
RESEARCH ARTICLE

Assessing the severity of sleep apnea

syndrome based on ballistocardiogram

Zhu Wang*, Xingshe Zhou*, Weichao Zhao, Fan Liu, Hongbo Ni, Zhiwen Yu*

School of Computer Science, Northwestern Polytechnical University, Xi’an, Shaanxi, China

* wangzhu@nwpu.edu.cn (ZW); zhouxs@nwpu.edu.cn (XZ); zhiwenyu@nwpu.edu.cn (ZY)

Abstract

Background

Sleep Apnea Syndrome (SAS) is a common sleep-related breathing disorder, which affects

about 4-7% males and 2-4% females all around the world. Different approaches have been

adopted to diagnose SAS and measure its severity, including the gold standard Polysomno-

graphy (PSG) in sleep study field as well as several alternative techniques such as single-

channel ECG, pulse oximeter and so on. However, many shortcomings still limit their gener-

alization in home environment. In this study, we aim to propose an efficient approach to

automatically assess the severity of sleep apnea syndrome based on the ballistocardiogram

(BCG) signal, which is non-intrusive and suitable for in home environment.

Methods

We develop an unobtrusive sleep monitoring system to capture the BCG signals, based on

which we put forward a three-stage sleep apnea syndrome severity assessment framework,

i.e., data preprocessing, sleep-related breathing events (SBEs) detection, and sleep apnea

syndrome severity evaluation. First, in the data preprocessing stage, to overcome the limits

of BCG signals (e.g., low precision and reliability), we utilize wavelet decomposition to obtain

the outline information of heartbeats, and apply a RR correction algorithm to handle missing

or spurious RR intervals. Afterwards, in the event detection stage, we propose an automatic

sleep-related breathing event detection algorithm named Physio_ICSS based on the itera-

tive cumulative sums of squares (i.e., the ICSS algorithm), which is originally used to detect

structural breakpoints in a time series. In particular, to efficiently detect sleep-related breath-

ing events in the obtained time series of RR intervals, the proposed algorithm not only

explores the practical factors of sleep-related breathing events (e.g., the limit of lasting dura-

tion and possible occurrence sleep stages) but also overcomes the event segmentation

issue (e.g., equal-length segmentation method might divide one sleep-related breathing

event into different fragments and lead to incorrect results) of existing approaches. Finally,

by fusing features extracted from multiple domains, we can identify sleep-related breathing

events and assess the severity level of sleep apnea syndrome effectively.
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Conclusions

Experimental results on 136 individuals of different sleep apnea syndrome severities vali-

date the effectiveness of the proposed framework, with the accuracy of 94.12% (128/136).

Introduction

Sleep Apnea Syndrome is a common sleep-related breathing disorder, which is usually accom-

panied by partial or complete respiration cessation during night sleep. As it’s reported, the

prevalence of sleep apnea syndrome is around 4% to 7% in male, and 2% to 4% in female pop-

ulation all around the world [1–3]. Generally, compared with subjects without sleep apnea syn-

dromes, sleep apnea syndrome patients are more likely to suffer cardiovascular problems, such

as hypertension, stroke and heart failure [4]. Moreover, severe sleep apnea syndrome may

even result in decreased memory and cognitive decline [5].

Specifically, there are two main kinds of sleep-related breathing events when sleep apnea

syndrome happens, i.e., the Apnea Event and the Hypopnoea Event [6]. The Apnea Event is

defined as airflow cessation at nose and mouth, which lasts for at least 10 seconds. The Hypop-

noea Event is defined as reduced airflow, which reduces more than 50% of the baseline for at

least 10 seconds, and a fall in blood oxygen saturation (SpO2) at least 4% [7]. The Apnea

Hypopnoea Index (AHI), which refers to the average number of apnea and hypopnoea per

hour during night sleep, is utilized for medical specialists to diagnose sleep apnea syndrome

and its severity. In particular, according to the American Academy of Sleep Medicine, subjects

whose AHI < 5, 5� AHI < 15, 15� AHI< 30 and AHI� 30 are regarded as healthy ones,

mild sleep apnea syndrome suffers, moderate sleep apnea syndrome suffers and severe sleep

apnea syndrome suffers [8], respectively.

Currently, the primary method to diagnose sleep apnea syndrome and measure its severity

is using Polysomnography [9], which is the gold standard in sleep study field. PSG can record

the user’s EEG (Electroencephalogram), EMG (Electromyography), EOG (Electro-Oculo-

gram), SpO2, respiration effort, snoring and other physiological signals simultaneously in a

sleep center. Based on these signals, sleep experts could diagnose sleep apnea syndrome and its

severity manually. While PSG can provide comprehensive and objective physiological infor-

mation about the user’s health status, many shortcomings still limit its generalization in home

environment. First, during the signal recording procedure, users have to attach numerous elec-

trodes on their bodies, which undoubtedly disturb their normal sleep, and even make them

unable to fall asleep. Additionally, the PSG device is expensive and time consuming, which

makes it unsuitable for home use [10, 11].

Due to the shortcomings of PSG, several alternative techniques have been developed to sim-

plify the measurement of sleep apnea syndrome, such as single-channel ECG, pulse oximeter,

ballistocardiogram (BCG) [12, 13], polyvinylidene fluoride sensors [14–17], acoustic sensors

[18] and so on. Generally speaking, existing studies on sleep apnea syndrome assessment can

be divided into two main categories from the methodology view, namely the direct approach

and the indirect approach.

The direct approach conducts sleep apnea syndrome severity assessment based on the dif-

ferences in various signals. These studies directly construct the severity evaluation models by

analyzing and extracting features for each severity level, including mild, moderate, and severe.

There are many practical assessment methods, including heart rate variability (HRV) analysis,

entropy analysis and speech analysis. For example, [19–21] utilized the heart rate variability
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analysis, entropy analysis and speech analysis respectively, to analyze the ECG, SpO2 and voice

signals individually other than all signals collected by PSG. Meanwhile, various features includ-

ing time domain features, frequency domain features, and other features, are extracted to char-

acterize different severity levels, and with the employment of different classifiers, the final

severity states are obtained. However, as the differences between mild sleep apnea syndrome

suffers and healthy subjects are not very significant [20, 21], these direct approaches can’t

effectively distinguish all the severity levels.

