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Abstract: The existing multi-sensor control algorithms for multi-target tracking (MTT) within the
random finite set (RFS) framework are all based on the distributed processing architecture, so the rule
of generalized covariance intersection (GCI) has to be used to obtain the multi-sensor posterior density.
However, there has still been no reliable basis for setting the normalized fusion weight of each sensor
in GCI until now. Therefore, to avoid the GCI rule, the paper proposes a new constrained multi-sensor
control algorithm based on the centralized processing architecture. A multi-target mean-square error
(MSE) bound defined in our paper is served as cost function and the multi-sensor control commands
are just the solutions that minimize the bound. In order to derive the bound by using the generalized
information inequality to RFS observation, the error between state set and its estimation is measured
by the second-order optimal sub-pattern assignment metric while the multi-target Bayes recursion is
performed by using a δ-generalized labeled multi-Bernoulli filter. An additional benefit of our method
is that the proposed bound can provide an online indication of the achievable limit for MTT precision
after the sensor control. Two suboptimal algorithms, which are mixed penalty function (MPF) method
and complex method, are used to reduce the computation cost of solving the constrained optimization
problem. Simulation results show that for the constrained multi-sensor control system with different
observation performance, our method significantly outperforms the GCI-based Cauchy-Schwarz
divergence method in MTT precision. Besides, when the number of sensors is relatively large,
the computation time of the MPF and complex methods is much shorter than that of the exhaustive
search method at the expense of completely acceptable loss of tracking accuracy.

Keywords: multi-sensor control; labeled random finite set; multi-target tracking; error bounds;
Bayesian estimation

1. Introduction

Sensor control (also known as sensor management) for target tracking [1,2] generally refers
to improvement of target detection and estimation accuracy by making single or multiple sensors
perform certain operations under some given constraint conditions. The common constraints include
the limitations of the communication range and bandwidth, energy consumption, computation cost,
collision avoidance, and field of view (FoV) of individual sensor nodes, etc. The common operations
include changing the sensor position, velocity or gesture, adjusting sensor work mode, selecting sensor
type and number, scheduling sensor observation time, etc. Due to the uncertainty of target number
and state, measurement noise, missed detection, clutter, nonlinear, real-time requirements and so
on, the sensor control compared with the traditional control is more complicated, and thus attracts
widespread attention [3–7].
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In recent years, the theory of random finite set (RFS) [8] has been extensively applied in the
problem of multi-target tracking (MTT). Especially with the two newest RFS-based MTT methods which
are δ-generalized labeled the multi-Bernoulli (δ-GLMB) filter [9–13] and the Poisson multi-Bernoulli
mixture (PMBM) filter [14,15], have aroused a great deal of interest because of their conjugacy (also
known as the conjugate priors) in common. The conjugacy means exactly that given an initial density,
all subsequent predicted and posterior densities have the same form as the initial density. In other
words, the families of conjugate priors densities are closed-form in Bayes inference. The conjugacy
of the GLMB and PMBM families under the standard multi-target dynamic and observation models
is a remarkable advantage in MTT, since the Bayes recursions for non-conjugate RFS densities are
usually intractable because of their high computation costs. As a result, both the δ-GLMB and PMBM
filters have much better MTT performance than other multi-target RFS filters, such as probability
hypothesis density (PHD) [16], cardinality-balanced multi-target multi-Bernoulli (CBMeMBer) [17],
and cardinalized PHD (CPHD) [18].

With the rapid development of RFS theory, the RFS-based sensor control methods for MTT have
also become a new research hotspot. By the use of RFS, the problem of MTT and sensor control can be
unified as a partially observed Markov decision process (POMDP) [19] within the Bayes framework.
A recursion of the POMDP for sensor control is: Given the previous sensor control command and
observations, the current control command is just the optimal solution of a specified objective function
(also called cost or reward function); then the current observations are received by the sensors after
executing the control command; finally, the Bayes update and prediction steps are completed.

Based on this, some results [20–26] have been achieved recently for the single sensor control for
MTT. However, the control complexity will increase significantly for the multi-sensor cases. To the best
of our knowledge, there are only two methods for the multi-sensor control until now, which are the
maximization of Cauchy-Schwarz (CS) divergence in [27] and the minimization of posterior expected
error of cardinality and states (PEECS) in [28]. Both methods are based on the distributed processing
architecture, so the rule of generalized covariance intersection (GCI) [29,30] has to be used to obtain
the multi-sensor posterior density by the fusion of the local posterior densities of all individual sensor
nodes. However, so far there has still been no reliable basis for setting the normalized fusion weight of
each sensor in GCI. In the two existing methods, the fusion weights of GCI are only determined based
on experience. For example, when the sensors have the same or similar observation performance,
the weights can be set to the same; conversely, it is difficult to find an effective method to set the
weights correctly. In addition, although the commands of the multi-sensor control problem can be
found by exhaustive search method, its computation cost will increase significantly with the increase
of the number of sensors. The coordinate descent method [31] was applied by Wang et al. [28] to
reduce the computation cost by finding a suboptimal multi-sensor control command. But this method
can only be used for the unconstrained multi-sensor control problem. In fact, except the single-sensor
control algorithm in [26], the other RFS-based sensor control methods do not consider the possible
constraint conditions.

In this paper, a new constrained multi-sensor control algorithm is proposed for MTT by
performing the multi-target Bayes recursion with the δ-GLMB filter as well as taking the multi-target
mean-square error (MSE) bound as the cost function. Since the error here refers to the distance between
the multi-target state set and its estimation, it is defined by the second-order optimal sub-pattern
assignment (OSPA) metric [32] rather than the traditional Euclidean metric for random vectors. In fact,
the former has been widely applied in evaluating the estimation accuracy for MTT algorithms. In order
to obtain the lower bound of this error, we firstly need to extend the usual information inequality [33]
for measurement vector to RFS observation. The bounds of this paper are conditioned on the specific
observation setups to the current moment, which contain useful information about the realization
of multi-target states. As a result, it can more accurately indicate the multi-target online estimation
performance, and is more suitable for real-time sensor control than the unconditional bounds [34].
The latter are obtained by taking the expectation with regards to the joint density of states and
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measurements, so that they average out the valuable information about state realization and are only
decided by the dynamic and observation models.

When the number of sensors is relatively large, it is infeasible to find the optimal control
commands by using the exhaustive search method due to its very high computation cost. To tackle
this, two suboptimal methods, called the mixed penalty function (MPF) method [35] and the complex
method [36], are proposed to reduce the calculation burden for solving the constrained optimization
problem in the multi-sensor control. At last, our method does not need to adopt the GCI fusion rule
since it is performed based on a centralized processing structure.

Finally, the simulation results show that for the constrained multi-sensor control system with
distinct observation performance, our method can provide a more effective sensor control strategy
than the GCI-based CS divergence method in [27], and so its multi-target estimation accuracy is much
better than the latter. Furthermore, compared with the exhaustive search method, both of the MPF and
complex methods can significantly reduce the computation time for the constrained sensor control
especially in the cases with a large number of sensor nodes at the expense of completely acceptable
loss of tracking accuracy.

The current version of the proposed algorithm is based on a centralized processing architecture, so
it is appropriate for the environment where the individual sensors have no data processing capabilities
and the reliability of communications between the fusion center and each of the sensor nodes is
necessary. Because of this, the current algorithm cannot be used directly for a distributed sensor
network of geographically dispersed sensor nodes with limited communication, independent data
processing capabilities, and no central fusion node. One of our future work will focus on extending
the proposed algorithm to a distributed processing architecture.

The rest of this paper is organized as follows. Section 2 describes the problem of constrained
multi-sensor control for MTT within the RFS framework. In Section 3, a multi-target MSE bound is
obtained as the cost function of multi-sensor control, and then a detailed recursion of our method is
summarized. In Section 4, the MPF and complex methods are proposed to reduce the computation
cost of our method. Section 5 verifies the effectiveness of our method by two simulation examples.
Conclusions and future work are given in Section 6. Mathematical proofs are attached in the Appendix.

2. Problem Formulation

First, some necessary instructions on the symbols and functions of this paper are presented
as follows.

For easy distinction, we used italics to indicate the unlabeled variables and boldface to indicate
the labeled variables. For example, the conventional unlabeled state vector, measurement vector,
and their sets are marked as x, z, X, and Z, while the labeled state vector and its set are marked as x
and X. Let Xn, Xn, and |X| respectively denote a n-element set, the space of Xn and the cardinality of
X. δY(X), 1Y(X), and pX are the generalized functions of Kronecker delta, inclusion indicator, and the
multi-target exponential, respectively:

δY(X) ,

{
1, if X = Y
0, otherwise

(1)

1Y(X) ,

{
1, if X ⊆ Y
0, otherwise

(2)

pX ,

 ∏
x∈X

p(x), X 6= ∅

1, X = ∅
(3)

where 1Y({x}) is usually abbreviated as 1Y(x).



Sensors 2018, 18, 2308 4 of 24

Let x̂ be an unbiased estimate of x from Zm and let f (x, Zm) be a joint density of (x, Zm) over
the space X1 ×Zm. Then, assuming that regularity conditions hold and ∂2 log f (x, Zm)/∂xi∂xj exists,
the generalized information inequality is obtained by extending the definition of the usual information
inequality [33] for random vector to the space of RFS observation,

∫
Zm

∫
X1

f (x, Zm)
(

xl − x̂l
)2

dxdz1:m ≥
[

J−1
m
]l,l , l = 1, . . . , L (4)

where z1:m , z1, . . . , zm, L is the dimension of x, xl and x̂l are the lth components of x and x̂, and Jm is
the L× L Fisher information matrix (FIM) conditioned on |Z|= m with the components:

[Jm]
i,j = −E f

[
∂2 log f (x,Zm)

∂xi∂xj

]
= −

∫
Zm

∫
X1

f (x, Zm)
∂2 log f (x,Zm)

∂xi∂xj dxdz1:m, i, j = 1, . . . , L (5)

According to [33], (4) is satisfied with equality if and only if the density f (x, Zm) obeys
a distribution of exponential family.

