
at 2, 4, 6, and 8 h on the SRMT test set. A is for the values at 2 h, B is
for the values at 4 h, C is for the values at 6 h, D is for the values at 8 h.
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figures that the experimental and the deep learning predicted
values are much closed.

Multiple linear regression approaches were employed in an
attempt to learn a linear combination of input features which could
predict the output. Multiple linear regression is simple and easy to
model. The weights and biases of multiple linear regression could
be directly calculated by using the least squares method. Multiple
linear regression have better interpretability than other nonlinear
machine learning models because the weights could indicate the
importance of the input features in the prediction. However,
multiple linear regression and partial least squared regression
could only fit the linear function mapping, while obviously the
relationship between the formulation and the key in vitro char-
acteristics is complex and non-linear.

Random forest is an ensemble learning method. Ensemble
learning methods combining multiple base learners could obtain
better generalization ability of models than a single base learner.
Random forest usually shows better performance than other
ensemble learning models in many learning tasks. In random
forest, the diversity of the base learners is not only from the
sample disturbance but also from the attribute disturbance,
which makes the difference between the base learners increase
and the generalization ability be further improved. Support
vector machine maps the sample from the original space to the
higher dimensional feature space, therefore, the sample can be
divided in the higher dimensional feature space. However,
the conventional machine learning methods highly rely on the
feature extractors designed by the subjective expert experiences.

Furthermore, the representative abilities of artificial neural networks
enhance with the increase of the hidden layers and hidden nodes. The
larger the model capacity, the more complex function the model can
achieve. Therefore, deep learning containing more hidden layers could
make multiple abstractions and feature extractions, making deep
learning be able to accomplish more complex tasks to higher accuracy
than the shallow artificial neural networks.
3.6. Deep learning in formulation prediction

One main difficulty of formulation prediction is the lack of reliable
and standard formulation data. The long experimental cycle and
high cost of formulation development results in the small data set
in this area. Moreover, current formulation experiments focus on a
small number of model drugs, which lead to highly imbalanced
data space and further raise the difficulty of formulation prediction
for other drugs. This fundamental issue was reported in previous
research, in which the data sets are too small or too noisy30. To
solve the issue, 10-fold cross validation was used for assessing the
performance of the algorithm, which the R2 value only reached
0.67 or 0.6930,44. The prediction is even weaker in smaller data set
because the small data set easily results in overfitting and poor
generalizations30. Previous suggestions were to increase the size of
data sets30, but there are very limited formulation data due to
experimental limitations. Euclidean distance was used to estimate
the domain of applicability of the trained model30. Another study
indicated that maximum dissimilarity algorithm was able to select
representative testing data of compounds from chemical data-
bases42. However, both methods were good for the drug mole-
cules, not for highly complex formulation data. Deep learning with
usual data selection algorithms and evaluation criteria is difficult to
accurately predict from the small amount of formulation data with
imbalanced input space. Therefore, the MD-FIS algorithm is
suitable for splitting formulation data with small sample size and
imbalanced input space. In addition, two common evaluation
metrics for regression problems (e.g., the correlation coefficient
and coefficient of determination) cannot reflect the performance of
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pharmaceutical prediction models. Specific criteria need to be
introduced for evaluating the model performance.

Currently, only two deep learning approaches have been
reported for formulation prediction25,44. In Zawbaa's research, 68
poly-lactide-co-glycolide formulations were used. Input vector
contains 320 features and 745 release data at specific time points.
Initially, the feature selection models were developed to minimize
the input variables44. Subsequently, seven machine learning
approaches were compared, such as cubist, RF, ANNs, multi-
variate adaptive regression spline, classification and regression
tree, and hybrid systems of fuzzy logic and evolutionary computa-
tions. The final results showed RF to have the best performance
with a 0.692 coefficient of determination. Moreover, the prediction
of the model was only suitable for 2/3 formulations and the
remaining 1/3 of formulations had high error. The dissolution
profiles of 4 proteins among total 14 proteins were strongly not
recommended by the final model. Formulation development
contains high dimensional factors, such as drug diversity, excipient
types, drug/excipient ratios, dosage forms, manufacturing pro-
cesses and multiple characteristics, which lead to the high
complexity data. Actually, deep learning can automatically learn
high level features from data without explicitly providing feature
selection model. Combining feature extractors with deep learning
model is unnecessary and inappropriate. Therefore, this research
still needs significant improvement on methodology for formula-
tion prediction. Recently deep learning with MD-FIS was applied
for formulation prediction of oral fast disintegrating tablets25. The
results showed that the prediction of deep learning was better than
that of ANN because deep learning could extract the features
automatically without designing feature extractors. In addition,
there are some researches about machine learning methods in
formulation design, as summarized in Table 1. For example, an
expert system was constructed to predict formulations of oral
disintegrating tablets with 15 input parameters12,13. Zhang et al.5,14

built an expert system with ANN for the formulation development
of oral osmotic pump controlled release tablets. QSAR models
were developed to predict the binding affinity of β-cyclodextrin
and sulfobutylether-β-cyclodextrin complexation. However, these
results indicated that the conventional machine learning methods
need feature extraction before the prediction models and didn’t
showed good prediction performance.
4. Conclusions

In this paper, deep learning models were successfully developed to
predict pharmaceutical formulations on small data. The good
generalization performance of the models was demonstrated by
the external datasets. The proposed models could effectively
predict the key characteristics in regression problems than the
models trained by other machine learning methods, because deep
learning can find out the complex correlation in the data. Modern
successful pharmaceutical development needs to incorporate
quality by design (QbD) concepts throughout the drug develop-
ment process. Machine learning methods could not only help to
predict the in vivo and in vitro characteristics based on the
formulation and process data, but also assist in the pharmaceutical
experimental design and help to control the product quality in the
whole product cycle. Deep learning shows great potential in the
implementation of QbD. We expect deep learning to significantly
shorten the drug product development timeline and decrease the
material usage. Furthermore, the cross-disciplinary integration of
pharmaceutics and artificial intelligence may shift the paradigm of
pharmaceutical research from experience-dependent studies to
data-driven methodologies. In the future, our laboratory will
investigate other machine learning methods (e.g. transfer learning)
for formulation prediction to achieve better performance.
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