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Abstract. On terminally differentiated sperm cells, 
surface proteins are segregated into distinct surface 
domains that include the anterior and posterior head 
domains. We have analyzed the formation of the an- 
terior and posterior head domains of guinea pig sperm 
in terms of both the timing of protein localization and 
the mechanism(s) responsible. On testicular sperm, 
the surface proteins PH-20, PH-30 and AH-50 were 
found to be present on the whole cell (PH-20) or 
whole head surface (PH-30, AH-50). On sperm that 
have completed differentiation (cauda epididymal 
sperm), PH-20 and PH-30 proteins were restricted to 
the posterior head domain and AH-50 was restricted 
to the anterior head domain. Thus these proteins be- 
come restricted in their distribution late in sperm 
differentiation, after sperm leave the testis. We discov- 
ered that the differentiation process that localizes these 
proteins can be mimicked in vitro by treating testicular 
sperm with trypsin. After testicular sperm were 

treated with 20 ~,g/ml trypsin for 5 min at room tem- 
perature, PH-20, PH-30, and AH-50 were found local- 
ized to the same domains to which they are restricted 
during in vivo differentiation. The in vitro trypsin- 
induced localization of PH-20 to the posterior head 
mimicked the in vivo differentiation process quantita- 
tively as well as qualitatively. The quantitative analysis 
showed the process of PH-20 localization involves the 
migration of surface PH-20 from other regions to the 
posterior head domain. Immunoprecipitation experi- 
ments confirmed that there is protease action in vivo 
on the sperm surface during the late stages of sperm 
differentiation. Both the PH-20 and PH-30 proteins 
were shown to be proteolytically cleaved late in sperm 
differentiation. These findings strongly implicate pro- 
teolysis of surface molecules as an initial step in the 
mechanism of formation of sperm head surface 
domains. 

H 
ow membrane proteins are sorted into specific plasma 
membrane domains is a basic question in cell biol- 
ogy. In some cases membrane domains encompass 

major regions of the cell surface. For example, surface pro- 
teins may be localized to the anterior head, posterior head, 
or tail domains of, mammalian sperm (Friend, 1982; Prima- 
koff and Myles, 1983; Eddy, 1988) and to either the apical 
or basolateral regions of epithelial cells (Rodriguez-Boulan 
and Nelson, 1989). On other cell types, the regions of pro- 
tein localization may be limited to small patches in the mem- 
brane such as the distribution of the acetylcholine receptor 
on muscle cells (Anderson and Cohen, 1977). 

In terminally differentiated cells, localized plasma mem- 
brane proteins can be delivered into a specific surface do- 
main by being sorted either in an intracellular membrane or 
in the plasma membrane. An example of sorting in an intra- 
cellular membrane is the segregation of membrane proteins 
in the trans-Golgi into specific transport vesicles directed to 
either the apical or basolateral domains of epithelial cells 
(Nelson, 1989). An example of sorting in the plasma mem- 
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brane also occurs in epithelial cells. Apical domain proteins, 
initially delivered to the basolateral domain, are segregated 
to the upper regions of the basolateral region and into vesi- 
cles for transcytosis to the apical region (Hubbard and Stie- 
ger, 1989; Matter et al., 1990). Both pathways can operate 
within a single cell (Matter et al., .1990). The localized 
plasma membrane proteins being sorted through these path- 
ways contain structural signals that address them to specific 
domains (Lisanti and Rodriguez-Boulan, 1990). 

Far less is known about how plasma membrane domains 
are initially created during the differentiation of polarized 
cells. The establishment of surface polarity occurs through- 
out embryogenesis and can also be studied in vitro using 
freshly seeded cultures of epithelial ceils (Ekblom et al., 
1986; Rodriguez-Boulan and Nelson, 1989). The initial es- 
tablishment of cell surface domains appears to require an ex- 
ternal signal (cell-cell or cell-substrate contact) and in part 
involves the redistribution of surface molecules to the apical 
and basolateral domains (Rodriguez-Boulan and Nelson, 
1989). 