Assume that multiple independently moving targets are observed by s independently controllable
sensors. Targets may die, survive, or be born over time. Sensors may receive the measurements from
targets and clutters, or miss detection. The set X of multi-target states is modeled as a labeled RFS
over the space X×L, where X and L respectively represent the state space and discrete label space.
The survival probability and transition density of a single-target state x = (x, `) ∈ X are, respectively,
pS(x, `) and f ( x, `|x′, `′)δ`′(`), where x′ = (x′, `′) is the state of the target at the last time.

The set Zi of the ith (i = 1, . . . , s) sensor’s measurements is modeled as a RFS over the space
Zi. Let zi ∈ Zi be a single measurement vector and ui ∈ Ui the control command, where Ui is the
command space. The clutter is modeled as a Poisson RFS with the intensity:

κi
(

zi
)
= λi f i

κ

(
zi
)

(6)

where λi and f i
κ

(
zi) are the averaged clutter number per scan and single-clutter density, respectively.

According to [8], the likelihood gi(Zi
∣∣X, ui ) can be written as:

gi
(

Zi
∣∣∣X, ui

)
= e−λi

[
κi
]Zi

∑
θi∈Θi

δ
(θi)

−1
({0:|Zi |})(L(X))

[
ψi

Zi ,ui

(
·; θi
)]X

(7)

where L(X) is the label set of X, θi is the association map L→
{

0 :
∣∣Zi
∣∣} , {0, 1, . . . ,

∣∣Zi
∣∣} and Θi is

the space of θi:

ψi
Zi ,ui

(
x, `; θi

)
= δ0

(
θi(`)

)(
1− pi

D

(
x, `, ui

))
+
(

1− δ0

(
θi(`)

)) pi
D
(
x, `, ui)gi

(
zi

θi(`)

∣∣∣x, `, ui
)

κi
(

zi
θi(`)

) (8)

where pi
D
(

x, `, ui) and gi( zi
∣∣x, `, ui) are, respectively, the detection probability and likelihood of

a single target.
In order to simplify the formulas of this paper, we omitted the two cumulative sequences of

multi-sensor measurement sets and control commands up to the last time, and used the subscript
‘+’ to indicate the predicted density or variable. Define that Z1:s , Z1, . . . , Zs and u1:s , u1, . . . , us.
Within the Bayes framework, the estimated set X̂ of multi-target states from the measurement sets Z1:s

of the s independently controllable sensors is obtained by the recursion of the posterior multi-target
density π

(
X|Z1:s, u1:s):

π+(X) =
∫

f
(

X|X′
)
π
(
X′
)
δX′ (9)

π
(

X|Z1:s, u1:s
)
=

∏s
i=1 gi(Zi

∣∣X, ui)π+(X)∫
∏s

i=1 gi
(

Zi
∣∣X, ui

)
π+(X)δX

(10)
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where X′ is the set of multi-target states at the last time, π+(X) and f (X|X′) are the predicted and
transition densities of the multi-target state set, and

∫
·δX denotes the integration of a labeled RFS,

which is defined by: ∫
b(X)δX =

∞

∑
n=0

1
n! ∑

`1:n∈Ln

∫
Xn

b(Xn)dx1:n (11)

where b(X) is a function of X, x1:n , x1, . . . , xn and `1:n , `1, . . . , `n.
The purpose of the constrained multi-sensor control for the Bayes MTT system is to find

the optimal multi-sensor control commands
[
u1:s]∗ before the measurement sets Z1:s are received,

which satisfies: [
u1:s]∗ = argmin/max

u1:s∈U1:s
ϑ
(
u1:s; π+

)
s.t.

{
γi
(
u1:s; π+

)
≥ 0 i = 1, . . . , l

νj
(
u1:s; π+

)
= 0 j = 1, . . . , m

(12)

where ϑ
(
u1:s; π+

)
, γi
(
u1:s; π+

)
≥ 0 and νj

(
u1:s; π+

)
= 0 are the objective function, i is the inequality

constraint, and j is the equality constraint of the control commands u1:s, given the predicted multi-target
density π+(X); u1:s ∈ U1:s denotes u1 ∈ U1, . . . , us ∈ Us. The specific forms of γi

(
u1:s; π+

)
and

νj
(
u1:s; π+

)
are usually determined according to the system requirements or prior knowledge. Let:

U1:s
D =

{
u1:s ∈ U1:s

∣∣∣γi

(
u1:s; π+

)
≥ 0, i = 1, . . . , l; νj

(
u1:s; π+

)
= 0, j = 1, . . . , m

}
(13)

be the feasible domain of u1:s, U1:s
D ⊆ U1:s.

The current version of this paper only focuses on the multi-sensor one-step ahead control.
Our method can be extended to the case of H-step ahead control by replacing the one-step predicted
density π+(X) with the H-step predicted density π+H(X).

3. Multi-Sensor Multi-Target MSE Bound

The labeled RFS-based MSE for the multi-target Bayes estimation from the s independently
controllable sensors is defined by:

σ2(u1:s) , E
[
e2(X, X̂

)]
=
∫
Zs · · ·

∫
Z1

∫
X×L f

(
X, Z1:s

∣∣u1:s)e2(X, X̂
)
δXδZ1:s

=
∫
Zs · · ·

∫
Z1

∫
X×L

s
∏
i=1

gi(Zi
∣∣X, ui)π+(X)e2(X, X̂

)
δXδZ1:s

(14)

where f
(

X, Z1:s
∣∣u1:s) is the joint density of

(
X, Z1:s) conditioned on u1:s, and e

(
X, X̂

)
is the error

between X and X̂.
In this paper, the optimal multi-sensor control commands are obtained by minimizing the lower

bound σ2(u1:s) of σ2(u1:s). For simplicity, the predicted multi-target density π+(X) is treated as
a default condition and no longer explicitly appears in (12). Then, (12) can be rewritten as:[

u1:s]∗ = argmin
u1:s∈U1:s

σ2(u1:s)
s.t.

{
γi
(
u1:s) ≥ 0 i = 1, . . . , l

νj
(
u1:s) = 0 j = 1, . . . , m

(15)

The following three assumptions are given in order to obtain σ2(u1:s).
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Assumption 1. The error e
(
X, X̂

)
is defined by the second-order OSPA metric [32]:

e
(
X, X̂

)
,



0
∣∣X̂∣∣=∣∣X∣∣= 0 min

τ∈Γmax(|X̂|,|X|)

min(|X̂|,|X|)
∑

i=1
min

(
c2,‖xi−x̂τi ‖

2
)
+c2abs(|X̂|−|X|)

max(|X̂|,|X|)


1
2 ∣∣X̂∣∣+∣∣X∣∣> 0

(16)

where Γn is a set of all permutations on {1, . . . , n} and τ = {τ1:n} is an element of Γn, c is a cut-off
parameter, max(·), min(·), abs(·), and ||·|| denote the operations of taking the maximum, minimum,
absolute value and 2-norm.

Assumption 2. The multi-target Bayes recursion is performed by the δ-GLMB filter. So, the predicted
multi-target density π+(X) is δ-GLMB of the form:

π+(X) = ∆(X) ∑
(I,ξ)∈F (L)×Ξ

δI(L(X))ω
(I,ξ)
+

[
p(ξ)+

]X
(17)

where ∆(X) , δ|X|(|L(X)|) is a distinct indicator for the labels of X, I ∈ F (L) is a track label set in the
collection F (L) of finite subsets of L, ξ ∈ Ξ is a cumulative sequence of multi-sensor association maps
up to the last time in the discrete space Ξ, the weight ω

(I,ξ)
+ denotes the probability that the track set I

has an association history ξ, and p(ξ)+ (x) is the predicted density of a labeled state x given ξ.

According to the conjugacy of the δ-GLMB filter, the predicted and posterior multi-target δ-GLMB
densities are closed under the Bayes recursion.

Assumption 3. Maximum a posterior (MAP) detection and unbiased estimation criteria. The joint multi-target
estimator or marginal multi-target estimator [8] can theoretically be used to obtain the optimal estimate of
multi-target state set X from the posterior density π

(
X|Z1:s, u1:s). However, both of the estimators are very

hard to calculate. Actually, almost all of the multi-target Bayes filters adopt a suboptimal method, where the
target number estimate is firstly obtained by using a MAP detector and then the individual state estimates are
obtained by using an unbiased estimator based on the estimated target number. So, the two criteria are also
adopted in our paper to be consistent with most of multi-target filters.

Lemma 1. Given Assumptions 2 and 3, MAP detector determines
∣∣X̂∣∣= n̂ (n̂ = 0, 1, . . . , ∞) if and only if

Z1:s ⊆ Z1:s
n̂ :

Z1:s
n̂ =

{
Z1:s ⊆ Z1:s : n̂ = argmax

n

(
∑

(I,ξ)∈Fn(L)×Ξ
∑

θ1:s∈Θ1:s
ω
(ξ,θ1:s)

Z1:s ,u1:s(I)

) }
(18)

where Z1:s , Z1 × · · · ×Zs is the joint measurement space of the s sensors, Z1:s
n̂ , Z1

n̂ × · · · ×Zs
n̂ is the

subspace of Z1:s where the target number is estimated as n̂, Z1:s
0 ,Z1:s

1 , . . . ,Z1:s
∞ constitute a partition of

Z1:s, θ1:s ∈ Θ1:s denotes θ1 ∈ Θ1, . . . , θs ∈ Θs, and Fn(L) is the collection of n-element subsets of L,

ω
(ξ,θ1:s)

Z1:s ,u1:s(I) =
ω
(I,ξ)
+

〈
p(ξ)+ (·, `),

s
∏
i=1

δ
(θi)

−1
({0:|Zi |})(I)ψi

Zi ,ui

(
·, `; θi)〉I

∑
(I,ξ)∈F (L)×Z

ω
(I,ξ)
+ ∑

θ1:s∈Θ1:s

〈
p(ξ)+ (·, `),

s
∏
i=1

δ
(θi)

−1
({0:|Zi |})(I)ψi

Zi ,ui

(
·, `; θi

)〉I (19)

actually indicates the conditional probability that the track label set is I, the association maps
up to the last time are ξ, and the current association map is θ1:s, given Z1:s and u1:s, the sum

∑
(I,ξ)∈Fn(L)×Ξ

∑
θ1:s∈Θ1:s

ω
(ξ,θ1:s)

Z1:s ,u1:s(I) in (18) actually indicates the posterior probability P
(
|X|= n |Z1:s, u1:s).
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The detailed derivations of (18) and (19) are given in the proof of Lemma 1, which will be shown in
Appendix A.

