Cannibalism and Predation as Paths for Horizontal Passage of *Wolbachia* between Terrestrial Isopods

Winka Le Clec'h, Frédéric D. Chevalier[¤], Lise Genty, Joanne Bertaux, Didier Bouchon, Mathieu Sicard*

Laboratoire Écologie et Biologie des Interactions, équipe Écologie, Évolution, Symbiose, UMR 7267 CNRS, Bâtiment B8, Poitiers, France

Abstract

The alpha-proteobacteria *Wolbachia* are the most widespread endosymbionts in arthropods and nematodes. Mainly maternally inherited, these so-called sex parasites have selected several strategies that increase their vertical dispersion in host populations. However, the lack of congruence between the *Wolbachia* and their host phylogenies suggests frequent horizontal transfers. One way that could be used for horizontal *Wolbachia* transfers between individuals is predation. The aim of this study was to test whether horizontal passage of *Wolbachia* is possible when an uninfected terrestrial isopod eats an infected one. After having eaten *Armadillidium vulgare* harbouring *Wolbachia*, the predator-recipients (the two woodlice *A. vulgare* and *Porcellio dilatatus*) that were initially *Wolbachia*-free were tested positive for the presence of *Wolbachia* both by quantitative PCR and Fluorescence *in situ* Hybridization (FISH). Even if the titers were low compared to vertically infected individuals, this constitutes the first demonstration of *Wolbachia* occurrence in various organs of an initially uninfected host after eating an infected one.

Citation: Le Clec'h W, Chevalier FD, Genty L, Bertaux J, Bouchon D, et al. (2013) Cannibalism and Predation as Paths for Horizontal Passage of *Wolbachia* between Terrestrial Isopods. PLoS ONE 8(4): e60232. doi:10.1371/journal.pone.0060232

Editor: Kostas Bourtzis, International Atomic Energy Agency, Austria

Received December 20, 2012; Accepted February 23, 2013; Published April 10, 2013

Copyright: © 2013 Le Clec'h et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the Agence Nationale de la Recherche (ADaWOL ANR-09-JCJC-0109-01 coordinated by Dr Mathieu Sicard). Winka Le Clec'h's work was supported by a grant from Région Poitou-charentes. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: mathieu.sicard@univ-poitiers.fr

¤ Current address: Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, United States of America

Introduction

Wolbachia pipientis are endocytoplasmic alpha-proteobacteria widespread among arthropods [1,2] and filarial nematodes [3]. These symbionts are mainly maternally inherited and several extended phenotypes have been naturally selected to increase their vertical transmission through generations. The extended phenotypes of the Wolbachia in their hosts that lead to an increased number of infected females are cytoplasmic incompatibility [1,4,5], male killing [6,7], thelytokous parthenogenesis [8–10] and feminization of genetic males [11-13]. Even if the vertical transmission corresponds to the main transmission route for Wolbachia, several co-phylogenetic studies have revealed a lack of congruence between host and symbiont phylogenies, showing the ability of these symbionts to jump horizontally from one host to another [14-22]. Experimentally, it is possible to mimic such horizontal transfers (i.e. infection of individuals that were born without Wolbachia) by injecting Wolbachia in asymbiotic individuals [23-31]. However, the paths used by Wolbachia to pass horizontally from one individual to another in the wild are not well understood. It is obvious that such transfers would be more likely to occur between individuals that are ecologically connected. For instance, one path for Wolbachia to infect a new species is the hybridization process that can occur between two host species as demonstrated in the Nasonia species complex [21]. Interspecific interactions such as host-parasite relationships can also open a gate for Wolbachia to pass from one host species to another. In this context, Huigens et al. [10,32] have experimentally demonstrated natural inter- and intraspecific horizontal transfers of parthenogenesis-inducing *Wolbachia* between parasitoid wasps of the genus *Trichogramma* sharing a same host egg. Furthermore, Heath et al. [33] showed that *Wolbachia* could pass from *Drosophila simulans* to the parasitoid wasp *Leptopilina boulardi*. Blood contact between two injured individuals is another possible path for horizontal transfer of *Wolbachia* as experimentally demonstrated for the terrestrial crustacean *Armadillidium vulgare* [34].