During sperm differentiation, the localization of plasma 
membrane proteins is an ongoing process. Postmeiotic 
differentiation in the testis (spermiogenesis) results in the 
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transformation of round spermatid cells to highly polarized 
testicular sperm. Some patterns of protein localization are 
established during spermiogenesis, for example, the local- 
ization of the PT-1 protein to the posterior tail region (Myles 
and Primakoff, 1983). The subsequent, late stage of sperm 
differentiation occurs in the epididymis, a long coiled tube 
in which sperm are transported from the testis to the vas 
deferens. By the time sperm arrive at the end of the 
epididymis (cauda epididymis) they have acquired motility 
and fertilization competence (Eddy, 1988). The formation of 
surface domains continues in this late stage of sperm 
differentiation, when there is no evidence for protein synthe- 
sis or new insertion/transcytosis of membrane proteins via 
vesicles since the cell components necessary for these 
processes have already been eliminated. 

In this study we have investigated proteins whose localiza- 
tion occurs late in guinea pig sperm differentiation. We pre- 
sent evidence that proteolytic cleavage of surface proteins is 
a step in the mechanism for localizing these proteins. Re- 
markably, brief treatment of testicular sperm in vitro with 
trypsin triggers the localization of these proteins and induces 
the identical localizations that occur during in vivo differen- 
tiation. 

Materials and Methods 

Isolation of Sperm 
Sperm were isolated from the testes by centrifugation of minced testicular 
tissue through a Pereoll gradient (pharmacia Fine Chemicals, Piscataway, 
NJ) for 10 rain at 27,000 gay, 10°C (Phelps et al., 1988). Testicular sperm 
were washed twice and resuspended in Mg2+-Hepes buffer (Green, 1978). 
Epididymal sperm were gently expressed from the canda as previously de- 
scribed (Phelps and Myles, 1987), and washed once with Mg2+-Hepes 
buffer. All sperm samples were isolated from male Hartley guinea pigs 
(Buckberg Lab Animals, Inc., Tompkins Cove, NY). 

Protease Treatment of the Cell Surface 
Trypsin (6502; Calbiochem-Behring Corp., La Jolla, CA), at 1 mg/ml in 
Mg2+-Hepes was made up jnst before use, and was added to 1.0 rnl of 5-10 
× 106 live sperm at a final concentration of 20 ~tg/nd. Sperm were in- 
cubated for 5 min at room temperature and the reaction was stopped by the 
addition of an equal or greater concentration of soybean trypsin inhibitor 
(sffrI) 1 (Sigma Chemical Co., St. Louis, MO). The cells were then 
washed through 3% BSA and stained by indirect immunofluorescence. 

Antibodies and Immunofluorescence 
All mAbs were isolated as described (Primakoff and Myles, 1983). The 
mAbs used recognize distinct surface proteins and include AH-50, WH-I, 
PH-20, PH-22, and PH-30. Nomenclature (AH, PH, and WH) indicates the 
pattern of antibody binding on cauda epididymal sperm. Polyclonal anti- 
body to the PH-30 antigen was made against purified PH-30 protein 
(Primakoif et al., 1987) in female rabbits or female guinea pigs. The two 
mAbs, PH-20 and PH-22, were both previously shown to recognize the PH- 
20 protein (Pfimakoff et al., 1985), and were used interchangeably. Second 
antibodies used were a FITC goat Fab anti-mouse IgG (Cappel Laborato- 
ties, Malvern, PA) and FITC goat IgG anti-guinea pig IgG (Sigma Chemi- 
cal Co.). Indirect immunofluorescence was carried out on live sperm as pre- 
viously described (Phelps and Myles, 1987). 

Vkleo Microscopy 
Sperm were stained five with a Fab fragment (Cowan et al., 1986) of the 
PH-22 mAb followed by a rhodamine goat Fab anti-monse F(ab')2 second 

1. Abbreviations used in this paper: GPI, glycosyl phosphatidylinositol; 
SBTI, soybean trypsin inhibitor. 

antibody (Cowan et al., 1987), and fixed in 3% formaldehyde. An uncor- 
rected fluorescent image [Fu(r)] was generated using an argon laser and 
DAGE-MTI silicon intensified target camera. 256 video frames were aver- 
aged to form an image that was computer digitized, processed, and analyzed 
using a RTI Station II imaging system (Recognition Technology, Inc., West- 
borough, MA) with an IBM/AT as host computer and software written espe- 
cially for this purpose. For correction purposes, three auxiliary images were 
recorded: a background imase of a cell-free area on the same slide [Fb(r)], 
an image of fluorescence from a thin uniform layer of fluorescent dye solu- 
tion [Fd(r)], and a black-level image taken without illumination [Fo(r)]. 
The corrected fluorescence images [F(r)] were calculated as in Koppel et 
al. 0989): 