Define that Z1:s
m1:s , Z1

m1 , . . . , Zs
ms and Z1:s

m1:s , Z1
m1 × · · · × Zs

ms is the space of Z1:s
m1:s , where the

subscript mi is the number of measurements received by the ith sensor. Let q
(

Xn, Z1:s
m1:s

∣∣∣u1:s
)

be the

joint density over the space (X×L)n ×Z1:s
m1:s conditioned on u1:s. According to Bayes formula, we get:

q
(

Xn, Z1:s
m1:s

∣∣∣u1:s
)
=

1
Ωn,m1:s(u1:s)

s

∏
i=1

gi
(

Zi
mi

∣∣∣Xn, ui
)

π+(Xn) (20)

where Ωn,m1:s
(
u1:s) is a normalization factor:

Ωn,m1:s

(
u1:s
)
= ∑

`1:n∈Ln

∫
Zs

ms

· · ·
∫
Z1

m1

∫
Xn

s

∏
i=1

gi
(

Zi
mi

∣∣∣Xn, ui
)

π+(Xn)dx1:ndz1
1:m1 · · · dzs

1:ms (21)

where zi
1:mi , zi

1, . . . , zi
mi , i = 1, . . . , s. It can be known from (21) that Ωn,m1:s

(
u1:s)/m1! · · ·ms!n!

actually indicates the probability P
( ∣∣X∣∣= n,

∣∣Z1
∣∣= m1, . . . ,

∣∣Zs
∣∣= ms

∣∣u1:s).
Let vn̂,n,m1:s

(
u1:s) be the integration of q

(
Xn, Z1:s

m1:s

∣∣∣u1:s
)

over the space (X×L)n × Z1:s
n̂,m1:s .

From (20), we get:

vn̂,n,m1:s
(
u1:s) = ∑

`1:n∈Ln

∫
Zs

n̂,ms
· · ·
∫
Z1

n̂,m1

∫
Xn

q
(

Xn, Z1:s
m1:s

∣∣∣u1:s
)

dx1:ndz1
1:m1 · · · dzs

1:ms

= 1
Ωn,m1:s(u1:s) ∑

`1:n∈Ln

∫
Zs

n̂,ms
· · ·
∫
Z1

n̂,m1

∫
Xn

s
∏
i=1

gi
(

Zi
mi

∣∣∣Xn, ui
)

π+(Xn)dx1:ndz1
1:m1 · · · dzs

1:ms

(22)

where the measurement subspace Z1:s
n̂,m1:s , Z1

n̂,m1 × · · · ×Zs
n̂,ms of the s sensors in the integral region

can be obtained by Lemma 1. It can be known from (22) that Ωn,m1:s
(
u1:s)vn̂,n,m1:s

(
u1:s)/m1! · · ·ms!n!

actually indicates the probability P
( ∣∣X̂∣∣= n̂,

∣∣X∣∣= n,
∣∣Z1
∣∣= m1, . . . ,

∣∣Zs
∣∣= ms

∣∣u1:s).
Substituting (7) and (17) into (21) and (22), and then according to Lemma 12 of [9], Ωn,m1:s

(
u1:s)

and vn̂,n,m1:s
(
u1:s) are finally obtained as:

Ωn,m1:s
(
u1:s) = n!e−∑s

i=1 λi s
∏
i=1

[
λi]mi

∑
(I,ξ)∈Fn(L)×Ξ

ω
(I,ξ)
+ ∑

θ1:s∈Θ1:s

〈
p(ξ)+ (·, `),

s
∏
i=1

δ
(θi)

−1
({0:mi})(I)ϕi

ui

(
·, `; θi)〉I

(23)

vn̂,n,m1:s
(
u1:s) = n!e−∑s

i=1 λi

Ωn,m1:s(u1:s)

s
∏
i=1

[
αi

n̂λi]mi

∑
(I,ξ)∈Fn(L)×Ξ

ω
(I,ξ)
+ ∑

θ1:s∈Θ1:s

〈
p(ξ)+ (·, `),

s
∏
i=1

δ
(θi)

−1
({0:mi})(I)φi

n̂,ui

(
·, `; θi)〉I

(24)

where:

ϕi
ui

(
x, `; θi

)
= δ0

(
θi(`)

)(
1− pi

D

(
x, `, ui

))
+
(

1− δ0

(
θi(`)

)) pi
D
(
x, `, ui)
λi (25)

φi
n̂,ui

(
x, `; θi

)
= δ0

(
θi(`)

)(
1− pi

D

(
x, `, ui

))
+
(

1− δ0

(
θi(`)

)) βi
n̂ pi

D
(
x, `, ui)

αi
n̂λi

(26)

αi
n̂ =

∫
Zi

n̂,1

f i
κ

(
zi
)

dzi (27)

βi
n̂ =

∫
Zi

n̂,1

gi
(

zi
∣∣∣x, `, ui

)
dzi (28)

Because q
(

Xn, Z1:s
m1:s

∣∣∣u1:s
)

is permutation invariant over x1:n, its marginal density over any of x1:n

is the same and can be derived by:

qn

(
x, Z1:s

m1:s

∣∣∣u1:s
)
=
∫
Xn−1

q
(
{x, x2:n}, Z1:s

m1:s

∣∣∣u1:s
)

dx2:n (29)
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Substituting (20) into (29), and then according to (17) and the identical equation δn(|{`, `2:n}|) =
δn−1(|{`2:n}|)

(
1− 1{`2:n}(`)

)
, qn

(
x, Z1:s

m1:s

∣∣∣u1:s
)

can be written as:

qn

(
x, Z1:s

m1:s

∣∣∣u1:s
)
= 1

Ωn,m1:s(u1:s) ∑
`2:n∈Ln−1

δn−1(|{`2:n}|)
(

1− 1{`2:n}(`)
)

∑
(I,ξ)∈Fn(L)×Ξ

ω
(I,ξ)
+ δI({`, `2:n})

·
∫
Xn−1

s
∏
i=1

gi
(

Zi
mi

∣∣∣{x, x2:n}, ui
)

p(ξ)+ (x)
n
∏

t=2
p(ξ)+ (xt)dx2:n

(30)

Suppose that r out of s sensors receive the measurement arising from state x and their indices
are marked as i1 6=, . . . , 6= ir, while the indices for the other sensors are marked as i1+r 6=, . . . , 6= is,
r = 0, 1, . . . , s. Substituting (7) into (30) and then simplifying the result, we get:

qn

(
x, `, Z1:s

m1:s

∣∣∣u1:s
)

= 1
Ωn,m1:s(u1:s)

e−∑s
i=1 λi s

∏
i=1

[
κi]Zi

∑
(I,ξ)∈Fn(L)×Ξ

1I(`)ω
(I,ξ)
+ p(ξ)+ (x, `) ∑

θ1:s∈Θ1:s
∑

0≤i1 6=,..., 6=ir≤s
∑

zi1∈Z
i1
mi1

· · · ∑
zir∈Zir

mir
r

∏
j=1

δ
(θ

ij )
−1

({0:mij−1})
(I − {`})p

ij
D

(
x, `, uij

)
gij
(

zij
∣∣∣x, `, uij

)
·

s
∏

j=1+r
δ
(θ

ij )
−1

({0:mij})
(I − {`})

(
1− p

ij
D

(
x, `, uij

))
·
〈

p(ξ)+ (·, `),
r

∏
j=1

ψ
ij

Z
ij

m
ij
−{zij},uij

(
·, `; θij

)
·

s
∏

j=1+r
ψ

ij

Z
ij

m
ij

,uij

(
·, `; θij

)〉I−{`}

(31)

where θij is the association map Ln−1 →
{

0 : mij − 1
}

for j = 1, . . . , r or Ln−1 →
{

0 : mij
}

for
j = 1 + r, . . . , s.

Theorem 1. Given Assumptions 1–3, the lower bound for the multi-sensor multi-target MSE in (14) is
obtained as:

σ2(u1:s) = ∞
∑

ms=0
· · ·

∞
∑

m1=0

∞
∑

n=0

∞
∑

n̂=0,n+n̂>0

Ωn,m1:s(u1:s)vn̂,n,m1:s(u1:s)
m1!···ms !n!