The indirect approaches focus on detecting sleep-related breathing events firstly, and then

calculating AHI to evaluate the final severity condition. In fact, most existing studies take the

detection of sleep-related breathing events as a channel, and convert the original severity

assessment problem into the sleep-related breathing event detection problem. Therefore, the

indirect approach avoids the issue to directly distinguish mild sleep apnea syndrome suffers

and healthy subjects. In general, there are two lines of methods for the detection of sleep-

related breathing events. The first line of methods adopt the equal-length fragmentation

approach, which divide physiological signals into a set of equal-length fragments, and then

detect whether there are sleep-related breathing events in the fragments. Once a sleep-related

breathing event is detected within a certain fragment, the equal-length fragmentation

approach will take the whole fragment as the length of the event, which is a little far-fetched. In

[22, 23], authors adopt 1min and 10s equal-length segmentations respectively to detect sleep-

related breathing events, and they concentrate on the variation of the ECG signal and respira-

tory signal when sleep apnea syndrome happens. However, the equal-length segmentation

method might divide one sleep-related breathing event into different fragments, leading to

incorrect detection results. The other line of strategies is based on the unequal-length segmen-

tation idea, which overcomes the event segmentation issue and can detect sleep-related breath-

ing events more effectively [24, 25]. However, existing studies have not fully considered the

practical factors of sleep-related breathing events, such as the limit of lasting duration, possible

occurrence sleep stages and so on. Moreover, most studies utilize heart rate segmentations

generated by the ECG equipment, which still need patients wear electrodes to record original

signals.

This study aims to develop an automatic sleep apnea syndrome severity assessment system,

which is non-invasive, reliable, and can be easy-deployed in home environment, to help

patients or their care-givers recognize the severity of sleep apnea syndrome timely and save

medical treatment time. In this paper, we employ an unobtrusive sleep monitoring system

(RS-611, http://www.risingsuntec.cn/04-product/product.ht) to record the original BCG signal

in home environment, which is a certificated medical device and has been successfully applied

in the detection of both heart rate variation information and breathing-related information

[26]. By exploring the BCG signal, we propose an automatic sleep-related breathing event

detection algorithm named Physio_ICSS which is based on the iterative cumulative sums of

squares (ICSS) and can overcome the event segmentation issue effectively. Moreover, by inte-

grating ICSS with the practical factors of sleep-related breathing events, Physio_ICSS is much

more adaptive and time-efficient. Finally, the sleep apnea syndrome severity is obtained by cal-

culating the AHI. To the best of our knowledge, this study is the first attempt to segment BCG

signals for the detection of sleep-related breathing events and assess the sleep apnea syndrome

severity according to the segmentation results. To sum up, the contributions of this paper

mainly lie in three aspects:

First, we propose a framework for sleep apnea syndrome severity assessment by using only

the BCG signal, which is obtained in an unobtrusive way. Compared with other physiological

signals, such as ECG and SpO2, the most significant advantage of BCG is that users don’t have

to attach any surface electrodes on their bodies during the recording process. However, there
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are also several disadvantages that limit the construction of an effective sleep apnea syndrome

measurement model, such as poor data quality, low reliability, and high noise. To this end, we

put forward a fine-grained signal preprocessing framework, including wavelet analysis as well

as RR interval extraction and correction. Meanwhile, we also make full use of the rich content

contained in the BCG signal, i.e., both the heart rate variation and breathing-related

information.

Second, existing studies mainly adopt the equal-length segmentation scheme when detect-

ing sleep-related breathing events. In other words, the original signals are first divided into

equal-length fragments (e.g., 1min, 30s and 10s), and then the detection algorithm will be per-

formed on the fragments. The main problem is that the number of sleep-related breathing

events is not necessarily the same as the number of segments, as one segment might contain

multiple sleep-related breathing events and a long sleep-related breathing event could appear

in multiple segments. While there have been studies that utilized unequal-length segmentation

scheme, they have not fully considered the practical factors of sleep-related breathing events.

Moreover, existing studies usually explore multiple signals to achieve a better detection perfor-

mance, which undoubtedly leads to heavy computation cost. To address the above challenges,

we propose a sleep-related breathing event detection framework based on unequal-length seg-

mentation, in which several practical factors have been taken into account to improve the per-

formance, including the lasting duration limitation and the possible occurrence sleep stages of

sleep-related breathing events.

Finally, by exploring the RR interval fragments, we extract a set of features from three dif-

ferent domains to characterize sleep-related breathing events. In particular, by fusing 8 time

domain features, 8 frequency domain features and 2 nonlinear domain features, we build an

efficient classification model which can identify sleep-related breathing events with the accu-

racy 97.57%.

The rest of this paper is organized as follows. In Section II, we introduce the data acquisi-

tion procedure, including the description of the sleep monitoring system and the summary of

the experimental data. Section III provides the details of our proposed automatic sleep apnea

syndrome severity assessment framework, which consists of 3 main steps, i.e., data preprocess-

ing, sleep-related breathing event detection and severity evaluation. Based on a real-world

dataset of 136 individuals, Section IV reports the experimental evaluation results of the pro-

posed method. In Section V, we compare our results with existing studies, and summarize the

contributions and shortcomings of our work. Finally, Section VI concludes the paper.

Materials and methods

Experimental data acquisition

In this work, in order to acquire the original BCG signal in home environment, we develop an

unobtrusive sleep monitoring system, which not only reflects the heart rate variation informa-

tion but also the breathing-related information. The system consists of a micro-movement

sensitive mattress (MSM), an analog-digital (AD) converter and a terminal PC, as shown in

Fig 1.

In Fig 1, MSM is the main functional part of the system, which includes four sectors and

each sector is embedded with a set of pressure sensors to sense the movements of different

body parts. In fact, sensors in different sectors can also check with each other to reduce mea-

surement noise. Such a non-intrusive system would introduce less sleep disturbance and has

the ability to monitor users over multiple nights.