-- A IF, (r) -- Fb(r)] + B. 

t _ Fd(r) Fo(r) ] 

B is a constant offset (typically set to 25) added to eliminate possible nega- 
tive numbers in background areas, where they otherwise would show up on 
the video monitor as large positive values. Parameter A is a multiplicative 
constant set to make use of the full dynamic range of the digital frame- 
stores. All subsequent quantitative analysis of the corrected images takes 
constants A and B into account. A phase image of the same cell was also 
recorded and used to determine the boundaries of the regions of the head 
to be analyzed. The regions were outlined using a mouse and the fluorescent 
images were analyzed for total and average fluorescence within that region. 
Measurements on cauda epididymal sperm and testicular sperm, treated 
with trypsin, were normalized to the average fluorescence on control testic- 
ular sperm, not treated with trypsin. Comparisons were made only within 
individual experiments where the staining conditions were the same. In 
some cases testicular sperm and cauda sperm, which can be distinguished 
on a morphological basis, were stained in the same tube to insure that stain- 
ing conditions did not vary. For each sample used in the measurements, a 
parallel sample of sperm treated identically, but not incubated with first anti- 
body, was measured and subtracted from each measurement. 

Total fluorescence intensity within a region was measured by using a 
mouse to outline the entire region. In addition, the average fluorescence in- 
tensity per pix¢l was measured within a standard-sized box drawn near the 
center of the region. 

Iodination of Sperm Surface Proteins 
Aliquots of l0 s testicular sperm and 5 × 107 distal cauda epididymal 
sperm were surface iodinated with either 2.5 or 1.25 mCi Nal25I using lo- 
dogen (Primakoff and Myles, 1983). Half of the testicular sperm were then 
exposed to 20 #g/mi of trypsin for 5 min at room temperature, followed by 
the addition of 100 ~g/ml SBTI to both trypsin-treated and untreated testicu- 
lar sperm samples. All three sperm samples were pelleted at 12,000 gay 
and were detergent extracted with 1% NP-40 in the presence of protease in- 
hibitors (0.5 mM PMSF, 10 #M leupeptin, 3.3 #M antipain, 1.7 #M 
chymostatin, 1.5 #M pepstatin A, and 64 #M benzamidine, all purchased 
from Sigma Chemical Co.). 

Immunoprecipitation of PH-20 and PH-30 
The PH-20 protein was immunoprecipitated from the detergent extracts 
using the PH-22 mAb bound to goat anti-mouse IgG Sepharose beads 
(E. Y. Laboratories, Inc., San Mateo, CA). The PH-30 protein was immu- 
noprecipitated with a rabbit polyclonal antibody against affinity purified 
PH-30 protein plus protein A-Sepharose beads (Sigma Chemical Co.). Pro- 
tein was removed from the beads by boiling in SDS sample buffer, the beads 
were pelleted, and supernatants were run either nonrednced or reduced on 
10% SDS-PAGE. Gels were dried and autoradiographed as described 
(Primakoff and Myles, 1983; Primakoff et al., 1985). 

Results 

Surface Proteins Are Recruited to the 
Anterior and Posterior Head Domains Late in 
Sperm Differentiation 
To determine when surface proteins become restricted to the 
posterior and anterior head sperm surface domains, we ob- 
served live guinea pig sperm at different developmental 
stages by indirect immunofluorescence. We found that dis- 
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tinct surface proteins become localized to the posterior and 
anterior head surface domains late in sperm differentiation, 
when sperm pass through the epididymis. The two proteins 
known to be localized in the posterior head domain are PH- 
20 (required in sperm-zona binding, Primakoff et al., 1985) 
and PH-30 (required in sperm-egg fusion, Pfimakoff et al., 
1987). PH-20 protein is distributed over the whole surface 
of round spermatids (Phelps and Myles, 1987) and testieular 
sperm (Fig. 1 a), but is restricted to the posterior head of 
sperm from the cauda epididymis (Fig. 1 b). Therefore, PH- 
20 protein becomes localized to the posterior head domain 
during sperm differentiation in the epididymis. PH-30 pro- 
tein is distributed over the whole head of testicular sperm 
(Fig. 1 e) but is found only in the posterior head domain of 
cauda epididymal sperm (Fig. 1 f ) .  A third protein antigen 
of unknown function, AH-50, also becomes localized during 
sperm differentiation in the epididymis. AH-50 is distributed 
over the whole head of testicular sperm (Fig. 1 m), but is re- 
stricted to the anterior head of sperm from the cauda 
epididymis (Fig. 1 n). 