(
ε n̂,nΦn̂,n,m1:s

(
u1:s)+ (1− ε n̂,n)c2) (32)

where c is the cut-off of OSPA, Ωn,m1:s
(
u1:s) and vn̂,n,m1:s

(
u1:s) are given by (23) and (24):

Φn̂,n,m1:s

(
u1:s
)
= min

(
c2,

1
vn̂,n,m1:s(u1:s)

L

∑
l=1

[
J−1
n̂,n,m1:s

(
u1:s
)]l,l

)
(33)

ε n̂,n =
min(n̂, n)
max(n̂, n)

(34)

where L is the dimension of the unlabeled state x, Jn̂,n,m1:s
(
u1:s) is the L × L FIM conditioned on(∣∣X̂∣∣= n̂,

∣∣X∣∣= n,
∣∣Z1
∣∣= m1, . . . ,

∣∣Zs
∣∣= ms ):

[
Jn̂,n,m1:s

(
u1:s)]i,j = −1

v2
n̂,n,m1:s(u1:s)

∫
Zs

n̂,ms
· · ·
∫
Z1

n̂,m1

∫
X1

qn

(
x, Z1:s

m1:s

∣∣∣u1:s
) ∂2 log qn

(
x,Z1:s

m1:s

∣∣∣u1:s
)

∂xi∂xj dxdz1
1:m1 · · · dzs

1:ms i, j = 1, . . . , L (35)

where we set Jn̂,n,m1:s
(
u1:s) = ∞ if Z1

n̂,m1 ∪ · · · ∪ Zs
n̂,ms = ∅, n̂ = 0, 1, . . . , ∞; qn

(
x, Z1:s

m1:s

∣∣∣u1:s
)

is the
unlabeled version of (31):

qn

(
x, Z1:s

m1:s

∣∣∣u1:s
)
= ∑

`∈L1

qn

(
x, `, Z1:s

m1:s

∣∣∣u1:s
)

(36)

The proof of Theorem 1 is shown in Appendix B.

Remark 1. The subscript n̂ in (32)–(35) only represents an index for possible target number estimates. In other
words, the exact number of the estimated targets does not need to be used in the derivation of the bound of our
paper. In fact, it can be seen from Theorem 1 and Lemma 1 that given the predicted multi-target density π+(X)
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in (17), the proposed bound σ2(u1:s) is just determined by sensor likelihoods and so, is completely independent
of current specific measurements Z1:s. To go further, although the Bayes recursion of multi-target densities can
be performed by the δ-GLMB filter with centralized or distributed fusion architecture, the derivation of σ2(u1:s)
for multi-sensor control is really not affected by the fusion architecture once π+(X) is given.

Remark 2. The maximum numbers for the possible true targets, estimated targets and measurements of each
sensor over a surveillance region can usually be preset by prior knowledge. As a result, the infinite terms involved
in the summations of (32) reduce to the finite terms.

Remark 3. It can be seen from (24) and (35) that the calculation formulas of vn̂,n,m1:s
(
u1:s) and Jn̂,n,m1:s

(
u1:s)

contain the integrations over the measurement subspace Z1:s
n̂,m1:s , and it is difficult to obtain the analytic

expressions for them. Therefore, the methods of numerical integration [37] have to be used for calculation
of vn̂,n,m1:s

(
u1:s) and Jn̂,n,m1:s

(
u1:s). To reduce the computation cost, a very efficient numerical integration

method, called quasi Monte Carlo (MC) method [38], is applied here while the predicted ideal measurement sets
(PIMS) [8,25] are selected as the samples over Z1:s

n̂,m1:s in this method.

Finally, Table 1 shows a detailed recursion for the proposed algorithm of constrained multi-sensor
control and MTT.

Table 1. Recursion for constrained multi-sensor control and multi-target tracking (MTT).

Step 1: For each u1:s ∈ U1:s
D , calculate σ2(u1:s):

u Generate M samples ΨS =
{

X̃(1)
+ , . . . , X̃(M)

+

}
according to the predicted multi-target

δ-generalized labeled the multi-Bernoulli (δ-GLMB) density π+(X) in (17);

u For each X̃(j)
+ ∈ ΨS, generate predicted ideal measurement sets (PIMS) Z̃1:s,(j)

m1:s of the s sensors

according to the likelihood gi
(
·
∣∣∣X̃(j)

+ , ui
)

in (7), i = 1, . . . , s;

u For j = 1, . . . , M, assign Z̃1:s,(j)
m1:s to one of the measurement subspaces Z1:s

0,m1:s ,Z1:s
1,m1:s , . . . ,Z1:s

∞,m1:s

according to (18) and (19);
u For n̂ = 0, . . . , ∞, given the PIMS assigned to Z1:s

n̂,m1:s , vn̂,n,m1:s
(
u1:s) and Jn̂,n,m1:s

(
u1:s) can be

obtained by applying quasi MC method to (24) and (35);
u calculate Ωn,m1:s

(
u1:s), Φn̂,n,m1:s

(
u1:s) and ε n̂,n according to (23), (33) and (34);

u σ2(u1:s) is obtained by substituting the calculated results of vn̂,n,m1:s
(
u1:s), Ωn,m1:s

(
u1:s), ε n̂,n and

Φn̂,n,m1:s
(
u1:s) into (32);

Step 2: Calculate the optimal multi-sensor control commands
[
u1:s]∗ according to (15);

Step 3: The real measurement sets Z1:s are received by the s sensors after executing the control commands[
u1:s]∗

Step 4: The posterior multi-target δ-GLMB density π
(

X|Z1:s, u1:s) is obtained by substituting Z1:s into the
update step of δ-GLMB filter;

Step 5: Extract the estimated set X̂n̂ of multi-target states from π
(

X|Z1:s, u1:s) according to Assumption 3;
Step 6: Given that π

(
X|Z1:s, u1:s), the predicted multi-target δ-GLMB density π+(X) at the next time is

obtained according to the prediction step of δ-GLMB filter; go to Step 1.

4. Optimization for Constrained Multi-Sensor Control

When the number of sensors is small and the command space U1:s is discrete, the exhaustive
search method can be used to find the optimal solution for the constrained multi-sensor control
problem described in (12) or (15). But its computation cost will increase rapidly with the increase of
the number of sensors. To avoid this as much as possible, two alternative methods, called the MPF
method [35] and complex method [36], are proposed to calculate the suboptimal solution of (15).
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MPF method: The constrained optimization in (15) can be relaxed to the corresponding
unconstrained optimization by constructing the augmented objective function:

F
(

u1:s, r
)
= σ2

(
u1:s
)
+ r

l

∑
i=1

γ−1
i

(
u1:s
)
+

1√
r

m

∑
j=1

ν2
j

(
u1:s
)

(37)

where r > 0 is a barrier factor, the first penalty term ∑l
i=1 γ−1

i
(
u1:s) is to restrict the search into the area

determined by inequality constraints, the second penalty term ∑m
j=1 ν2

j
(
u1:s) is to force the search to

approach the area determined by equality constraints.
Then, all unconstrained optimization methods can be used to solve the relaxed problem.

The classic coordinate descent method [31] for unconstrained optimization is chosen here. Table 2
shows the main steps for the MPF method of this paper.

Table 2. Mixed penalty function (MPF) method for constrained multi-sensor control.

Step 1: Select an initial control command u1:s
(0) that satisfies inequality constraints, initial barrier factor r,

and reduction coefficient 0 < C < 1, set i = 0.

Step 2: For j = 1, . . . , s, calculate uj
(i+1) = argmin

uj
F
(

u1
(i+1), . . . , uj−1

(i+1), uj, uj+1
(i) , . . . , us

(i), r
)

, where only uj is

the variable and the others are treated as constants.
Step 3: If ∑s

j=1 ‖u
j
(i+1) − uj

(i)‖ ≤ ε2, then go to Step 4, otherwise set i = i + 1, go to Step 2.

Step 4: If ∑s
j=1 ‖u

j
(i+1) − uj

(0)‖ ≤ ε1, then u1:s
(i+1) is outputted as the solution of (15), otherwise set r = Cr,

u1:s
(0) = u1:s

(i+1), i = 0 and go to Step 2.

In the MPF method, the improper initial barrier factor r can cause the penalty function to become
ill-conditioned. Such that the relaxed unconstrained optimization is rather difficult to be calculated.
In order to increase the probability to converge to the global optimum and speed up convergence
rate for the MPF method, the initial control command u1:s

(0), the initial barrier factor r and reduction
coefficient C can be appropriately selected by means of the rules proposed in [35].

Complex method: This method is suitable for the situations with only inequality constraints.

Let
→
u =

[[
u1]T, . . . , [us]T

]T
be the total vector of control commands for the s sensors,

→
UD be the

feasible domain of
→
u , N be the dimension of

→
u . Table 3 shows the main steps for the complex method

of this paper.
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Table 3. Complex method for constrained multi-sensor control.

Step 1:
→
u 1, . . . ,

→
u k ∈

→
UD (N + 2 ≤ k ≤ 2N) as the k vertexes of initial complex.

Step 2: Find the worst vertex
→
u W which satisfies σ2

(→
u W

)
= max

{
σ2
(→

u 1

)
, . . . , σ2

(→
u k

)}
and the best

vertex
→
u B which satisfies σ2

(→
u B

)
= min

{
σ2
(→

u 1

)
, . . . , σ2

(→
u k

)}
from the k vertexes.

Step 3: Calculate the center vertex
→
u C by use of the residual k− 1 vertexes after excluding

→
u W ,

→
u C = 1

k−1

(
k
∑

i=1

→
u i −

→
u W

)
. If
→
u C ∈

→
UD, then go to Step 4; otherwise go to Step 1 to reselect the new

initial vertexes.
Step 4: Calculate the reflecting vertex

→
u R of

→
u W with

→
u C as the axis,

→
u R =

→
u C + t

(→
u C −

→
u W

)
, where t > 0

is a reflecting coefficient. If
→
u R ∈

→
UD, then go to Step 5; otherwise set t = 0.5t and repeat Step 4.

Step 5: If σ2
(→

u R

)
< σ2

(→
u W

)
, then set

→
u W =

→
u R and go to Step 6; otherwise set t = 0.5t and go to Step 4.

Note that if t has become very small (i.e., t is less than 10−5) but σ2
(→

u R

)
< σ2

(→
u W

)
is still not

satisfied, then it means that the reflecting direction formed by
→
u W and

→
u C is inappropriate. In order

to change the reflecting direction, set
→
u W =

→
u SW and go to Step 3, where

→
u SW is the

second-worse vertex.

Step 6: If
(

1
k

k
∑

i=1

[
σ2
(→

u C

)
− σ2

(→
u i

)]2
) 1

2

≤ ε1 or max
1≤i≤k

‖→u i −
→
u C‖ ≤ ε2, then

→
u B is output as the solution of

(15), otherwise go to Step 2.