Another important ecological link between hosts that can potentially be used by Wolbachia to pass horizontally from one host to another is their trophic connection within the food chain. Several previous studies sought to investigate the capacity of Wolbachia to pass between individuals of different species via predation. This has been tested for spiders [19,35], mites [36] and for some mosquito predators that were infected by the pathogenic Wolbachia strain wMelpop [37]. Despite these efforts, no successful horizontal transfer via predation could be demonstrated to date. In one case, predators became Wolbachia-positive when Phytoseiulus persimilis mites were experimentally fed with symbiotic larvae of the spider mite Tetranychus urticae [36]. However, the Wolbachia were restricted to the predator gut and starvation sufficed to erase all trace of infection. These results as well as those obtained on ticks that were thought to be infected by Wolbachia but were in fact infected by endoparasitoids that hosted the symbionts [38] point out that the detection of Wolbachia in specimens collected from the wild is not always a proof of an actual infection of the focal species. Indeed, the detected Wolbachia can be restricted to the intestine containing prey during digestion or to parasites infecting this species. Testing a potential route of horizontal passage of Wolbachia from one individual to another thus requires experiments with lineages controlled for their infection status.

Here, we used our controlled lineages of woodlice to test whether predation and cannibalism could constitute a path for Wolbachia transmission between individuals. Woodlice are of interest to address this question for several reasons: First of all, even if the main diet of these crustaceans is detritivorous, they can easily turn into herbivores [39] or even carnivores. They can prey on other woodlice from the same species or from different species, especially during social interactions [40]. The probability to be eaten by congenerics or conspecifics increases for individuals that are weak, for example being injured or in the middle of a molting period [41]. Another advantage of using terrestrial isopods is their relatively long lifespan (a few years) that allows the monitoring of the infection status in the same individuals for months after the initial infection. Furthermore, their size makes it possible to test different organs separately for the presence of Wolbachia. The ability of woodlice to get infected by eating their congeners has previously been tested by Juchault et al. [42], who fed some uninfected A. vulgare with pieces of individuals infected with Wolbachia. They concluded that this was not a path used by Wolbachia as they found no infection in the recipients. However, in that case, the presence of Wolbachia in the recipients was only tested in ovaries by transmission electron microscopy, which offers only limited sample prospection and is thus not convenient for the detection of low Wolbachia quantities.

In the present study, we tested the occurrence of horizontal passages of Wolbachia via (i) cannibalism between two A. vulgare, one of which being naturally infected with Wolbachia, and (ii) predation where an uninfected Porcellio dilatatus dilatatus eats an infected A. vulgare. To do so, we designed an experiment that increased the probability of predation and cannibalism for the woodlice [43]: Before putting predator and prey together, infected "prey' individuals were weakened by withdrawing a large amount of hemolymph while uninfected "predator" individuals were starved. Using this approach, all "prey" individuals were eaten by "predator" individuals within two days. In the months following the predation event, the presence and quantities of Wolbachia in the tissues of the "predators" were assessed by quantitative PCR and Fluorescence in situ Hybridization. Thereby, we show for the first time the occurrence of Wolbachia in various organs of an initially uninfected host after eating an infected one.

Materials and Methods

Ethic Statement

All experimental procedures and animal manipulations did not require an ethics statement.

Biological Materials

All the animals used in these experiments were reared at 20° C in plastic breeding boxes, in natural photoperiod, on a moistened potting mix derived from peat from sphagnum moss (pH = 6.4 and conductivity = 50.0 mS/m) with dead lime-tree leaves as a food source. The "predators" (*i.e.* animals eating an infected terrestrial isopod) for all experiments came from controlled asymbiotic (*i.e. Wolbachia*-free) lineages of *Armadillidium vulgare* and *Porcellio dilatatus dilatatus*. The animals used to create these asymbiotic *A. vulgare* and *P. d. dilatatus* control lineages were collected in Nice (France) in 1967 and in Rom (France) in 1988, respectively, and have since been reared in the laboratory. *Wolbachia* donors, hereafter called the "preys" (*i.e.* animals eaten by the "predators"), were *A. vulgare* infected with the *w*VulC *Wolbachia* strain, from a controlled infected lineage created with

animals sampled in Niort (France) and reared in the laboratory since 1961.

Cannibalism and Predation Experiments

Thirty asymbiotic one year-old *A. vulgare* and *P. d. dilatatus* females were starved during three months in rearing boxes with no other food source than the substrate (*i.e.* no dead lime-tree leaves). After three months, starved *A. vulgare* or *P. d. dilatatus* "predators" were individually placed in boxes with one *A. vulgare* "prey". Before being put together with the "predator", the *A. vulgare* "preys" were weakened by collecting 10 μ L of their hemolymph after piercing their cuticle with a thin needle [44]. A fraction of the collected hemolymph was used to check the *Wolbachia* infection status of the "prey". After 48 hours, all the "preys" had been eaten by the "predators". "Predators" were then maintained in individual boxes with substrate and lime-tree leaves *at libitum* as a food source. For each "predator" species, animals were dissected at both 90 days and 180 days post-ingestion (PI) for DNA extraction and FISH experiments.