The exact patterns of antibody binding at different de- 
velopmental stages for the PH-30 protein were found to de- 
pend upon which anti-PH-30 antibody was used. Polyclonal 
antisera (raised in rabbits or guinea pigs against affinity- 
purified PH-30 protein), as well as one mouse anti-PH-30 
monoclonal antibody (Cowan, A. E., and D. G. Myles, un- 
published observations), recognized PH-30 protein on the 
whole head of testicular sperm (Fig. 1 e). However, the PH- 
30 protein was not detected on testicular sperm by a different 
anti-PH-30 monoclonal (PH-30 mAb) (Fig. 1 i). This indi- 
cates that the epitope recognized by the PH-30 mAb does not 
exist, or is inaccessible, on testicular sperm and this epitope 
is created or revealed during sperm development in the 
epididymis. The antibodies that recognized PH-30 protein 
on testicular sperm were found on cauda sperm to be largely 
restricted in their binding pattern to the posterior head do- 
main, but trace amounts of staining were detectable on the 
anterior head (Fig. 1 f ) .  However, the PH-30 mAb stained 
only the posterior head of cauda sperm (Fig. 1 j ) .  This sug- 
gests there may be a small fraction of PH-30 protein, re- 
tained on cauda epididymal sperm, on which the PH-30 
mAb-recognized epitope is not created or revealed. This 
small fraction of PH-30 protein may remain on the anterior 
head of cauda sperm where it can be detected only by the 
polyclonal antisera and the mAb that recognize the PH-30 
protein on testicular sperm. 

Although certain sperm surface proteins (PH-20, PH-30, 
AH-50), with a broad distribution (whole cell, whole head) 
at the testicular sperm stage, ultimately become restricted to 
a specific head domain, this is not the case for all head sur- 
face proteins. For example, we observed that during sperm 
differentiation in the epididymis, the WH-1 protein distribu- 
tion did not change; WH-1 was seen on the whole head of 
testicular sperm (Fig. 1 q) and also the whole head of cauda 
epididymal sperm (Fig. 1 r). 

Trypsin Treatment of Testicular Sperm In Vitro Is 
SuJ~icient to Localize Sperm Surface Proteins to Their 
Correct Domains 
We found that the localization of surface proteins into the 
posterior and anterior head domains, normally occurring 

during sperm differentiation in the epididymis, could be 
mimicked by treating testicular sperm in vitro with trypsin. 
Sperm were isolated from the testis and treated with 20 
t~g/ml trypsin for 5 rain at room temperature. The trypsin- 
treated testicular sperm were then stained with antibodies to 
the individual surface proteins. The staining revealed that 
trypsin treatment was sufficient to establish the posterior 
head localization of the PH-20 and PH-30 proteins (Fig. 1, 
c, g, and k). After trypsin treatment, the detected patterns 
of PH-30 protein distribution differed between the anti-PH- 
30 polyclonal antisera and the PH-30 mAb. With anti-PH-30 
polyclonal staining, residual PH-30 remaining on the an- 
terior head surface could be seen (Fig. 1 g), whereas with 
mAb PH-30 staining, virtually all the PH-30 protein de- 
tected was on the posterior head (Fig. 1 k). This was similar 
to the difference seen for PH-30 protein distribution on 
cauda epidldymal sperm when the anti-PH-30 polyclonal an- 
tisera and mAb PH-30 were compared (see above, Fig. 1, f 
and j) .  Trypsin treatment of testicular sperm also resulted in 
the AH-50 antigen becoming localized to the anterior head 
(Fig. 1 o) and did not alter the pattern of the WH-1 antigen 
(Fig. 1 s), thus also mimicking the domain formation occur- 
ring during late sperm differentiation in the epididymis. 
Trypsin treatment of testicular sperm consistently produced 
the patterns shown in Fig. 1 on 70-100% of the testicular 
sperm population. 

Binding to a divalent antibody is apparently not required 
for the trypsin-induced localizations. For example, the PH- 
20 protein was localized to the posterior head of epididymal 
and trypsin-treated testicular sperm regardless of whether 
the staining was carried out with a divalent first antibody and 
a monovalent second antibody (Fig. 1 c) or if both antibodies 
were monovalent Fab fragments (Table D. This indicates that 
localization of PH-20 protein is not induced by binding of 
divalent antibody. 