When a subject lies on the mattress, pressure changes caused by heartbeat, breathing and

other body movements will be captured by the embedded pressure sensors, and further
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converted to digital signals by the 16-bit resolution AD converter, forming a time series of

composite pressure data. Afterwards, drift compensation and digital filtering is performed to

separate BCG signal from the original composite pressure signals. In particular, to demon-

strate the performance of the micro-movement sensitive mattress, we present a slice (20 sec-

onds) of the obtained BCG signal (sub-figure in the middle) as well as the corresponding ECG

signal (sub-figure on the top) recorded with Prince 180D (http://www.healforce.com/en/), as

shown in Fig 2. We find that the original BCG signal can fully reflect the heart rate informa-

tion, where each wave trough of the BCG time series corresponds to a local minimum point of

the ECG time series. Furthermore, as there are still much high-frequency noise in the wave-

form, we need to develop an effective algorithm to extract RR intervals (i.e., identify a set of

local minimum points) from the original BCG time series. For example, we can adopt multi-

resolution wavelet analysis to parse the original BCG signal, and then identify local minimum

points based on the approximate wavelet layer (sub-figure on the bottom). More details about

how we can obtain RR intervals based on the BCG signal will be presented in the data prepro-

cessing section.

In the present work, 136 subjects who took one night’s sleep with the monitoring system

were studied, and all of them had provided verbal consent to participate in the study. The rea-

son why written consent had not been obtained is that only those who agreed to share their

data for scientific research were invited to participate the experiment. Meanwhile, all the data

were analyzed anonymously. The Medical Experimental Ethical Inspection Institute of North-

western Polytechnical University had approved our study as well as the above consent proce-

dure (No. 20160173).

Among these 136 participants, there were 41 healthy subjects (26 males, 15 females) as the

control group, 23 mild sleep apnea syndrome suffers (14 males, 9 females), 34 moderate sleep

apnea syndrome suffers (20 males, 14 females) and 38 severe sleep apnea syndrome suffers (24

Fig 1. The sleep monitoring system.

https://doi.org/10.1371/journal.pone.0175351.g001
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males, 14 females). The sleep time durations of all recordings were no less than 6 hours, and

nearly 9 hours at most. Subjects suspected of having any cardiovascular or lung diseases were

excluded in this research. For comparison purposes, we also captured the ECG, SpO2 and res-

piration signals simultaneously by utilizing the conventional PSG equipment. In addition, the

ground truth of heart beat intervals, sleep apnea and the hypopnoea events were manually

identified by sleep experts according to the manual for scoring of sleep and associated events

[27]. The mean age, body mass index (BMI), and AHI are summarized in Table 1.

Specifically, for each measure reported in Table 1, we performed t-test to detect whether

there are significant differences among groups (i.e., healthy, mild, moderate and severe). In

case of the age measure, as shown in Table 2, we observe that there do exist certain difference,

which is consistent with the findings of existing studies [1–3]. However, even though the

occurrence rate of sleep apnea syndrome increases gradually with the age, such a correlation is

very slight and we should not take the user’s age as an important feature when assessing sleep

apnea syndrome (e.g., it is difficult to differentiate mild suffers from moderate ones). The t-test
result of the body mass index is shown in Table 3. Accordingly, while all the p-values among

Fig 2. Performance of the micro-movement sensitive mattress.

https://doi.org/10.1371/journal.pone.0175351.g002

Table 1. Statistics of the experimental data set.

All Healthy Mild Moderate Severe

Number 136 41 23 34 38

Ages 53.1 ± 5.1 47.8 ± 4.2 54.0 ± 4.1 54.6 ± 3.3 56.9 ± 3.0

BMI 26.9 ± 4.0 22.9 ± 2.2 24.8 ± 2.4 28.9 ± 2.4 30.8 ± 2.0

AHI 19.6 ± 15.4 2.4 ± 1.3 11.1 ± 4.4 23.9 ± 2.8 39.5 ± 7.1

https://doi.org/10.1371/journal.pone.0175351.t001
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healthy, mild and moderate groups are larger than 0.05 (i.e, indicating there is no significant

difference), the p-values between the severe group and the other three groups are much smaller

(i.e., indicating there is significant difference). Therefore, we can conclude that subjects with

severe obesity are more likely to develop severe sleep apnea syndrome. In case of the apnea

hypopnoea index, according to Table 4, we find that there are significant differences among all

the four groups (p-values ranging from 10−17 to 10−54), which is in accordance with the defini-

tion of sleep apnea syndrome by the American Academy of Sleep Medicine [8].

Additionally, for each of the above three measures, we also performed t-test on gender of

the participants. Results show that while there are no significant differences in ages among

males and females (p-value = 0.637), male participants tend to have higher body mass indexes

(the average body mass indexes of males and females are 27.5 and 26.0, and the p-value is

0.029) as well as higher apnea hypopnoea indexes (the average values are 22.0 and 15.8, and

the p-values is 0.024), indicating that males are more likely to develop sleep apnea syndromes.

Sleep apnea syndrome severity assessment framework

In this paper, we aim to automatically assess the severity level of sleep apnea syndrome by

exploring the BCG signal. The proposed approach can be divided into three stages, namely

data preprocessing, sleep-related breathing event detection and severity evaluation, as shown

in Fig 3.

During the data preprocessing stage, we apply the multi-resolution wavelet analysis to

refine the time-frequency information of the original BCG signal. Afterwards, beat-to-beat

(RR) heart rate intervals of the BCG signal are obtained and corrected.

Table 2. p-values of the age among different groups.

Healthy Mild Moderate Severe

Healthy / <10−7 <10−11 <10−17

Mild <10−7 / 0.504 0.002

Moderate <10−11 0.504 / 0.003

Severe <10−17 0.002 0.003 /

https://doi.org/10.1371/journal.pone.0175351.t002

Table 3. p-values of the body mass index among different groups.

Healthy Mild Moderate Severe

Healthy / 0.0018 <10−17 <10−27

Mild 0.0018 / <10−8 <10−15

Moderate <10−17 <10−8 / <10−4

Severe <10−27 <10−15 <10−4 /

https://doi.org/10.1371/journal.pone.0175351.t003

Table 4. p-values of the apnea hypopnoea index among different groups.

Healthy Mild Moderate Severe

Healthy / <10−17 <10−54 <10−47

Mild <10−17 / <10−19 <10−25

Moderate <10−54 <10−19 / <10−18

Severe <10−47 <10−25 <10−18 /

https://doi.org/10.1371/journal.pone.0175351.t004
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In the second stage, sleep-related breathing events are detected based on the proposed Phy-

sio_ICSS algorithm, which is much more effective in capturing small variation changes in the

BCG signal, compared with the original ICSS algorithm. Specifically, the small variation

changes in BCG signal are mostly caused by sleep-related breathing events in consideration of

their amplitude characteristics [28], which can be deemed as the breathing-related information

of BCG signals. To effectively identify events from the candidate event set, we analyze the

heart rate information in the BCG signal, and segment the corrected RR intervals according to

the output of the Physio_ICSS algorithm.