Tissue Samples and DNA Extractions for *Wolbachia* Quantification

Total DNA was extracted from the hemocytes (*i.e* immune cells) collected from each "prey" and the ovaries, central nervous system (*i.e.* nerve cells and neighbouring adipocytes) and hemocytes of each "predator" after dissection at 90 days and 180 days PI as described by Kocher et al. [45]. For each sample, concentration and quality (OD ratios 260/280 nm and 260/230 nm) of the extracted DNA were measured using the Nanodrop 1000 spectrophotometer (Thermo) to remove any low quality DNA sample.

Quantification of Wolbachia in Host's Tissues by qPCR

The quantification of *Wolbachia* by quantitative PCR (qPCR) was performed on (i) 10 "predators" per species (*i.e. A. vulgare* and *P. d. dilatatus*) at t = 0 before any contact of asymbiotic animals with infected "prey", (ii) 15 "predators" per species at 90 days PI and (iii) 13 "predators" for *P. d. dilatatus* and only two for *A. vulgare* at 180 days PI. Moreover, *Wolbachia* quantification was performed on the hemocytes collected from all 60 *A. vulgare* "prey" individuals.

qPCR reactions were performed using the LightCycler 480 system (Roche) as follows: 10 min at 95°C followed by 45 cycles [10 sec at 95° C, 10 sec at 60° C, 20 sec at 72° C]. A melting curve $(65^{\circ}C \text{ to } 97^{\circ}C)$ was recorded at the end of each reaction in order to check the specificity of the PCR product. The reaction mixture consisted of 5 µL of SYBRGreen MasterMix (Roche), 0.5 µL of each 10 µM specific primers [wsp208f (5'- TGG-TGC-AGC-ATT-TAC-TCC-AG-3') and wsp413r (5'-TCG-CTT-GAT-AAG-CAA-AAC-CA-3')], amplifying 205 bp of the single-copy Wolbachia surface protein (wsp) gene, 3 µL of sterile water and 1 µL of template DNA (between 10 ng and 80 ng of DNA). A Standard curve was plotted using seven dilutions of a purified wsp PCR product (*wsp* copies. μ L⁻¹: 2.63×10⁰, 2.63×10¹, 2.63×10², 2.63×10^3 , 2.63×10^4 , 2.63×10^5 , 2.63×10^6 , 2.63×10^7). The number of *wsp* copies was estimated according to the standard curve. The total DNA quantity (i.e. host+Wolbachia) of each sample was used to normalize the resulting *wsp* gene copy counts. The results are thus given in number of *wsp* copies per ng of total DNA.

Wolbachia Localization in "Predator" Hemocytes Using Fluorescence *in situ* Hybridization (FISH)

Hemocytes were sampled from "predators" of each species (*i.e.* two *A. vulgare* females and five *P. d. dilatatus* females) 180

days PI. Each animal yielded $\sim 10 \ \mu L$ of hemolymph that were pooled for each species in a microtube kept on ice. Fluorescence in situ Hybridization was performed according to Chevalier et al. [46] on a total of 4 µL for each pool fixed with 1% paraformaldehyde-PBS solution (137 mM NaCl, 8 mM Na₂HPO₄, 12H₂O, 1.5 mM KH₂PO₄, 3 mM KCl, pH 7.3), (5'at 35% formamide with the probes W1-Cy3 AATCCGGCCGARCCGACCC-3') and W2-Cy3 (5'-CTTCTGTGAGTACCGTCATTATC-3') (30 ng.mL⁻ each) targeting Wolbachia 16S rRNA [47]. As in Chevalier et al. [46] the samples were further stained with FITC-phalloidin (20 ng, Sigma) mixed into the hybridization buffer and with DAPI (Sigma) mixed into the mounting medium (AF1 antifading, Citifluor, England, 2.5 mg.mL⁻¹). Detection was performed with an epifluorescent microscope (Axio Observer-A1, Zeiss) with Apotome (structured illumination) equipped with a 63X/ 1.25 objective (oil immersion) and with the AxioVision 4.8.1 software (Zeiss). The number of hemocytes and their Wolbachia colonization status were counted on ten random images per pool, using ImageJ software (version 1.45; [48]). Hemocytes touching the image borders, *i.e.* incomplete ones, were ignored.