The effect of trypsin appears to be specific to testicular 
sperm: trypsin treatment did not induce a change in the anti- 
body staining patterns on cauda epididymal sperm (data not 
shown). Furthermore, the change in surface distribution af- 
ter trypsin treatment is not the result of differential loss of 
membrane. If the membrane were being removed or dam- 
aged in selected areas to produce a new pattern for a given 
protein, those areas would be expected to lose other mem- 
brane proteins as well. The various antibodies tested showed 
this was not the case. After trypsin treatment, the PH-20 
mAb, for example, showed loss of staining in the anterior 
head region, but stained the posterior head; the AH-50 pat- 
tern was reversed, with loss of staining in the posterior head, 
but not in the anterior head. The WH-1 mAb continued to 
stain the entire head surface after trypsin treatment. 

Quantitation of PH-20 Fluorescence and the Migration 
of PH-20 Protein During Domain Formation 
To quantitatively compare protein localization in vivo to pro- 
tein localization induced by in vitro trypsin treatment, we 
analyzed the PH-20 protein in more detail. After staining of 
live cells with Fab fragments of both an anti-PH-20 mAb and 
a rhodamine-labeled second antibody, fluorescence intensity 
was measured on three samples: (a) control testicular sperm, 
incubated without trypsin, (b) testicular sperm, incubated 
with trypsin, and (c) cauda epididymal sperm. Fluorescence 
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Table L Comparative Measurements of Antibady Bound 
and Surface Area 

sperm type 

Cauda Testicniar 
Region Testicular epididymal + trypsin 

Fluorescence intensity 
Posterior 
head; total 1.00 2.06 1.80 
fluorescence (+.18) (+.45) (±.41) 

Posterior 
head; average 1.00 1.99 2.22 
fluorescence (±.25) (±.64) (±.39) 

Relative surface area in pixels (area x 10 -3) 
Posterior 1.00 1.00 0.99 
head (±0.1) (±.09) (±0.1) 

n =20  n =21 n = 7  

(Top) Sperm were incubated with or without trypsin, then stained with a Fab 
fragment of the PH-22 mAb and a rhodamine-eonjugated Fab goat anti-mouse 
F(ab)2. Fluorescence intensity was measured within the posterior head region 
as described. For each experiment the mean of testicular sperm fluorescence 
was determined and other data were normalized to it. Normalized data from 
all experiments were pooled to determine overall mean (5: SEM). A two-tailed 
Student's t-test with ~ set at 0.01 indicated that there was no significant differ- 
ence between cauda epididymal sperm and testicular + trypsin sperm. Sample 
size ranged from 21 to 50 sperm. (Bottom) Relative surface area for the posteri- 
or head was determined by recording the number of pixels included in an out- 
line of the posterior head region, demonstrating that the increase in posterior 
head fluorescence did not occur because of an increase in posterior head sur- 
face area. n, number of sperm. 

intensity from the control testicular sperm was assigned an 
arbitrary value of 1.00. For both total fluorescence and aver- 
age fluorescence (see Materials and Methods), cauda epidid- 
ymal sperm and trypsin-treated testicular sperm had about 
two times more fluorescence in the posterior head region 
than control testicular sperm (Table I). The surface area of 
the posterior head remains constant (Table I). These results 
show that the trypsin-induced restriction of PH-20 to the 
posterior head domain mimics the differentiation-induced 
restriction quantitatively as well as qualitatively. 

The increase in fluorescence intensity in the posterior 
head suggests that PH-20 molecules, present in other do- 
mains on testicular sperm, migrate to the posterior head. Al- 
ternatively, the measured increase in mAb binding in the 
posterior head region could reflect new sites being revealed 
in that region. To test directly if PH-20 protein is able to 
move into the posterior head from other surface regions, tes- 
ticular sperm were prelabeled with a Fab fragment of an anti- 
PH-20 mAb and a rhodamine-Fab second antibody. We then 
treated the cells with trypsin for 5 min and after stopping the 
trypsin reaction, incubated the cells in Mg2+-Hepes medi- 
um, for 1 h, a time that allows localization to proceed to 
completion. (We found the brief trypsin treatment, required 
to achieve PH-20 localization, did not result in significant 
loss of the labeled Fab fragments; see legend to Table II). 
After localization had occurred, we measured fluorescence 