In the final stage, 8 time domain features, 8 frequency domain features and 2 nonlinear fea-

tures are extracted from the obtained RR intervals. Moreover, we train and employ three clas-

sification models in our experiments, i.e., the k-Nearest Neighbor classifier, the random forest

classifier and the SVM classifier. Based on the classification results, the severity of sleep apnea

syndrome can be evaluated by calculating the AHI.

Data preprocessing. In this section, we will present how to preprocess the original BCG

signal and how to extract the RR intervals of the BCG signal.

BCG signal preprocessing. The original BCG signal describes the periodical chest vibra-

tion, which is mainly modulated by the movement of the heart beat and respiration. BCG pro-

vides a non-invasive way to evaluate the user’s heart condition. When cardiac dysfunction

occurs, there will be certain anomalies in the corresponding BCG signal. As shown in Fig 3, we

can clearly find out that although the original BCG signal can fully reflect the heart rate infor-

mation, there are still much redundant high-frequency noise in the waveform, which has a

negative effect on the extraction of RR intervals.

The wavelet analysis focuses on localize analysis in both time domain and frequency

domain, which can be used to analyze signals at different scales and resolutions, especially for

non-stationary physiological signals [29, 30]. In practical applications, we can use different

wavelet-based functions for different kinds of signals. Specifically, considering that different

wavelet analysis resolutions contain different information, we adopt the multi-resolution

wavelet analysis to parse the original BCG signal.

Fig 3. Framework of the proposed approach.

https://doi.org/10.1371/journal.pone.0175351.g003
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Fig 4 demonstrates the multi-resolution wavelet analysis results of the original BCG with

the Symlets 8 wavelet-based function. From top to bottom, the redundant high-frequency

glitches decrease gradually, and the wave profile becomes clear. While the 5th layer is smoother

than any other layers, the parts in the black rectangles reveal that it contains waveform distor-

tion at a certain degree. Thereby, we choose the fourth approximation layer to extract RR

intervals.

Fig 4. Multi-resolution wavelet analysis results of the original BCG.

https://doi.org/10.1371/journal.pone.0175351.g004
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RR intervals extraction and correction. RR intervals measure the duration of heart beat

cycles, and the RR interval time series is the foundation of calculating different evaluation

indexes of heart rate variability. In this work, we take second (s) as the unit of time to evaluate

RR intervals. According to Fig 4, we can see that there are still noise around the wave peaks in

the fourth approximation wavelet layer. Therefore, we choose to obtain RR intervals by calcu-

lating the time span between adjacent wave troughs. Specifically, an overlapped sliding win-

dow method was applied to detect all the wave troughs, and the minimum point of each

window will be regarded as candidate times of heart beats. According to experimental results,

the window size was set as 100 samples (i.e., 1 second) and the sliding step was set as 80 sam-

ples. In particular, the reason why an overlapped sliding window method was adopted is that,

no matter we choose a larger or smaller window size, there always exist some RR intervals lon-

ger or shorter than the length of a window. If a non-overlapped sliding window method was

adopted, it will lead to quite a number of leak checked wave troughs as well as fault checked

ones, which result in either too long or too short RR intervals. For instance, suppose that a

user’s average heart rate is 60 beats per minute, the length of 100 samples should be a suitable

window size. In case that the user suffers from sleep apnea syndrome, she/he is very likely to

have some longer RR intervals (e.g., 1.1 second) as well as some shorter ones (e.g., 0.9 second),

which will severely decrease the performance of a non-overlapped sliding window method less

efficient.

With the overlapped sliding window method, the vast majority of wave troughs can be

detected correctly, as shown in Fig 2. However, even though the overlapped sliding window

method overcomes some shortcomings of the non-overlapped method, there are still some

leak checks and fault checks of RR intervals, which might due to the movements of other body

parts.

Examples of leak checked and fault checked RR intervals are given in Fig 5A and 5B, respec-

tively, where the parts in black rectangles correspond to the leak check and fault check of RR

intervals.

To address the challenge of leak check and fault check of RR intervals, we propose a novel

RR correction algorithm (as shown in Algorithm 1), which is based on the fact that most of the

RR intervals have been correctly detected with the sliding window method.

Fig 5. An example of leak and fault checked RR intervals. A: Leak check. B: Fault check.

https://doi.org/10.1371/journal.pone.0175351.g005
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Algorithm 1. The RR Correction Algorithm

Require:
• RR, the originalRR intervaltime series

• 2ω, the windowlength

Ensure:
•RRcorrected, the finalRR intervaltime series

1: n length(RR);
2: for each i 2 [1, n] do
3: RRi  the mean lengthof 2ω intervalsnear RRi
4: if RRi > 1:5 � RRi then
5: k bRRi

RRi
þ 1

2
c (the numberof potentialRR)

6: RRinew RRi/k
7: RRi RRinew, inew = 1, 2, 3, . . ., k
8: end if
9: if RRi < 0:5 � RRi then
10: maxNeighbour max{RRi−1, RRi+1}
11: minNeighbour min{RRi−1, RRi+1}
12: ifmaxNeighbour � minNeighbour < RRi then
13: maxNeighbour maxNeighbour+ 0.5 � RRi
14: minNeighbour minNeighbour+ 0.5 � RRi
15: else
16: minNeighbour minNeighbour+ RRi
17: end if
18: end if
19: end for

To extract and correct RR intervals, we first apply the fixed-size sliding window method to

obtain the preliminary result, and then refine it based on the proposed RR correction algo-

rithm. Specifically, for each candidate interval RRi in the original RR interval time series, the

average length of its 2ω neighbor intervals is defined as RRi (line 3). In case that the length of

RRi is longer than 1.5�RRi , we define that a leak check happened and the RR interval time

series should be refined. In particular, we first calculate the number of RR intervals that should

be inserted (line 5), and then replace RRi with the new intervals (lines 6-7). In case that the

length of RRi is shorter than 0.5�RRi , we define that a fault check happened and RRi should be

eliminated. Particularly, if maxNeighbour � minNeighbour < RRi , RRi will be divided equally

by its two neighbors (lines 13-14). Otherwise, RRi will be merged to the closer neighbor (line

16).