Statistical Analysis

All statistical analyses were performed using R software (version 2.10.1). Since data distribution did not follow a normal distribution (Shapiro test, p < 0.05), *Wolbachia* titers in tissues were compared with a Kruskal-Wallis followed by Dunn's multiple comparison test or simple pairwise comparison Wilcoxon-Mann-Whitney tests.

Results

Wolbachia Quantification in the Different Host Tissues of "Predators"

The Wolbachia were quantified by qPCR in hemocytes of the symbiotic "preys" and in three "predator" tissues: ovaries, central nervous system (CNS) and hemocytes at 90 and 180 days postingestion (PI). All the "preys" harboured high titers of Wolbachia (mean of Wolbachia in hemocytes \pm se/ng DNA: $4.62 \times 10^3 \pm 4.57 \times 10^2$, Fig. 1), which is in accordance with titers previously reported in Le Clec'h et al. [49]. All the "predators" tested at t = 0 before any contact with the "preys" were completely asymbiotic since not a single Wolbachia was detected by qPCR in all tested tissues.

At 90 days PI, all tested "predators" from both species (i.e. A. vulgare and P. d. dilatatus) exhibited Wolbachia in all tested tissues but at low titers comprised between one and 100 Wolbachia per ng DNA (Figure 1). In both ovaries and CNS, Wolbachia titers were higher in A. vulgare, the native host of wVulC, than in P. d. dilatatus (Wilcoxon-Mann-Whitney test: U = 26; p = 0.0147 and U = 14; p = 0.0009, respectively), while no difference was found between species regarding Wolbachia titers in hemocytes (Wilcoxon-Mann-Whitney test: U = 64; p = 0.9730). A global comparison of Wolbachia titers between the different tissues of P. d. dilatatus highlighted heterogeneity between them (Kruskal-Wallis test: K = 14.583, df = 2, p = 0.0007). This heterogeneity was due to higher titers of Wolbachia in hemocytes than in ovaries (Dunn Multiple comparison test: p < 0.001). On the contrary, global comparison of Wolbachia titers between the different tissues of A. vulgare revealed no difference (Kruskal-Wallis test: K = 2.818, df = 2, p = 0.2440).

At 180 days PI, many organs were found uninfected by *Wolbachia*, suggesting an overall decrease of the infection compared to 90 days PI (Table 1). However, at this time

Figure 1. *Wolbachia* **loads in CNS, ovaries and hemocytes of the** "**predators**" *Porcellio d. dilatatus* **and** *Armadillidium vulgare.* The *Wolbachia* quantifications performed at 90 and 180 days post-ingestion (PI) revealed that the symbiont colonizes all tissues of the asymbiotic "predators" after ingestion of infected "preys". Comparison of the *Wolbachia* titers between the two predator species (*i.e. P. d. dilatatus* or *A. vulgare*) revealed that bacterial loads were higher in *A. vulgare*, the native host of *w*VulC strain, at 90 days PI. Comparison of *Wolbachia* titers in the different tissues of *P. d. dilatatus* between 90 and 180 days PI showed that the infection was stable in ovaries and CNS but decreased in hemocytes. (Nat.titer: The *Wolbachia* among the two tested animals).

doi:10.1371/journal.pone.0060232.g001

point, most *A. vulgare* individuals were dead (Table 1). We assume that this high mortality rate was due to their isolation and the lack of social contacts that are strongly required for this species exhibiting an important gregarious lifestyle [40]. The comparison of *Wolbachia* titers in the different tissues of *P. d. dilatatus* between 90 and 180 days PI showed that the infection was stable in ovaries (Wilcoxon-Mann-Whitney test: U=10; p=0.1818) and CNS (Wilcoxon-Mann-Whitney test: U=5; p=0.2286) but decreased in hemocytes (Wilcoxon-Mann-Whitney test: U=11.5; p=0.0019; Figure 1).

Detection of *Wolbachia* in the "Predator" Hemocytes from Both Species Using Fluorescence *in situ* Hybridization (FISH)

Wolbachia quantification by qPCR revealed that "predators" were infected by Wolbachia at a low level after the ingestion of symbiotic (*i.e. Wolbachia*-positive) "preys". This was confirmed by FISH detection of Wolbachia with specific probes on one pool of hemolymph per species, with two animals for *A. vulgare* and five for *P. d. dilatatus* at 180 days PI. Hemocytes of both *P. d. dilatatus* (Figures 2A and B) and *A. vulgare* (Figures 2C and D) "predators" were colonized (3 and 8%, respectively). The fact that the probes target the transcript of the 16S rRNA gene further indicates that the *Wolbachia* were alive.