In Table 3, the initial reflection coefficient t is generally first taken as t = 1.3, and in order to
avoid dimensionality reduction, the vertexes

→
u 1, . . . ,

→
u k of the initial complex can be selected in terms

of the rules proposed in [36]. For increasing the probability to converge to the global optimum for
the complex method, Krus et al. [39] designed an improved computation formula for the reflecting
vertex

→
u R. The advantages of the new formula are that it can make

→
u R move close to the best vertex

→
u B gradually and may help

→
u R to jump out of the local optima by introducing a random noise item.

However, this method will increase some convergence time. Due to space limitations, the detail for
this is not presented here and it can be found in [39].

5. Simulations

5.1. Example 1: Scenarios with a Small Number of Sensors

In a two-dimensional area S = [−50m, 50m]× [−50m, 50m], multiple targets are observed by
s = 4 position-controllable sensors. The observation period is T = 30 time steps. The single-target
state is noted as x = (x, `) with label ` = (kB, iB), where kB is the birth time of the target and
iB is the index for distinguishing the birth targets at the same time. The unlabeled state is noted

as x =
[

px,
.
px, py,

.
py, w

]T
, where

(
px, py

)
and

( .
px,

.
py

)
are the positions and velocities in X and Y

coordinates and w is the turn rate. The dynamic of each target is dominated by the coordinated turn
model [40] with the Gaussian transition density:

f
(

x, `|x′, `′
)
= N

(
x; u(x′), Q

)
δ`′(`) (38)

where u(·) and Q are the transition function for unlabeled state and covariance matrix for process
noise:

u(x) =


px +

.
px

sin(w∆)
w − .

py
1−cos(w∆)

w.
px cos(w∆)− .

py sin(w∆)

py +
.
px

1−cos(w∆)
w +

.
py

sin(w∆)
w.

px sin(w∆) +
.
py cos(w∆)

we−∆/τw

 (39)
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Q =



∆4

4 q2
x

∆3

2 q2
x

∆3

2 q2
x

∆2

2 q2
x

∆4

4 q2
y

∆3

2 q2
y

∆3

2 q2
y

∆2

2 q2
y

q2
w

 (40)

where ∆ is the sampling interval, τw is the time correlation constant of turn rate w, qx, and qy are the
accelerations in X and Y coordinates, and qw is the noise standard deviation of turn rate w. In this
example, we set ∆ = 1 s, τw = 20 s, qx = 0.1 m/s2, qy = 0.05 m/s2 and qw = 0.01 rad/s. The survival
probability is set as pS(x, `) = 0.95.

The set of new-birth targets is modeled as a labeled Poisson RFS with the intensity:

DB(x) =
5

∑
i=1

0.04N (x; xB,i, QB) (41)

where the unlabeled new-birth states are assumed to follow the Gaussian distributions with mean
xB,i and covariance matrix QB. In this example, we set xB,1 = [30 m, 1 m/s,−30 m, 2 m/s, 0.2 rad/s]T,
xB,2 = [30 m,−5 m/s, 30 m,−3 m/s, 0.2 rad/s]T, xB,3 = [−30 m,−3 m/s,−30 m, 4 m/s,−0.3 rad/s]T,
xB,4 = [−30 m, 1 m/s, 30 m,−3 m/s, 0.1 rad/s]T, xB,5 = [0 m,−4 m/s, 0 m, 4 m/s,−0.3 rad/s]T,
QB = diag(25 m2, 0.1 m2/s2, 25 m2, 0.1 m2/s2, 0.01 rad2/s2) and diag(·) denotes a diagonal matrix.

The initial sensor positions are set as u1
0 = [45 m, 45 m]T, u2

0 = [−45 m,−45 m]T,

u3
0 = [45 m,−45 m]T, u4

0 = [−45 m, 45 m]T. Given the ith sensor’s position u′i =
[

p′ix,u, p′iy,u

]T
at the last

time, after executing a control command its possible positions at the current time can be described as a set:

Ui =

{ [
p′ ix,u + jρ0 cos

(
k 2π

Nθ

)
, p′ iy,u + jρ0 sin

(
k 2π

Nθ

)]T
; j = 0, . . . , Nρ; k = 1, . . . , Nθ

}
(42)

where Nρ = 2, Nθ = 8 and ρ0 = 5 m. (42) implies that each sensor has 17 possible positions under
a control command. The proposed bound is set as ∞ if one of the sensors moves out of the region S .

The single-target likelihood of each sensor is assumed to be the Gaussian density

gi( zi
∣∣x, `, ui) = N (zi; hi(x, ui), Ri(x, ui)) i = 1, . . . , 4 (43)

where hi(x, ui) and Ri(x, ui) are the observation function and covariance matrix for measurement
noise. Both of them are the functions of unlabeled state x and control command ui,

hi(x, ui) = [ρi(x, ui),i (x, ui)]T, Ri(x, ui) = diag
([

ςi
ρ

(
x, ui)]2

,
[
ςi(x, ui)]2) i = 1, 2

h3(x, u3) = ρ3(x, u3), R3(x, u3) = [ς3
ρ

(
x, u3)]2

h4(x, u4) =4 (x, u4), R4(x, u4) = [ς4(x, u4)]2
(44)

where ρi(x, ui) and i(x, ui) are the distance and angle between state x and the ith sensor, ςi
ρ

(
x, ui) and

ςi(x, ui) are their measurement noise standard deviation:

ρi(x, ui) = ‖[x(1, 1), x(3, 1)]T − ui‖ i = 1, 2, 3
i(x, ui) = arctan

x(3,1)−pi
y,u

x(1,1)−pi
x,u

i = 1, 2, 4

ςi
ρ

(
x, ui) = ςi

0,ρ + ηi
ρρi(x, ui) i = 1, 2, 3

ςi(x, ui) = ςi
0, + ηiρi(x, ui) i = 1, 2, 4

(45)
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where
(

ςi
0,ρ, ςi

0,

)
and

(
ηi

ρ, ηi
)

are the zero-distance measurement noise standard deviations and their
increment rates along with the target-sensor distance for the ith sensor. In this example, we set
ς1

0,ρ = 1 m, η1
ρ = 0.1, ς1

0, = 0.02 rad, η1 = 0.002 rad/m; ς2
0,ρ = 5 m, η2

ρ = 0.02, ς2
0, = 0.1 rad,

η2 = 0.0004 rad/m; ς3
0,ρ = 2.5 m, η3

ρ = 0.05; ς4
0, = 0.05 rad, and η4 = 0.001 rad/m.

The detection probability for each sensor is:

pi
D
(

x, `, ui) = pi
0,D
(
1− ηi

Dρi(x, ui)) i = 1, . . . , 4 (46)

where pi
0,D and ηi

D are the zero-distance detection probability and its decrement rate along with
the target-sensor distance for the ith sensor. In this example, we set p1

0,D = 0.98, η1
D = 0.007 m−1;

p2
0,D = 0.8, η2

D = 0.001 m−1; p3
0,D = 0.92, η3

D = 0.005 m−1; p4
0,D = 0.86, and η4

D = 0.003 m−1.
The Poisson clutter intensity for each sensor is:

κi(zi) = λiU
(
zi;S

)
i = 1, . . . , 4 (47)

where U (·;S) is the uniform density over the area S . In this example, we set λ1 = 50, λ2 = 40, λ3 = 30,
λ4 = 20.

Suppose that the motion of each sensor needs to consume the energy, the amount of which is
proportional to its motion distance. It is required that the total amount of energy consumed by all
sensors for each control must not exceed the threshold E. So the inequality constraint model for energy
consumption can be written as:

γ1

(
u1:s
)
= E−

s

∑
i=1

χi‖ui − u′ i‖ ≥ 0 (48)

where χi is the amount of consumed energy per meter for the motion of the ith sensor. In this example,
we set E = 100 J, χ1 = 10 J/m, χ2 = 8 J/m, χ3 = 6 J/m, χ4 = 4 J/m.

In order to avoid the collision caused by sensor or target, it is required that the distance between
any two sensors or between any sensor and any target should not be less than the respective collision
avoidance thresholds T1 and T2. Moreover, since the true target number and positons are unknown,
here they are replaced by their predictions. Finally, the inequality constraint models for collision
avoidance can be written as:

γ2

(
u1:s
)
= min

1≤i 6=j≤s
‖ui − uj‖ − T1 ≥ 0 (49)

γ3

(
u1:s
)
= min

1≤i≤s,1≤j≤n̂+

‖ui −
[
x̂+,j(1, 1), x̂+,j(3, 1)

]T‖ − T2 ≥ 0 (50)

where the predicted target number n̂+ and the unlabeled state x̂+,j (j = 1, . . . , n̂+) can be extracted
from the predicted multi-target density π+(X) in (17). In this example, we set T1 = T2 = 5 m.

From the above sensor performance parameters, it can be seen that:
(1) Sensors 1 and 2 can receive the distance and angle measurements of a target. That is, the target

position is completely observable for the two sensors. The zero-distance observation accuracy and
detection probability of Sensor 1 are the highest, but the observation accuracy and detection probability
decrease the most quickly with the increase of the target-sensor distance. Sensor 2 is just the opposite
to Sensor 1.

(2) Sensor 3 or 4 can only receive the distance or angle measurement of a target. That is, the target
position is partially observable for the two sensors. Their zero-distance observation accuracy and
detection probability are medium, also for their decrement rates.

(3) The clutter density and energy consumption per meter of Sensor 1 are the highest, and the
corresponding parameters to Sensors 2, 3, and 4 decrease successively from high to low.
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Above all, we firstly obtained an intuitive conclusion: How to effectively control Sensor 1 so that
it can move as close as possible to the survival targets is the most important factor to improve the MTT
accuracy. In other words, Sensor 1 should have the highest control priority compared with the other
sensors. Next, we verify the conclusion by simulations.