An example to demonstrate the difference of RR sequence before and after correction is

shown in Fig 6. We can find that there are 6 suspected leak checked RR intervals (i.e.,①-⑥)

and 3 suspected fault checked RR intervals (i.e., [1]-[3]) in the original RR sequence. On one

hand, the correction algorithm will deal with the leak checked RR intervals by splitting them

with the average length of the nearby RRs (lines 5-7). On the other hand, different methods

will be used to handle the fault checked intervals according to the comparison result of two

adjacent RRs (lines 12-17). According to Fig 6, we can find that after correction, there is hardly

any fault checks in the RR interval time series. It should be pointed out that⑤ and⑥ are not

real leak checks, as they do not satisfy the definition of leak checks.

Moreover, to evaluate the performance of the proposed RR interval extraction and correc-

tion algorithms, experiments were designed based on synthetic data as follows. We first gener-

ated a sine wave series of 10,000 periods and each period includes 100 samples, resulting in a

synthetic time series with 1,000,000 samples. Secondly, white Gaussian noise was added to the
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synthetic signal, by setting the signal-noise ratio as 10. Afterwards, 1,000 data points, whose

x-axis ranged from 1 to 1,000,000 and y-axis ranged from -0.8 to -1.2, were randomly gener-

ated to replace the corresponding data points in the synthetic signal, i.e., 10% potential leak

and fault checks were introduced. By setting the size of sliding window as 100 samples and the

sliding step as 80 samples, we repeated the experiments for 100 times. While the average error

rate (i.e., the ratio of leak and fault checks) of the RR interval extraction algorithm was 3.26%,

it declined to 1.48% after correction, which validates the effectiveness of the RR correction

process.

In addition, we also compared the BCG-based RR interval series with the one derived from

ECG. Specifically, we simultaneously collected the ECG and BCG data of 10 subjects for one

night, and the average error rate was around 0.25 to 1.08 beats per minute, indicating that we

can obtain satisfactory RR intervals based on the BCG signal. An example was shown in Fig 2,

where a slice of 20-second ECG signal (sub-figure on the top) and the corresponding BCG-

based RR intervals (sub-figure on the bottom) were presented.

Furthermore, considering the non-uniform sampling property of the RR interval time

series, which might affect the result of nonlinear analysis, we re-sample the corrected RR series

using cubic spline interpolation with a sampling rate of 4 Hz.

Detection of sleep-related breathing events. In this section, we will elaborate the pro-

posed Physio_ICSS algorithm and present how to segment the time series of RR intervals

using the algorithm.

Physio_ICSS algorithm. As above mentioned, the original BCG signal includes both heart

rate information and breathing-related information. When sleep-related breathing events

occur, the user’s breathing amplitude will significantly decrease, which will lead to the drop of

Fig 6. Performance of the proposed RR correction algorithm.

https://doi.org/10.1371/journal.pone.0175351.g006

Assessing the severity of sleep apnea syndrome based on BCG

PLOS ONE | https://doi.org/10.1371/journal.pone.0175351 April 26, 2017 12 / 24

https://doi.org/10.1371/journal.pone.0175351.g006
https://doi.org/10.1371/journal.pone.0175351


the BCG amplitude as well. In fact, the small variations in amplitude caused by sleep-related

breathing events can be regarded as structural changes of the BCG signal. Based on the concept

of iterative cumulative sum of squares, we propose a sleep-related breathing event detection

algorithm named Physio_ICSS (S1 Algorithm), which is able to detect sudden structural

changes in long time series [31, 32]. For more details, please refer to the Supporting

Information.

Compared with the original ICSS algorithm, on one hand, the proposed Physio_ICSS algo-

rithm has less strict constraints to the data, which is much more suitable for the analysis of

physiological signals. On the other hand, the algorithm also makes full use of the practical fac-

tors of sleep-related breathing events, i.e., the possible duration and occurring sleep stages of

sleep-related breathing events. Therefore, with only BCG signal, the Physio_ICSS algorithm

could overcome the three main shortcoming of existing approaches and detect sleep-related

breathing events effectively. Moreover, as AHI is calculated at the hour scale, the Physio_ICSS

algorithm only need be performed once per hour rather than the whole night. In other words,

the algorithm will be repeated by 6 to 9 times each night, which significantly reduces the over-

all time overhand.

Segmentation of RR intervals. Based on the proposed Physio_ICSS algorithm, we can

obtain the starting and ending points of all the detected fragments which are stored in the PF
vector, and all the suspect sleep-related breathing events are contained in these fragments.

Meanwhile, we also obtain a status array S, which indicates whether a certain fragment need be

further examined, i.e., fragments shorter than 10s will be directly excluded which are impossi-

ble to be sleep-related breathing events. It is necessary to point out that not all of the detected

fragments contain sleep-related breathing events, and some of them are NSBEs fragments

(NSBEs are used to denote fragments that do not contain sleep-related breathing events for the

convenience of description, which include segments between the ending point and the starting

point of two adjacent sleep-related breathing events as well as those detected as sleep-related

breathing events by mistake). Therefore, to calculate AHI, some further analysis is needed to

identify all the suspect fragments of sleep-related breathing events automatically.

According to existing studies [33, 34], the effect of sleep apnea syndrome can be observed

within cardiovascular system, and also might be accompanied with cyclic variations in RR

intervals. Therefore, to further identify sleep-related breathing events from the detected frag-

ments, we perform heart rate variability analysis for all the candidate fragments according to

the status array. Moreover, as the Physio_ICSS algorithm is not absolutely perfect for the

detection of sleep-related breathing events, some structural change points might be leak

checked, leading to abnormal fragments with a long range. Therefore, the length of a segment

is empirically defined as min{10mins, (PFi+1 − PFi)}.
Severity evaluation. In this section, we will present how to evaluate the severity of sleep

apnea syndrome by identifying sleep-related breathing events.

Feature extraction. For each unequal-length RR segments that need be further examined

according to the status array, a set of features would be extracted for the classification of SBEs

and NSBEs. Specifically, we have defined 18 different features, including 8 time domain fea-

tures, 8 frequency domain features and 2 nonlinear features, as shown in Table 5.

The 8 time domain features are the mean, the variance, the maximum, the minimum, the

RMSSD, the SDSD, the PNN50 and the CV of RR fragments, which can reflect the variations of

RR segments over time in different angles.