Table 1. Wolbachia detection in predators 180 days after ingestion of an infected prey.

	Total	Alive	<i>Wolbachia</i> detection in ovaries	Wolbachia detection in CNS	<i>Wolbachia</i> detection in hemocytes
Porcellio d. dilatatus	15	13	4/13	13/13	13/13
Armadillidium vulgare	15	2	0/2	1/2	1/2

doi:10.1371/journal.pone.0060232.t001

Figure 2. Fluorescence in situ Hybridization (FISH) detection of Wolbachia in circulating hemocytes of the "predators" Porcellio d. dilatatus and Armadillidium vulgare 180 days after having ingested of an infected prey. Some hemocytes of P. d. dilatatus (A and B) and of A. vulgare (C and D) were infected with Wolbachia (3 and 8% of hemocytes, respectively). A-D: Wolbachia in red, Actin in green, nuclei in blue. doi:10.1371/journal.pone.0060232.g002

Discussion

Predation, though a brief interaction between living individuals of two species, is used by many parasites that pass horizontally from one host to another [50]. Cannibalism, which is one peculiar case of predation that occurs between individuals belonging to the same species, can also lead to horizontal parasite transmission [51]. The horizontal passage of Wolbachia from one individual to another by the predation route was tested unsuccessfully in several studies [36,37]. Phylogenetic analyses of the Wolbachia infecting spiders and their prey in the same ecosystem also indicated that Wolbachia would not frequently navigate between species using this route [35]. On a different note, some Endosymbiont Based Control Strategies rely on the principle that after introduction into a new host and release in the environment, Wolbachia will not escape and potentially spread along the food chain through predators. Indeed, when artificially introduced into the mosquito Aedes aegypti, the Wolbachia strain wMelPop was not found in the five natural predator species tested after preying on larvae or adults [37]. In one case, predators became Wolbachia-positive when Phytoseiulus persimilis mites were experimentally fed with symbiotic larvae of the spider mite Tetranychus urticae [36]. However, the Wolbachia were restricted to the predator gut and starvation sufficed to erase all trace of infection, showing that, in this case, the Wolbachia did not cross the intestine wall.

Here, we show that after ingestion of an *A. vulgare* "prey", *w*VulC *Wolbachia* cells were detected in organs and blood of two different "predator" species. This indicates for the first time that some *Wolbachia* were able to resist the digestive process, to pass through the intestine barrier and to infect the tested tissues (*i.e.* ovaries, CNS and hemocytes). The efficiency of such a transfer was very high since 100% of the "predators" of both species were infected by *w*VulC, even if all their tested tissues were not always infected at 180 days PI. Overall, the titers of *Wolbachia* were higher after intraspecific passages in *A. vulgare* via cannibalism than after interspecific passages in *P. d. dilatatus* via predation.

However, the *w*VulC titers in all tested tissues remained very low compared to those recorded in naturally infected *A. vulgare* or after injection of *Wolbachia* in the haemocoel of initially asymbiotic individuals of *P. d. dilatatus* or *A. vulgare* [49]. Moreover, the *Wolbachia* loads did not increase between 90 and 180 days after ingestion, suggesting very low or no multiplication. It can be hypothesized that due to the stress generated by the environment of the digestive tract, the *Wolbachia* switched to a form that does not multiply or does so at a very low rate. A first hypothesis to further explain this pattern is that only very few *Wolbachia* variants were able to cross the intestine wall and then multiplied to reach only a low density in the host. Thus, this strong bottleneck would have selected for the *Wolbachia* that are more resistant while

References

- 1. Werren JH (1997) Biology of Wolbachia. Annu Rev Entomol 42: 587-609.
- Hilgenboecker K, Hammerstein P, Schlattmann P, Telschow A, Werren JH (2008) How many species are infected with *Wolbachia*? A statistical analysis of current data. FEMS Microbiol Lett 281: 215–220.
- Bandi C, Anderson TJ, Genchi C, Blaxter ML (1998) Phylogeny of Wolbachia in filarial nematodes. Proc Biol Sci 265: 2407–2413.
- Yen JH, Barr AR (1971) The etiological agent of cytoplasmic incompatibility in *Culex pipiens*. J Invertebr Pathol 22: 242–250.
- Serbus LR, Casper-Lindley C, Landmann F, Sullivan W (2008) The genetics and cell biology of *Wolbachia*-host interactions. Annu Rev Genet 42: 683–707.
- Hurst GDD, Jiggins FJ, Schulenburg J, Bertrand D, West SA (1999) Male-killing Wolbachia in two species of insect. Proc Biol Sci 266: 735–740.
- Jaenike J (2007) Fighting back against male-killers. Trends Ecol Evol 22: 167– 169.
- Stouthamer R, Luck RF, Hamilton WD (1990) Antibiotics cause parthenogenetic *Trichogramma* (hymenoptera/trichogrammatidae) to revert to sex. Proc Natl Acad Sci USA 87: 2424–2427.