In this example, the maximum numbers for the true targets, estimated targets, and measurements
of every sensor were set as 10, 10, and 100, respectively; the cut-off parameter of OSPA was set as
c = 100. A particle filter [41] was used to implement our methods.

According to the objective functions and optimization methods for control commands, we
abbreviated the algorithms to be compared as: CS divergence with exhaustive search, error bound
with exhaustive search, error bound with MPF, and error bound with complex. The first algorithm
is proposed in [25], while the last three algorithms are proposed in this paper. As in [27] and [28],
the GCI weights used in the CS divergence with exhaustive search were set to the same. By convention,
the random control method was still chosen as a standard comparison object to verify the effectiveness
of other sensor control algorithms. Here, the random control method was to specify the sensor
positions at each time step by randomly selecting j and k in (42) under the constraint conditions of
(48)–(50). Obviously, a well-designed sensor control algorithm is clearly useless if its performance is
even inferior to that of the random control method. All algorithms are coded by use of the software
MATLAB R2018a. The desktop computer used for testing these algorithms was a Lenovo A8800F with
the central processing unit (CPU) of an Intel core i7-8700k@3.7–4.7 GHz and 32 GB random access
memory (RAM).

In this paper, only the algorithm of CS divergence proposed outside of this paper was used in the
comparison. There were two main reasons for this:

(1) So far, there are only two multi-sensor control methods for MTT within the RFS framework:
the CS divergence based algorithm [27] and the PEECS-based algorithm [28]. Although the
two algorithms have different objective functions for multi-sensor control, their performance is very
similar since both methods are based on the distributed processing architecture and have to apply
the GCI rule to obtain the multi-sensor posterior density. Furthermore, the method of CS divergence
may slightly outperform the method of PEECS in some certain circumstances because the latter
applies an approximated δ-GLMB filter called LMB filter in each sensor node. The simulations in
Reference [30] have shown that the performance of the LMB filter will decline dramatically in the cases
of low signal-to-noise ratio (SNR).

(2) The existing multi-sensor control methods for MTT without the RFS framework [3–7] were
not suitable for comparison with our algorithm since almost all of them implicitly assume that the
data association between targets and measurements has been completed and the number of targets is
known before the sensor control.

As a result, in our opinion, the algorithm of CS divergence in [27] was the best choice to be used
in the comparison with the algorithms proposed in this paper.

Only the first two algorithms, which are the CS divergence with exhaustive search and the
error bound with exhaustive search, were compared with the random control method in Example 1.
There were two purposes for this. First, the number of the sensors in Example 1 was small and so,
the computation cost of the exhaustive search method for solving the constrained optimization in
(15) was completely acceptable. Second, we expected to clearly and separately present and analyze
the effect of different multi-sensor control strategies (i.e., CS divergence based, error bound based
and randomization based) without the influence of suboptimal algorithms (i.e., MPF and complex
methods). Therefore, the simulation results of the error bound with MPF and complex were not shown
temporarily in Figures 1 and 2 of this example, since both of them jointly reflected the influence of
control strategies and suboptimal algorithms. It was more appropriate to present the results for both of
them together with the results of other scenarios in Tables 4 and 5 of Example 2. In fact, the subsequent
results in Example 2 also indicated that when the number of sensors is relatively small, the performance
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of the error bound with MPF or complex is so close to that of the error bound with exhaustive search
that the difference among them is almost indistinguishable.

Figure 1 shows the trajectories of the four sensors by using the CS divergence with exhaustive
search and the error bound with exhaustive search in a simulation. It was obviously meaningless to
show the sensor trajectories of random control method since the sensor locations were completely
randomly specified in this method.
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Figure 1. Sensor trajectories in a simulation by using (a) CS divergence with exhaustive search and (b)
error bound with exhaustive search. The black line is the target trajectory, and ∆ are the target starting
point and ending point respectively; The color line is the sensor trajectory, � and the number above it
are the sensor position and the time when the sensor is located at the position respectively, � and I

are the sensor starting point and ending point respectively.

Figure 2 shows the 200 MC run average of the OSPA error distance for multi-target position
estimates versus time by using the methods of CS divergence with exhaustive search, error bound
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with exhaustive search, and random control. Furthermore, the proposed multi-target MSE bound is
also presented in Figure 2 as an online performance indication for the multi-sensor control algorithms.Sensors 2018, 18, x  17 of 25 
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Figure 2. 200 Monte Carlo (MC) run average of optimal sub-pattern assignment (OSPA) error distance
and proposed mean-square error (MSE) bound for multi-target position estimates versus time.

Figure 1 firstly shows that the methods of CS divergence and error bound with exhaustive search
were both able to make the sensors move close to the corresponding survival targets. For the former,
the motion distance of Sensor 4 was the longest (a total of 180 m) and the motion distance of Sensor 1
was the shortest (a total of 70 m). On the contrary, for the latter, the motion distance of Sensor 1 was
the longest (a total of 165 m) and the motion distance of Sensor 4 was the shortest (a total of 55 m).

It can be seen from Figure 2 that among the three multi-sensor control algorithms, the averaged
OSPA error distance from the error bound with exhaustive search was the smallest (finally about 8.7 m)
and closest to the multi-target MSE bound. Besides, it had the fastest descent rate (50% reduction
needs about 5 s); the averaged OSPA error distance from random control was the largest (finally about
28 m) and had the slowest descent rate (50% reduction needs about 15 s); the averaged OSPA error
distance from CS divergence with exhaustive search and its descent rate were in the middle (finally
about 19.5 m and 50% reduction needs about 10 s). This indicates that the method of the error bound
with exhaustive search had the best multi-sensor control ability, which meant that its multi-target
estimation accuracy was the highest. The random control method was the worst and the method of the
CS divergence with exhaustive search was in the middle. The main reasons for the above results are:

(1) The GCI weights in the CS divergence with exhaustive search were set as the same, which
indicates that each sensor had the same effect on the objective function (that is, the multi-sensor
multi-target CS divergence). Therefore, under a certain energy consumption constraint, Sensor 4 had
the highest control priority, since its energy consumption per meter is the smallest. Finally, it moved
the longest distance. Sensor 1 was exactly the opposite of Sensor 4.

(2) The error bound with exhaustive search avoided the GCI rule. It can be seen from Theorem 1
that the effect of the sensors on the objective function (that is, multi-sensor multi-target MSE bound)
was closely related to their likelihood functions. Therefore, even though the motion of Sensor 1
consumed the most energy per meter, it still had the highest control priority because its likelihood
function had the greatest effect on the proposed bound. Finally, it moved the longest distance. Sensor 4
was exactly the opposite of Sensor 1.

(3) Since the error bound with exhaustive search was more effective than the CS divergence
with exhaustive search for the control of Sensor 1, it had the best multi-target estimation accuracy as
shown in Figure 2. The random control did not have the ability to make the sensors move close to the
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survival targets, so its multi-target estimation accuracy was the worst. The small gap between the
multi-target MSE bound and the OSPA error distance from the error bound with exhaustive search
was generated probably because the necessary and sufficient conditions for the equality sign of the
generalized information inequality to RFS observation were not satisfied.

Above all, the simulation results were consistent with the above-mentioned intuitive conclusion.

5.2. Example 2: Scenarios with a Large Number of Sensors

In this example, the sensors of Example 1 and the energy-constrained threshold E in (48) were
increased by one to four times; that is, the sensor number s and threshold E became (s = 8, E = 200 J),
(s = 12, E = 300 J), (s = 16, E = 400 J), and (s = 20, E = 500 J). In order to jointly consider the effects
of control strategies and suboptimal algorithms, the methods of CS divergence and error bound with
exhaustive search are compared with the methods of error bound with MPF and complex, in both
the MTT accuracy and computation cost. Here the computation cost for a run of an algorithm was
indicated by its CPU processing time. Tables 4 and 5 respectively show the 200 MC run averages of
the final OSPA error distance and CPU processing time for the four methods under every scenario
(including Example 1). The corresponding multi-target MSE bound is also presented in the last line of
Table 4.

It should be noted that it is meaningless to show the relevant results of random control method in
Tables 4 and 5. This is because Example 1 has clearly indicated that the random control method always
had the worst MTT accuracy since it could not make the sensors move gradually close to the targets
according to certain information-driven or task-driven objective functions, as other sensor control
methods. Moreover, it is also obvious that the computation cost of the random control method was
much smaller than the other methods since it did not need to calculate the sensor control commands
from a designed optimization problem at all.

Table 4. 200 MC run averages of final optimal sub-pattern assignment (OSPA) error distance and
multi-target MSE bound (Unit: m).

Control Algorithms
Scenarios s = 4, E = 100 J s = 8, E = 200 J s = 12, E = 300 J s = 16, E = 400 J s = 20, E = 500 J

CS divergence with exhaustive search 19.5 m 13.9 m 9.2 m 5.8 m 4.6 m
Error bound with exhaustive search 8.7 m 6.0 m 4.6 m 3.9 m 3.6 m
Error bound with MPF 8.9 m 6.3m 5.1 m 4.5 m 4.1 m
Error bound with complex 9.0 m 6.4 m 5.1 m 4.4 m 4.0 m
Multi-target MSE bound 8.0 m 5.4 m 4.1 m 3.5 m 3.2 m

Table 5. 200 MC run averages of computer processing unit (CPU) processing time (Unit: s).