However, these time domain features cannot effectively evaluate the balance of the auto-

nomic nervous system when sleep apnea syndrome happens. Nevertheless, frequency domain

features have been proved to be effective ones to assess variations of the autonomic nervous

system. Specifically, in this paper we adopt the autoregressive model (AR model) to conduct
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frequency-domain analysis, which has smoother spectrum curve and higher resolution in dif-

ferent bands [35], compared with classic spectrum estimation methods that are based on the

Fourier Transform theory. In particular, the order of the AR model is set as 16 in our work,

which can clearly reveal the center frequency of the HF and LF bands [36]. The frequency fea-

tures we used are the vLF (0.0033Hz-0.04Hz) power, the LF (0.04Hz-0.15Hz) power, the HF
(0.15Hz-0.4Hz) power, the vHF (0.4Hz-0.5Hz) power, the TF (0Hz-0.5Hz) power, and the

ratio of the power in LF and HF band LF/HF. Moreover, in consideration of the inter-subject

variability, we introduced the normalized LF and HF (i.e., LFnor and HFnor) as follows:

LFnor ¼ LF=ðLF þ HFÞ; ð1Þ

and

HFnor ¼ HF=ðHF þ LFÞ: ð2Þ

Meanwhile, we also extracted nonlinear features to measure the variability and complexity

of a fragment, based on the nonlinear methods Detrended Fluctuation Analysis (DFA) [37]

and Sample Entropy (SampEN) [38, 39]. Specifically, we used the short-term coefficient of

DFA to evaluate the inner correlation of RR time series, and set the parameter s (i.e., the length

of a fragment) as 40 to 320 based on the frequency of heartbeat. Similarly, there are also two

important parameters in the SampEN algorithm, i.e., the vector detail levelm and the threshold

r, which are set as m = 2 and r = 0.2�STD (standard deviation) respectively, according to exist-

ing studies [37].

Classification of SBEs and NSBEs. In order to identify sleep-related breathing events and

classify the segments into two classes, i.e., NSBEs and SBEs, we mainly adopted three different

types of classification models in the present work, including the k-Nearest Neighbors (kNN),

the Random Forest (RF) and the Support Vector Machine (SVM).

Table 5. List of extracted features.

Type Features Description

Time Mean the mean value of RR segments

Var the variance of RR segments

Max the maximum of RR segments

Min the minimum of RR segments

RMSSD the root mean square of adjacent RRs in the segments

SDSD the standard deviation of adjacent RR differences in the segments

PNN50 the percentage of RR segments longer than 50s

CV the variation coefficient of RR segments

Frequency vLF the power in vLF band

LF the power in LF band

HF the power in HF band

vHF the power in vHF band

LFnor the normalized power in LF band

HFnor the normalized power in HF band

LF/HF the ratio of power in LF and HF band

TF the total power in the whole band

Nonlinear DFA the short-term coefficient of detrended fluctuation analysis

SampEN the sample entropy value with r = 0.2*STD

https://doi.org/10.1371/journal.pone.0175351.t005
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Specially, the kNN classifier is a non-parametric method used for classification and regres-

sion. It is a type of instance-based learning algorithm, where the function is only approximated

locally and all computation is deferred until classification. A shortcoming of the kNN algo-

rithm is that it is sensitive to the local structure of the data.

The RF classifier is composed of a set of discrete decision tree models, which can overcome

the disadvantages that a simple decision tree brings during the classification procedure, such

as over-fitting and local rather than global optimal solution issues. For a data sample, the RF

classifier determines its class by counting the voted numbers given by different decision trees,

and the class with maximum voted numbers will be the final class. Actually, the RF classifier

has advantages in evaluating attribute relationship and handling large dataset, and it can also

effectively handle data noise and outliers.

SVM is a simple and effective two-class classifier. Based on the training data, SVM can con-

struct an optimal hyperplane by maximizing the margin between the two classes, and then use

it to separate the testing data. Moreover, as for some non-linear classification problems, SVM

can map the data into a high dimensional space by using different kernel functions, and then

solve them as linear classification problems.

To eliminate the redundant features as well as validate the performance of different feature

sets, we adopted three feature selection strategies which are Null (i.e., using all the extracted

features), Information Gain based feature selection and Sequential Forward feature selection.

Specifically, in case of information gain based feature selection, we kept all the features whose

information gain were larger than 0. In case of sequential forward feature selection, for each

given set of parameters, features were sequentially added to the candidate set until the addition

of further features does not decrease the misclassification rate.

Moreover, for each candidate set of parameters, we adopted unconstrained nonlinear opti-

mization to perform fine-grained parameter tuning, aiming at achieving optimal performance.

Meanwhile, a nested cross validation procedure was conducted to obtain reliable and unbiased

classifiers. Specifically, we chose 10-fold cross validation for the outer loop and 5-fold cross

validation for the inner loop.

Experimental results

Experimental setup

As aforementioned, we only considered the REM and NREM sleep stages in the experiments,

and the Wake sleep stage was excluded. In addition, to simplify the calculation of AHI and

reduce the total time cost for the preliminary detection of sleep-related breathing events, we

segmented the whole night’s sleep time (6h-9h) into multiple one-hour fragments (except the

Wake sleep stage), and the fragment whose duration was less than one hour had been dis-

carded. Furthermore, to obtain the ground truth of SBEs and NSBEs, a professional sleep phy-

sician was recruited to annotate the PSG data of 136 participants of the experiment, and a total

number of 17,946 fragments were labeled as SBEs.

Detection performance of sleep-related breathing events

Both the original ICSS algorithm and the proposed Physio_ICSS algorithm are evaluated, and

their performance on a piece of BCG data with 8 sleep-related breathing events are shown in

Fig 7A and 7B. Meanwhile, Fig 7C and 7D present the results of the two algorithms on a piece

of normal sleep data (i.e., NSAS). Specifically, in Fig 7, the horizontal axis stands for the time

(seconds), and the vertical axis represents the relative amplitude. The threshold G� we used is

1.628, and the corresponding confidence level is 0.99, which are empirically determined based

on experiments.
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According to Fig 7A and 7B, we can find that the original ICSS algorithm detected more

redundant structural changes (i.e., trivial changes in③-⑦) than Physio_ICSS. In other words,

if we directly utilize the original ICSS rather than Physio_ICSS, more sleep-related breathing

events might be detected than the actual amounts, leading to the wrong calculation of AHI.