exhibiting lower multiplication rates, according to a growth/ survival trade-off [52]. A second hypothesis is that many bacteria survived the intestine, crossed the wall and colonized the tissues as a "non-replicative form" that slowly decayed over months. The ability of Wolbachia to produce "non-replicative forms" has not yet been closely investigated. However, it has been shown previously that Wolbachia is able to survive without replicating in stressful conditions like heat treatment [53,54] or upon extracellular maintaining for as long as one week [12,55]. At 180 days PI, we found tissues of some individuals without Wolbachia infection: Ovaries of some P. d. dilatatus and ovaries, CNS and hemocytes of some A. vulgare. We cannot exclude that these tissues had never been infected. However, since all tissues were infected in all animals tested at 90 days PI, we rather suspect that the bacteria died, either because of their inability to recover from the stress encountered during the horizontal passage and/or due to host reactions such as autophagy or apoptosis that are known to be involved in the elimination of Wolbachia from host cells [49,56,57].

Among all the tested tissues, the CNS presented an interesting pattern: The infection was low but seemed to be stable until 180 days PI in both species. Regardless of the transinfection mode (*i.e.* injection or ingestion), the *w*VulC strain seems to colonize the CNS in a more extensive way than the other tissues [49]. This tissue seems to constitute a kind of refuge for the *Wolbachia*, possibly because nerve cells are renewed less frequently compared to hemocytes and oocytes. However, in the nerve cells of individuals infected by the predation route, the infection was stable but low and did not trigger the pathogenic phenotype described in *P. d. dilatatus* injected with *w*VulC from *A. vulgare* ovaries [49].

In this study, we demonstrate that predation and cannibalism can lead to the ingestion of *Wolbachia* in terrestrial isopods. Moreover, following this ingestion the presence of *Wolbachia* is not restricted to the intestine as other organs were tested positive. This demonstrates that *Wolbachia w*VulC is capable of crossing the intestine barrier and to survive, at least transiently, in a predator's body.

Acknowledgments

We thank all the technical staff of the UMR CNRS 7267. We also thank Jessica Dittmer for comments on previous versions of the manuscript.

Author Contributions

Conceived and designed the experiments: WL FC MS. Performed the experiments: WL LG. Analyzed the data: WL DB LG MS. Contributed reagents/materials/analysis tools: JB. Wrote the paper: WL FC LG JB DB MS.

- Stouthamer R (1997) Inherited microorganisms and arthropod reproduction. In : O'Neill SL, Hoffmann AA, Werren JH, editors. Influencial passengers. Oxford University Press, USA. 102–124.
- Huigens ME, Luck RF, Klaassen RH, Maas MF, Timmermans MJ, et al. (2000) Infectious parthenogenesis. Nature 405: 178–179.
- Martin G, Juchault P, Legrand J (1973) Mise en évidence d'un micro-organisme intracytoplasmique symbiote de l'oniscoide *Armadillidium vulgare* dont la présence accompagne l'intersexualité ou la féminisation totale des mâles génétiques de la lignée thélygène. C R Acad Sci Paris 276: 2313–2316.
- Rigaud T, Souty Grosset C, Raimond R, Mocquard JP, Juchault P (1991) Feminizing endocytobiosis in the terrestrial crustacean *Armadillidium vulgare* latr. (isopoda): recent acquisitions. Endocytobiosis & Cell Res. 7: 259–273.
- Bouchon D, Rigaud T, Juchault P (1998) Infection in isopod crustaceans: molecular identification and host feminization. Proc Biol Sci 265: 1081–1090.
- O'Neill SL, Giordano R, Colbert AM, Karr TL, Robertson HM (1992) 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci USA 89: 2699–2702.