Control Algorithms
Scenarios s = 4, E = 100 J s = 8, E = 200 J s = 12, E = 300 J s = 16, E = 400 J s = 20, E = 500 J

CS divergence with exhaustive search 22 s 153 s 1062 s 7259 s 50973 s
Error bound with exhaustive search 23 s 162 s 1128 s 7698 s 53168 s
Error bound with MPF 20 s 91 s 204 s 365 s 578 s
Error bound with complex 16 s 81 s 206 s 573 s 1296 s

From Table 4, it can be seen that the OSPA error distances of all the four methods and the
multi-target MSE bound decreased with the increase of the number of sensors. The error bound
with exhaustive search was always the best and the closest to the proposed bound, while the CS
divergence with exhaustive search was always the worst. Moreover, the OSPA error distances of the
last two methods were basically close to that of the error bound with exhaustive search, though they
were up about 15% from the latter when s = 16 and s = 20. The reason for this is: At first, it is clear
that the dimensions of the control command u1:s and its space U1:s increase with the sensor number
s. The converged s-tuple control command obtained by the MPF method and complex method for
the constrained optimization of (15) may be one of local optima. Given the objective function and
constraints of the optimization, the number of the local optima increases with the dimension of the
optimized control command u1:s [35,36]. Assuming that there are a total of M local optima and one of
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them is actual the global optimum, in the worst case the probability that the MPF or complex method
converges to the global optimum will be 1/M. Therefore, although the methods proposed in [35,36,39]
can more or less improve the chance of successfully converging to the global optimum for the MPF
and complex methods, it is still inevitable that the solutions of multi-sensor control commands u1:s

from the two suboptimal algorithms are more likely to fall into local optima when the sensor number s
becomes larger. However, when the number of sensors has been relatively large (i.e., s = 16 and s = 20),
the improvement of the estimation accuracy only by increasing the new sensors becomes very limited
for all the four methods, and the gaps of their OSPA error distances become very small, too. On this
occasion, it can be understood that the improvement of MTT accuracy reaches a ‘saturated’ state as the
increase of the number of sensors.

From Table 5, it can be seen that with an increase in the number of sensors, the CPU processing
times of the two exhaustive-search based methods were almost the same (their gap is less than 5% at
every scenario), and their growth rates were significantly faster than those of the last two methods.
When the number of sensors was relatively small (i.e., s = 4 and s = 8), the error bound with complex
was the fastest and the following was the error bound with MPF. However, compared with the two
exhaustive-search based methods, they did not accelerate enough. On the contrary, when the number of
sensors was relatively large (i.e., s = 12, s = 16 and s = 20), the two suboptimal methods are significantly
faster than the two exhaustive-search based methods. Furthermore, the error bound with MPF is faster
than the error bound with complex in the case of a large number of sensors (i.e., the former was about
55% faster than the latter when s = 20). This is because that the iteration efficiency of the complex
method becomes lower and so, its convergence rate becomes slower due to the high dimension of the

optimized multi-sensor control command vector
→
u =

[[
u1]T, . . . , [us]T

]T
.

6. Conclusions and Future Work

Within the labeled RFS framework, a new constrained multi-sensor control algorithm is proposed
for improving the performance of MTT. In this method, the multi-target MSE bound is treated as the
cost function of the multi-sensor control and the control commands are just the optimal solution of the
constrained optimization problem. In order to obtain the bound by using the generalized information
inequality to RFS observation, the error between multi-target state set and its estimation is defined
by the second-order OSPA metric, and the multi-target Bayes recursion is performed by the δ-GLMB
filter. For the purpose of reducing computation cost, the MPF and complex methods are proposed
to replace the exhaustive search method to solve the constrained optimization problem in the case
of a large number of sensors. An advantage of our method is that it does not need to adopt the
GCI fusion rule to obtain the multi-sensor posterior density from all the local posterior densities of
every sensor, which avoids the possibility of improperly setting the normalized fusion weights in
GCI. Simulation results show that for the constrained multi-sensor control system with the distinct
observation performance, the multi-target estimation accuracy of our method is better than that of the
GCI-based CS divergence method. Compared with the exhaustive search method in the case of a large
number of sensors, the proposed MPF and complex methods can obviously reduce the computation
time of finding the control commands from the constrained optimization problem at the expense of
a little loss of estimation precision.

The future work will focus on the following five aspects:
(1) In current version of this paper, we implicitly assume that the communication capability

meets the requirements of the proposed algorithms, and so the influences of communication range
and bandwidth are not considered temporarily. For the sensor control problem, the limitations of
communication range and bandwidth can be modeled as the relevant constraint conditions for the
optimization of the control command. Therefore, one of our future works is to extend the proposed
multi-sensor control method to the scenarios with communication constraints.
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(2) When the number of sensors is very large, it is necessary to study the joint multi-sensor
selection and control methods due to the limitations of the computation cost, energy consumption,
communication range, and bandwidth, etc.

(3) It can be seen from [14] that PMBM filter has a strong resemblance to track-oriented multiple
hypothesis tracking (MHT) method [42]. In fact, just for sharing information, this family of PMBM
densities has the benefit that for each track hypothesis there is a Bernoulli component rather than
a target that either exists or not as in δ-GLMB density. Because of this, one of these PMBM hypotheses
can represent many δ-GLMB hypotheses with a corresponding increase in performance [15]. As a result,
it is very helpful to improve the performance of multi-sensor control by replacing the δ-GLMB filter
with the PMBM filter.

(4) Although the OSPA is currently the most popular metric in MTT, it does not penalize false
targets, missed detections and localization errors, which are the usual/intuitive errors of interest in
multitarget estimation. To solve this, a new improved metric called generalized OSPA (GOSPA) is
proposed in [43]. Therefore, one of our research plans is to extend the multi-sensor control method
of this paper based on the GOSPA metric because of its excellent consistency in mathematics and
intuition compared with the OSPA metric.

(5) Recently, the distributed sensor network has been developed rapidly because of its advantages
in scalability, flexibility, reliability, and ability of parallel computation. Therefore, it is very
valuable and urgent to extend the multi-sensor control method of this paper to the distributed
processing architecture.
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Appendix A. Proof of Lemma 1

Using the conditional probability formula, the posterior probability P
(
|X|= n |Z1:s, u1:s) can be

written as

P
(
|X|= n |Z1:s, u1:s

)
=

P
( ∣∣X∣∣= n, Z1:s

∣∣u1:s)
P(Z1:s|u1:s)

(A1)

where the numerator P
( ∣∣X∣∣= n, Z1:s

∣∣u1:s) is the joint probability of
(∣∣X∣∣= n, Z1:s ) conditioned on u1:s.

It can be obtained as

P
( ∣∣X∣∣= n, Z1:s

∣∣u1:s) = 1
n! ∑
`1:n∈Ln

∫
Xn

f
(

Xn, Z1:s
∣∣u1:s)dx1:n

= 1
n! ∑
`1:n∈Ln

∫
Xn

s
∏
i=1

gi(Zi
∣∣Xn, ui )π+(Xn)dx1:n

(A2)

Substituting (7) and (17) into (A2) and then integrating the result over the region Xn, we get

P
( ∣∣X∣∣= n, Z1:s

∣∣u1:s) = 1
n! ∑
`1:n∈Ln

∑
ξ∈Ξ

∆(Xn)ω
(I,ξ)
+ ∑

θ1:s∈Θ1:s

〈
p(ξ)+ (·, `),

s
∏
i=1

δ
(θi)

−1
({0:|Zi |})(I)ψi

Zi ,ui

(
·, `; θi)〉I

= ∑
(I,ξ)∈Fn(L)×Ξ

ω
(I,ξ)
+ ∑

θ1:s∈Θ1:s

〈
p(ξ)+ (·, `),

s
∏
i=1

δ
(θi)

−1
({0:|Zi |})(I)ψi

Zi ,ui

(
·, `; θi)〉I (A3)

where the last line is derived by Lemma 12 of [9], ψi
Zi ,ui

(
x, `; θi) is given by (8).
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Using the law of total probability, the denominator P
(

Z1:s
∣∣u1:s) of (A1) is obtained as

P
(

Z1:s
∣∣u1:s) =

∞
∑

n=0
P
( ∣∣X∣∣= n, Z1:s

∣∣u1:s)
= ∑

(I,ξ)∈F (L)×Ξ
ω
(I,ξ)
+ ∑

θ1:s∈Θ1:s

〈
p(ξ)+ (·, `),

s
∏
i=1

δ
(θi)

−1
({0:|Zi |})(I)ψi

Zi ,ui

(
·, `; θi)〉I (A4)

MAP detector determines
∣∣X̂∣∣= n̂ if

n̂ = argmax
n

{
P
(
|X|= n |Z1:s, u1:s

)}
(A5)

where

P
(
|X|= n |Z1:s, u1:s) = ∑

(I,ξ)∈Fn(L)×Ξ
∑

θ1:s∈Θ1:s

ω
(I,ξ)
+

〈
p(ξ)+ (·,`),

s
∏

i=1
δ
(θi)−1

({0:|Zi |})
(I)ψi

Zi ,ui (·,`;θi)
〉I

∑
(I,ξ)∈F (L)×Ξ

ω
(I,ξ)
+ ∑

θ1:s∈Θ1:s

〈
p(ξ)+ (·,`),

s
∏

i=1
δ
(θi)−1

({0:|Zi |})
(I)ψi

Zi ,ui (·,`;θi)
〉I (A6)

is obtained by substituting (A3) and (A4) into (A1).
To simplify (A6), let

ω
(ξ,θ1:s)

Z1:s ,u1:s(I) =
ω
(I,ξ)
+

〈
p(ξ)+ (·, `),

s
∏
i=1

δ
(θi)

−1
({0:|Zi |})(I)ψi

Zi ,ui

(
·, `; θi)〉I

∑
(I,ξ)∈F (L)×Z

ω
(I,ξ)
+ ∑

θ1:s∈Θ1:s

〈
p(ξ)+ (·, `),

s
∏
i=1

δ
(θi)

−1
({0:|Zi |})(I)ψi

Zi ,ui

(
·, `; θi

)〉I (A7)

which is exactly (19). ω
(ξ,θ1:s)

Z1:s ,u1:s(I) actually indicates the conditional probability that the track label set is

I, the association maps up to the last time are ξ and the current association map is θ1:s given Z1:s.

By the use of ω
(ξ,θ1:s)

Z1:s ,u1:s(I), (A6) can be rewritten as:

P
(
|X|= n |Z1:s, u1:s

)
= ∑

(I,ξ)∈Fn(L)×Ξ
∑

θ1:s∈Θ1:s

ω
(ξ,θ1:s)

Z1:s ,u1:s(I) (A8)

Finally, (18) can be obtained by substituting (A8) into (A5).