Specifically, the main reason why Physio_ICSS performs better than original ICSS is that it

takes the practical factors of sleep-related breathing events into the design of the algorithm,

including the duration limitation and the possible occurrence sleep stages of sleep-related

breathing events. In addition, Physio_ICSS is more suitable to unstable physiological signals

Fig 7. Sudden change detection performance of original ICSS and Physio_ICSS. A: ICSS on SAS data. B: Physio_ICSS on SAS data. C: ICSS on

NSAS data. D: Physio_ICSS on NSAS data.

https://doi.org/10.1371/journal.pone.0175351.g007
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(e.g., BCG) than the original ICSS, which used an improved testing statistics (i.e., κ2 = supt|

T−1/2 Gt|).
Table 6 gives a comparison of the time cost between the original ICSS and Physio_ICSS. As

the detection time is strongly related to the number of sleep-related breathing events, we only

list the results of two different pieces of data as an example.

Obviously, for one-hour data from a severe sleep apnea syndrome suffer, Physio_ICSS

spends less than 1/10 time of the original ICSS, which can be regarded as a proof that it is rea-

sonable to segment the whole night’s data into one-hour fragments. In addition, as for a

shorter piece of data, Physio_ICSS still has some advantages over the original ICSS. In fact, the

lower time consumption of Physio_ICSS is mainly due to the consideration of practical factors

of sleep-related breathing events, which optimize the solution space and add some pruning

limitations. Specifically, the experiment is conducted with Matlab on an Intel Core i5 PC with

4GB RAM running Windows 8.

According to the above discussion, we can find that the performance of Physio_ICSS is bet-

ter than the original ICSS in both detection accuracy and time cost. Moreover, in order to eval-

uate Physio_ICSS comprehensively, we further introduce three metrics, namely, the error rate

(ER), the sensitivity rate (SR) and the positive prediction rate (PPR), which are formally

defined as follows:

ER ¼ ðFN þ FPÞ=Total Event Num

SR ¼ TP=Total Event Num ;

PPR ¼ TP=Total Detected Num

ð3Þ

8
>>><

>>>:

where True Positive (TP) refers to the number of SBEs that has been correctly identified, False

Positive (FP) is the number of NSBEs that has been incorrectly identified as SBEs (fault

checked), and False Negative (FN) represents the number of SBEs that has not been correctly

identified (i.e., leak checked). Meanwhile, Total_Event_Num is equal to the sum of TP and FN,

and Total_Detected_Num is defined as the sum of TP and FP. Obviously, a good sleep-related

breathing event detection method should have low ER, and high SR and PPR.

Based on the proposed Physio_ICSS algorithm, a total number of 18,992 BCG fragments of

136 participants were identified as suspect SBEs. Compared with the ground truth obtained

based on PSG, 1,285 NSBEs had been incorrectly identified as SBEs, and 239 SBEs had not

been correctly identified. Specifically, the error rate, sensitivity rate and positive prediction

rate for healthy subjects, mild sleep apnea syndrome sufferers, moderate sleep apnea syndrome

sufferers, severe sleep apnea syndrome sufferers as well as all the participants were shown in

Fig 8. Accordingly, we can see that Physio_ICSS has lower average ER (around 8.49%), higher

mean SR (around 98.7%), and higher mean PPR (around 93.2%), indicating that the algorithm

is able to detect sleep-related breathing events effectively.

Table 6. Time consumption of the original ICSS and Physio_ICSS.

ICSS Physio_ICSS

6-min data (AHI = 13) 1.0397s 0.4162s

60-min data (AHI = 48) 224.7339s 21.4574s

https://doi.org/10.1371/journal.pone.0175351.t006
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Severity evaluation performance

Performance of different classifiers. According to the above section, based on the pro-

posed Physio_ICSS algorithm we detected most of the SBEs fragments (about 98.7%). How-

ever, there were still quite a number of NSBEs that had been incorrectly identified as SBEs

(about 6.8%), which might impact the assessment of sleep apnea syndrome severity levels.

Thereby, we need to further classify all the suspect SBEs by analyzing the corresponding RR

interval time series by exploring the extracted features.

According to experimental results, there are two parameters that would significantly influ-

ence the performance of kNN, which are the number of nearest neighbors to find (NumNeigh-

bors) and the distance metric (Distance). Therefore, we had mainly attempted different

settings of these two parameters when optimizing the kNN classifier, while keeping other

parameters just the same as their initial settings in Matlab. In particular, during experiments

the number of nearest neighbors was set as {20, 21, . . ., 210}, and the used distance metrics

included ‘Cosine’, ‘Chebychev’, ‘Cityblock’, ‘Correlation’, ‘Euclidean’, ‘Hamming’, ‘Min-

kowski’ and ‘Seuclidean’.

In case of the Random Forest classifier, we mainly optimized three parameters. The first

one is the number of decision trees to build a random forest (NTrees), the second one is the

number of attributes to select for each decision split (NVarToSample), and the last one is the

minimum number of observations for each tree leaf (MinLeaf). During experiments, we set

Fig 8. Performance of the Physio_ICSS algorithm.

https://doi.org/10.1371/journal.pone.0175351.g008
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the values of these three parameters as {20, 21, . . ., 210}, {1, 2, . . ., ‘All’} and {20, 21, . . ., 24},

respectively, where ‘All’ denotes the total number of attributes.

In case of SVM, there are also two parameters which are strongly associated with its classifi-

cation performance, i.e., the penalty factor C and the kernel function parameters [40]. The

penalty factor C describes the tolerance for misclassified data samples, and the kernel function

is used to map data into a higher dimensional space. Generally, there are four widely used ker-

nel functions, as summarized in Table 7, where C is the penalty factor, d is the polynomial

order, c represents the offset coefficient, and γ denotes the kernel bandwidth.

For each candidate parameter setting and feature selection strategy of the above three classi-

fication models, we repeated experiments for 100 time to obtain the average Accuracy, Preci-

sion and Recall. Results corresponding to the optimal classifiers were summarized in Table 8.

Accordingly, we can find that SVM performs better than the other two classifiers. Specifically,

the optimal SVM classifier was achieved when using the sequential forward feature selection

strategy and the RBF kernel, where the values of C and γ are around 20 and 55, respectively.

The reason might be that SVM is very efficient for nonlinear data distributions [41].

Severity assessment. Based on the optimal SVM classifier, SBEs and NSBEs can be identi-

fied effectively from all unequal-length RR segments with the status value of 1. Afterwards, the

sleep apnea syndrome severity can be easily obtained by calculating the AHI. Fig 9 presents the

severity assessment results for all the subjects in our dataset.