- Stouthamer R, Breeuwert JA, Luck RF, Werren JH (1993) Molecular identification of microorganisms associated with parthenogenesis. Nature 361: 66–68.
- Werren JH, Zhang W, Guo LR (1995) Evolution and phylogeny of Wolbachia: reproductive parasites of arthropods. Proc Biol Sci 261: 55–63.
- Zhou W, Rousset F, O'Neil S (1998) Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. Proc Biol Sci 265: 509–515.
 Vavre F, Fleury F, Lepetit D, Fouillet P, Boulétreau M (1999) Phylogenetic
- Vavre F, Fleury F, Lepetit D, Fouillet P, Boulétreau M (1999) Phylogenetic evidence for horizontal transmission of *Wolbachia* in host-parasitoid associations. Mol Biol Evol 16: 1711–1723.
- Cordaux R, Michel-Salzat A, Bouchon D (2001) Wolbachia infection in crustaceans: novel hosts and potential routes for horizontal transmission. J Evol Biol 14: 237–243.
- Baldo L, Hotopp JCD, Jolley KA, Bordenstein SR, Biber SA, et al. (2006) Multilocus sequence typing system for the endosymbiont *Wolbachia pipientis*. Appl Environ Microbiol 72: 7098–7110.
- Raychoudhury R, Baldo L, Oliveira DCSG, Werren JH (2009) Modes of acquisition of *Wolbachia*: horizontal transfer, hybrid introgression, and codivergence in the *Nasonia* species complex. Evolution 63: 165–183.
- Kraaijeveld K, Franco P, De Knijff P, Stouthamer R, Van Alphen JJM (2011) Clonal genetic variation in a *Wolbachia*-infected asexual wasp: horizontal transmission or historical sex? Mol Ecol 20: 3644–3652.
- Rigaud T, Pennings PS, Juchault P (2001) Wolbachia bacteria effects after experimental interspecific transfers in terrestrial isopods. J Invertebr Pathol 77: 251–257.
- Kageyama D, Narita S, Noda H (2008) Transfection of feminizing Wolbachia endosymbionts of the butterfly, Eurema hecabe, into the cell culture and various immature stages of the silkmoth, Bombyx mori. Microb Ecol 56: 733–741.
- Riegler M, Charlat S, Stauffer C, Merçot H (2004) Wolbachia transfer from *Rhagoletis cerasi* to *Drosophila simulans*: investigating the outcomes of host-symbiont coevolution. Appl Environ Microbiol 70: 273–279.
- Zabalou S, Riegler M, Theodorakopoulou M, Stauffer C, Savakis C, et al. (2004) Wolbachia-induced cytoplasmic incompatibility as a means for insect pest population control. Proc Natl Acad Sci USA 101: 15042–15045.
- Xi Z, Khoo CCH, Dobson SL (2005) Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Science 310: 326–328.
- Xi Z, Khoo CCH, Dobson SL (2006) Interspecific transfer of Wolbachia into the mosquito disease vector Aedes albopictus. Proc Biol Sci 273: 1317–1322.
- Ruang-Areerate T, Kittayapong P (2006) Wolbachia transinfection in Aedes aegypti: a potential gene driver of dengue vectors. Proc Natl Acad Sci USA 103: 12534– 12539.
- McMeniman CJ, Lane RV, Cass BN, Fong AWC, Sidhu M, et al. (2009) Stable introduction of a life-shortening *Wolbachia* infection into the mosquito *Aedes* aegypti. Science 323: 141–144.
- Apostolaki A, Livadaras I, Saridaki A, Chrysargyris A, Savakis C, et al. (2011) Transinfection of the olive fruit fly *Bactroceta oleae* with *Wolbachia*: towards a symbiont-based population control strategy. J Appl Ent 135: 546–553.
- Huigens ME, de Almeida RP, Boons PAH, Luck RF, Stouthamer R (2004) Natural interspecific and intraspecific horizontal transfer of parthenogenesisinducing *Wolbachia* in *Trichogramma* wasps. Proc Biol Sci 271: 509–515.
- Heath BD, Butcher DJ, Whitfield WGF, Hubbard SF (1999) Horizontal transfer of *Wolbachia* between phylogenetically distant insect species by a naturally occurring mechanism. Curr Biol 9: 313–316.
- Rigaud T, Juchault P (1995) Success and failure of horizontal transfers of feminizing *Wolbachia* endosymbionts in woodlice. J Evol Biol 8: 249–255.
- Yun Y, Peng Y, Liu FX, Lei C (2011) Wolbachia screening in spiders and assessment of horizontal transmission between predator and prey. Neotrop Entomol 40: 164–169.