Appendix B. Proof of Theorem 1

From (11) and (20), (14) can be written as

σ2(u1:s) = ∞
∑

ms=0
· · ·

∞
∑

m1=0

∞
∑

n=0

Ωn,m1:s(u1:s)
m1!···ms !n! ∑

`1:n∈Ln

∫
Zs

ms
· · ·
∫
Z1

m1

∫
Xn

q
(

Xn, Z1:s
m1:s

∣∣∣u1:s
)

e2(Xn, X̂
)
dx1:ndz1

1:m1 · · · dzs
1:ms (A9)

where Ωn,m1:s
(
u1:s) is defined by (21) and finally obtained as (23).

Dividing the integral region Z1:s
m1:s of (A9) into Z1:s

0,m1:s ,Z1:s
1,m1:s , . . . ,Z1:s

∞,m1:s according to Lemma 1,

σ2(u1:s) can be rewritten as

σ2(u1:s) = ∞
∑

ms=0
· · ·

∞
∑

m1=0

∞
∑

n=0

Ωn,m1:s(u1:s)
m1!···ms !n!

∞
∑

n̂=0
∑

`1:n∈Ln

∫
Zs

n̂,ms
· · ·
∫
Z1

n̂,m1

∫
Xn

q
(

Xn, Z1:s
m1:s

∣∣∣u1:s
)

e2(Xn, X̂n̂
)
dx1:ndz1

1:m1 · · · dzs
1:ms (A10)

Substituting (16) into (A10), we get

σ2(u1:s) = ∞
∑

ms=0
· · ·

∞
∑

m1=0

∞
∑

n=0

Ωn,m1:s(u1:s)
m1!···ms !n!

∞
∑

n̂=0,n+n̂>0
∑

`1:n∈Ln

1
max(n̂,n)

∫
Zs

n̂,ms
· · ·
∫
Z1

n̂,m1

∫
Xn

q
(

Xn, Z1:s
m1:s

∣∣∣u1:s
)

·
(

min
τ∈Γmax(n̂,n)

min(n̂,n)
∑

i=1
min

(
c2, ‖xi − x̂τi‖

2
)
+ c2abs(n̂− n)

)
dx1:ndz1

1:m1 · · · dzs
1:ms

(A11)
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Given the set X̂n̂ of multi-target state estimates, let

τ∗(Xn) , argmin
τ∈Γmax(n̂,n)

{
min(n̂,n)

∑
i=1

min
(

c2, ‖xi − x̂τi‖
2
)}

(A12)

be the permutation to minimize the objective function ∑
min(n̂,n)
i=1 min

(
c2, ‖xi − x̂τi‖

2
)

in Γmax(n̂,n).
Obviously, τ∗(Xn) depends on the set Xn of true multi-target states. Through the minimization
of (A12), τ∗(Xn) actually denotes the optimal assignment of target estimates X̂n̂ to true target states Xn

under the cut-off c.
By the use of the optimal permutation τ∗(Xn) defined in (A12), (A11) becomes

σ2(u1:s) = ∞
∑

ms=0
· · ·

∞
∑

m1=0

∞
∑

n=0

∞
∑

n̂=0,n+n̂>0

Ωn,m1:s(u1:s)vn̂,n,m1:s(u1:s)
m1!···ms !n!max(n̂,n)

·

 min(n̂,n)
∑

i=1
min

(
c2, 1

vn̂,n,m1:s(u1:s) ∑
`1:n∈Ln

∫
Zs

n̂,ms
· · ·
∫
Z1

n̂,m1

∫
Xn

q
(

Xn, Z1:s
m1:s

∣∣∣u1:s
)
‖xi − x̂τ∗i (Xn)‖

2dx1:ndz1
1:m1 · · · dzs

1:ms

)
+c2abs(n̂− n)

 (A13)

where vn̂,n,m1:s
(
u1:s) is defined by (22) and finally obtained as (24).

Making use of the marginal density qn

(
x, Z1:s

m1:s

∣∣∣u1:s
)

defined by (29), the integration term in (A13)
can be rewritten as

∑
`1:n∈Ln

∫
Zs

n̂,ms
· · ·
∫
Z1

n̂,m1

∫
Xn

q
(

Xn, Z1:s
m1:s

∣∣∣u1:s
)
‖xi − x̂τ∗i (Xn)‖

2dx1:ndz1
1:m1 · · · dzs

1:ms

=
∫
Zs

n̂,ms
· · ·
∫
Z1

n̂,m1

∫
X1

qn

(
x, Z1:s

m1:s

∣∣∣u1:s
) L

∑
l=1

(
xl − x̂l

τ∗i (Xn)

)2
dxdz1

1:m1 · · · dzs
1:ms

(A14)

where L is the dimension of the unlabeled state x, qn

(
x, Z1:s

m1:s

∣∣∣u1:s
)
= ∑`∈L1

qn

(
x, `, Z1:s

m1:s

∣∣∣u1:s
)

is the
unlabeled version of (31).

Given the unbiased estimation criterion in Assumption 3, the generalized information inequality
to RFS observation in (4) can be applied to the density qn

(
x, Z1:s

m1:s

∣∣∣u1:s
)

,

∫
Zs

n̂,ms
· · ·
∫
Z1

n̂,m1

∫
X1

qn

(
x, Z1:s

m1:s

∣∣∣u1:s
)(

xl − x̂l
τ∗i (Xn)

)2
dxdz1

1:m1 · · · dzs
1:ms ≥

[
J−1
n̂,n,m1:s

(
u1:s)]l,l

l = 1, . . . , L (A15)

where Jn̂,n,m1:s
(
u1:s) is the FIM with respect to the density qn

(
x, Z1:s

m1:s

∣∣∣u1:s
)

. Jn̂,n,m1:s
(
u1:s) is obtained

as (35). (A15) is satisfied with equality if and only if the density qn

(
x, Z1:s

m1:s

∣∣∣u1:s
)

obeys a distribution
of exponential family.

Note that as the optimal permutation τ∗(Xn) depends on true target states Xn, one cannot
perform the integration on the left-hand side of the inequality (A15) as if it were independent on Xn.

However, the lower bound
[

J−1
n̂,n,m1:s

(
u1:s)]l,l

on the integration can be obtained exactly according to the

information inequality in (4). In addition, it can also be seen clearly from (35) that the FIM Jn̂,n,m1:s
(
u1:s)

in (A15) is independent of the specific state estimates X̂n̂ and the optimal permutation τ∗(Xn)

since Jn̂,n,m1:s
(
u1:s) is completely determined by the density qn

(
x, Z1:s

m1:s

∣∣∣u1:s
)

and its integral region

X1 ×Z1
n̂,m1 × · · · ×Zs

n̂,ms . As a result, for the various state estimate x̂ and permutation τ in Γmax(n̂,n),

although the value of the integration
∫
Zs

n̂,ms
· · ·
∫
Z1

n̂,m1

∫
X1

qn

(
x, Z1:s

m1:s

∣∣∣u1:s
)(

xl − x̂l
τi

)2
dxdz1

1:m1 · · · dzs
1:ms

may change, the MSE lower bound on the unbiased estimate of x is always the same as J−1
n̂,n,m1:s

(
u1:s).

Furthermore, it can be known from the references [44–50] that the integration on the left-hand side of the

inequality (A15) will achieve the minimum value and so, be closest to the lower bound
[

J−1
n̂,n,m1:s

(
u1:s)]l,l

if the unbiased estimator x̂ in (A15) is a Minimum Mean OSPA (MMOSPA) estimator.
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Substituting (A15) into (A14) and then (A13), we get

σ2(u1:s) ≥ ∞
∑

ms=0
· · ·

∞
∑

m1=0

∞
∑

n=0

∞
∑

n̂=0,n+n̂>0

Ωn,m1:s(u1:s)vn̂,n,m1:s(u1:s)
m1!···ms !n!max(n̂,n)

·
(

min(n̂,n)
∑

i=1
min

(
c2, 1

vn̂,n,m1:s(u1:s)

L
∑

l=1

[
J−1
n̂,n,m1:s

(
u1:s)]l,l

)
+ c2abs(n̂− n)

) (A16)

Since both of Jn̂,n,m1:s
(
u1:s) and vn̂,n,m1:s

(
u1:s) are clearly independent of the i = 1, . . . , min(n̂, n),

(A16) can be reduced to

σ2(u1:s) ≥ ∞
∑

ms=0
· · ·

∞
∑

m1=0

∞
∑

n=0

∞
∑

n̂=0,n+n̂>0

Ωn,m1:s(u1:s)vn̂,n,m1:s(u1:s)
m1!···ms !n!max(n̂,n)

·
(

min(n̂, n) ·min
(

c2, 1
vn̂,n,m1:s(u1:s)

L
∑

l=1

[
J−1
n̂,n,m1:s

(
u1:s)]l,l

)
+ c2abs(n̂− n)

) (A17)

Finally, (32)–(34) can easily be obtained from (A17).
One more important thing to be explained in detail is the relationship between the proposed

bound of Theorem 1 and the Minimum Mean OSPA (MMOSPA) presented in [44–50]: It can be known
from the references [44–50] that the proposed OSPA-based multi-target MSE defined in (14) of this
paper is actually the Mean OSPA (MOSPA) in [44–50]. The MOSPA achieves the minimum value when
the estimator X̂ is a MMOSPA estimator. However, even for the MMOSPA estimator, the information
inequality in (A15) (and finally the proposed bound in (32)) still holds as long as the MMOSPA
estimator satisfies the unbiased estimation criterion. In other words, when the estimator used in the
information inequality of (4) is a MMOSPA estimator and is unbiased, the relevant MOSPA (also the
multi-target MSE defined in (14)) is the minimum and thus, is closest to the lower bound presented in
Theorem 1.
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