Table 7. Widely used kernel functions.

Kernel Name Description Parameters and Tested Values

Linear kernel K(xi, xj) = xi � xj C-{2−4, 2−3, . . ., 28}

Polynomial kernel K(xi, xj) = [γ(xi, xj)+c]d C-{2−4, 2−3, . . ., 28}, γ-{2−4, 2−3, . . ., 28}, c-{0, 0.1}, d-{2, 3, . . ., 5}

RBF kernel K(xi, xj) = exp[−γ|xi−xj|
2] C-{2−4, 2−3, . . ., 28}, γ-{2−4, 2−3, . . ., 28}

Sigmoid kernel K(xi, xj) = tanh[γ(xi, xj)+c] C-{2−4, 2−3, . . ., 28}, γ-{2−4, 2−3, . . ., 28}, c-{0, 0.1}

https://doi.org/10.1371/journal.pone.0175351.t007

Table 8. Performances of different classification models.

Classifier NULL Information Gain Sequential Forward

Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

kNN 94.39 95.13 98.81 95.95 96.47 99.16 95.05 95.72 98.92

Random Forest 94.72 95.44 98.86 95.55 96.09 99.10 93.02 93.72 98.73

SVM 95.56 96.26 98.95 97.06 97.70 99.14 97.57 98.01 99.37

https://doi.org/10.1371/journal.pone.0175351.t008

Fig 9. Severity assessment results.

https://doi.org/10.1371/journal.pone.0175351.g009
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According to Fig 9, the accuracy of all sleep apnea syndrome severity levels and healthy sub-

jects are satisfactory, and most errors occurred in the adjacent severity levels, which should be

due to the false identification of a small number of sleep-related breathing events. Specifically,

the overall accuracy (128/136 = 94.12%) firmly validated the effectiveness of the proposed

methods for both sleep-related breathing event detection and sleep apnea syndrome severity

assessment.

Discussion

A novel automatic sleep apnea syndrome severity assessment approach based on the BCG sig-

nal is presented in this paper. Particularly, to record original BCG signals in an obtrusive way,

we employ a sleep monitoring system in home environment. The proposed approach can dis-

tinguish each severity level effectively, i.e., healthy, mild, moderate and severe, and also over-

come the problem that there are very limited differences between mild sleep apnea syndrome

suffers and healthy subjects. As the detection of sleep-related breathing event is a key step for

the severity assessment of sleep apnea syndrome, there are more studies on event detection

than severity assessment in the literature. In order to demonstrate the performance of the pro-

posed approach, we compared it with several most recent works on sleep-related breathing

event detection, as shown in Table 9. Specifically, the sensitivity refers to the percentage of clas-

sified SBEs in all real SBEs, the specificity is the percentage of classified NSBEs in all real

NSBEs, and the accuracy is the precision rate for both SBEs and NSBEs.

According to Table 9, compared with existing studies, the proposed sleep-related breathing

event detection and identification method achieved satisfactory performance in terms of sensi-

tivity, specificity and accuracy, indicating that it is an efficient approach for the severity assess-

ment of sleep apnea syndrome. Moreover, different from existing studies, on one hand, the

proposed method utilized the BCG signal, which can be easily obtained and affordable in

home environment in a non-invasive manner. On the other hand and more importantly, all

the severity levels can be accurately identified with the proposed method.

We further explain the reason why sleep apnea syndrome (a respiration dynamics-related

disease) can be assessed based on cardiovascular activities, to be more specific, features

extracted from the RR interval time series. On one hand, sleep apnea syndrome can cause

intermittent cardiac hypoxia, and one of the most prominent features of hypoxia is mitochon-

drial dysfunction, which affects cells and cellular components and induces increased produc-

tion of reactive oxygen species. Reactive oxygen species will further lead to enhanced oxidative

stress, which can induce sympathetic hyper-activation. On the other hand, the heart rate is

controlled by the autonomic nervous system, which consists of the sympathetic nervous sys-

tem and the parasympathetic nervous system [44]. In other words, the hyper-activation of

Table 9. Performance comparison among different approaches.

A. Zaffaroni et al. [42] B. Koley et al. [23] J. Sole-Casals et al. [21] J. Jin et al. [43] Our work

Year 2009 2013 2014 2015 2016

Signal/Device radio-frequency sensor orinasal airflow signal voice MEMS sensor BCG signal

Segmentation method — equal-length — — unequal-length

Sensitivity 89.00 — 81.74 100.0 98.01

Specificity 92.00 — 82.40 85.90 91.44

Accuracy 91.00 96.50 82.04 — 97.57

https://doi.org/10.1371/journal.pone.0175351.t009
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sympathetic nerve will influence heart rate. Thereby, sleep apnea syndrome can be diagnosed

by analyzing the variability of heart rate [45].

However, there are still several limitations in our current study. First of all, the experiment

dataset is not sufficient enough, and the number of subjects for each severity level is limited.

Therefore, more data is needed for clinical validation in the future. In addition, we only have

one night’s sleep data for each of the subjects in our experiment, which is not enough for per-

sonalized modeling.

Conclusion

In this paper, we present an automatic severity assessment approach for sleep apnea syndrome

based on the BCG signal, which is recorded using a non-invasive sleep monitoring system in

home environment. The proposed approach can provide an estimation of the apnea hypop-

noea index by detecting and identifying the sleep-related breathing events, which mainly con-

sists of three stages, i.e., data preprocessing, sleep-related breathing event detection and

severity evaluation. In the data preprocessing stage, the wavelet decomposition and overlapped

sliding window method was applied, based on which the time series of RR intervals could be

obtained and corrected. In the sleep-related breathing event detection stage, we proposed the

Physio_ICSS algorithm which can avoid the segmentation issue of sleep-related breathing

events. In the severity evaluation stage, we identified sleep-related breathing events by extract-

ing features from the corresponding RR fragments. Meanwhile, we had tested various classifi-

ers and different classifier parameters to optimize the identification performance. Compared

with existing studies, experimental results validated the effectiveness of the proposed

approach.

As existing medical system can hardly provide non-invasive and continuous health moni-

toring in our daily life, this work can be regarded as a significant attempt in the health care

field, which can help to estimate sleep apnea syndrome and other cardiac diseases in home

environments.

Supporting information

S1 Algorithm. The Physio_ICSS algorithm. Detailed description to the Physio_ICSS Algo-

rithm.

(PDF)
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