- 36. Enigl M, Zchori-Fein E, Schausberger P (2005) Negative evidence of Wolbachia
- in the predaceous mite *Phyloseiulus persimilis*. Exp Appl Acarol 36: 249–262. 37. Hurst TP, Pittman G, O'Neill SL, Ryan PA, Nguyen HL, et al. (2012) Impacts
- of Wolbachia infection on predator prey relationships: evaluating survival and horizontal transfer between *w*Melpop infected *Aedes aegypti* and its predators. J Med Entomol 49: 624–630.
- Plantard O, Bouju-Albert A, Malard M, Hermouet A, Capron G, et al. (2012) Detection of *Wolbachia* in the tick *Ixodes ricinus* is due to the presence of the hymenoptera endoparasitoid *Ixodiphagus hookeri*. PLoS ONE 7: e30692.
- Farmer EE, Dubugnon L (2009) Detritivorous crustaceans become herbivores on jasmonate-deficient plants. Proc Natl Acad Sci USA 106: 935–940.
- Warburg M, Linsenmair K, Bercovitz K (1984) The effect of climate on the distribution and abundance of isopods. Symp Zool Soc Lond 53: 339–367.
- Pokarzhevskii AD, Van Straalen NM, Zaboev DP, Zaitsev AS (2003) Microbial links and element flows in nested detrital food-webs. Pedobiologia 47: 213–224.
- 42. Juchault P, Legrand JJ, Martin G (1974) Action interspécifique du facteur épigénétique féminisant responsable de la théygénie et de l'intersexualité du crustacé Armadillidium vulgare (isopode oniscoïde). Annales d'Embryologie et de Morphogenèse 7: 265–276.
- Edney EB, Allen W, McFarlane J (1974) Predation by terrestrial isopods. Ecology 55: 428–433.
- Braquart-Varnier C, Lachat M, Herbinière J, Johnson M, Caubet Y, et al. (2008) Wolbachia mediate variation of host immunocompetence. PLoS ONE 3: e3286.
- 45. Kocher TD, Thomas WK, Meyer A, Edwards SV, Pääbo S, et al. (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci USA 86: 6196–6200.
- Chevalier F, Herbinière-Gaboreau J, Bertaux J, Raimond M, Morel F, et al. (2011) The immune cellular effectors of terrestrial isopod *Armadillidium vulgare*: meeting with their invaders, *Wolbachia*. PLoS ONE 6: e18531.
- Heddi A, Grenier AM, Khatchadourian C, Charles H, Nardon P (1999) Four intracellular genomes direct weevil biology: nuclear, mitochondrial, principal endosymbiont and *Wolbachia*. Proc Natl Acad Sci USA 96: 6814–6819.
- Rasband W (1997) Imagej. National Institutes of Health. Bethesda, Maryland, USA.
- Le Clec'h W, Braquart-Varnier C, Raimond M, Ferdy JB, Bouchon D, et al. (2012) High virulence of *Wolbachia* after host switching: when autophagy hurts. PLoS Pathog 8: e1002844.
- Combes C (1995) Interactions durables, écologie et évolution du parasitisme. Paris: P. Masson. 518 p.
- Khan K (1981) Studies of pathogens of termites of Pakistan. PhD thesis. Pakistan, University of the Punjab.
- Aertsen A, Michiels CW (2004) Stress and how bacteria cope with death and survival. Crit Rev Microbiol 30: 263–273.
- Juchault P, Martin G, Legrand JJ (1980) Induction par la température d'une physiologie mâle chez les néo-femelles et les intersexués du crustacé oniscoïde *Armadillidium vulgare* latr., hébergeant un bactéroïde à action féminisante. Int J Inv Repro 2: 223–235.
- 54. Juchault P (1988) Effets de la température sur le sex ratio de la descendance et la physiologie sexuelle des femelles d'*Armadillidium vulgare* latr. (crustacea, oniscidea) hébergeant une bactérie féminisante. C R Acad Sci Paris 306: 321–324.
- Rasgon JL, Gamston CE, Ren X (2006) Survival of Wolbachia pipientis in cell-free medium. Appl Environ Microbiol 72: 6934–6937.
- Zhukova MV, Kiseleva E (2012) The virulent Wolbachia strain wMelpop increases the frequency of apoptosis in the female germline cells of Drosophila melanogaster. BMC Microbiol 12 Suppl 1: S15.
- Voronin D, Cook DAN, Steven A, Taylor MJ (2012) Autophagy regulates Wolbachia populations across diverse symbiotic associations. Proc Natl Acad Sci USA 109: 1638–1646.