Table II. Measurement of Antibody Bound to Posterior 
Head Region of Sperm Stained before Trypsin Treatment 

Fluorescence 
Treatment after staining intensity 

None (control) 

5 min trypsin + 1-h incubation 

5 min trypsin + 1-h incubation 
(in presence of excess Fab PH-20 mAb) 

1.00 + 0.26 
(n = 10) 

2.39 + 0.68 
(n = 9) 

2.12 + 0.78 
(n = 13) 

Testicular sperm were first stained with a Fab fragment of an anti-PH-20 mAb 
and a rhodamine-conjugated Fab second antibody. One aliquot of stained 
sperm was then treated with trypsin for 5 min at room temperature, SBTI was 
added, cells were washed and incubated in Mg2+-Hepes buffer for an addi- 
tional 60 rain. Note that fluorescence intensity in the posterior head of trypsin- 
treated sperm, relative to untreated, was the same, i.e., twofold greater, if 
sperm were labeled with antibodies before trypsin treatment (Table II) or after 
trypsin treatment (Table I). This indicated that the brief trypsin treatment did 
not result in a loss of the antibodies used for prelabeling. Fluorescence intensi- 
ty was measured as described in Materials and Methods. For each treatment 
the mean was normalized to mean intensity on control sperm and (+  SEM) was 
calculated, n, number of sperm measured. 

intensity over the posterior head and compared it with the 
posterior head fluorescence of testicular sperm that had not 
been trypsin treated. To control for the possibility that anti- 
body was unbinding from one region of the cell and rebind- 
ing to newly revealed antigen sites in the posterior head re- 
gion, we incubated one set of cells in the presence of a 
45-fold excess of unlabeled anti-PH-20 Fab that should bind 
to any newly revealed sites, preventing the binding of any 
mAb-second Ab complex. The excess unlabeled antibody 
will also bind to any second antibody that becomes free in 
the medium. Under both conditions, the fluorescence inten- 
sity over the posterior head region after trypsin treatment 
was more than twofold higher than fluorescence intensity 
over the posterior head of untreated testicular sperm, indi- 
cating that PH-20 protein from other regions of the cell sur- 
face migrated into the posterior head region (Table II). 

Evidence Confirming That There Is Proteolytic 
Action on Sperm Surface Proteins During Sperm 
Differentiation in the Epididymis 
The finding that trypsin treatment of testicular sperm is 
sufficient to localize sperm surface proteins to their domains 
suggests that protease action on the sperm surface in vivo is 
a step in the mechanism of domain formation. To confirm 
that there is in vivo protease action on sperm surface proteins 
in the epididymis, we did a series of biochemical experi- 
ments to analyze surface protein structure. Live testicular 
and cauda sperm were isolated and surface iodinated. After 
iodination of the testicular sperm, half of the sample was 
treated with 20 #g/ml trypsin for 5 rain at room temperature. 
Membrane proteins were extracted from the three samples 
with 1% NP-40. 

Figure 1. Indirect immunofluorescence patterns of antibody bound to the surface of testicular, cauda, and trypsin-treated testicular sperm. 
(a-c) PH-20 mAb; (e-g) rabbit polyclonal anti-PH-30; (i-k) PH-30 mAb; (m-o), AH-50 mAb; and (q-s) WH-1 mAb. (a, e, i, m, and 
q) Testicular sperm; (b, f, j, n, and r) cauda sperm; and (c, g, k, o, and s) trypsin-treated testicular sperm. (d, h, l, p, and t) Phase-contrast 
image of same sperm shown in c, g, k, o, and s. Sperm were stained live and then fixed for photography. Bar, 2 ~m. 
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Figure 2. Autoradiographs of 
nonreducing SDS-PAGE of de- 
tergent extracts of ~ I  sur- 
face-labeled sperm. Lane 1, 
testicular sperm; lane 2, tryp- 
sin-treated testicular sperm; 
lane 3, cauda epididymal 
sperm. Molecular mass is in 
kilodaltons. 

We compared the SDS-PAGE patterns of the detergent ex- 
tracts from the control testicular sperm, trypsin-treated tes- 
ticular sperm and cauda epididymal sperm (Fig. 2). The ma- 
jor 125I surface-labeled proteins from testicular sperm were 
found clustered at higher relative molecular weights, with 
the most heavily labeled band at 70-104 kD (Fig. 2, lane 1 ). 
In contrast, sperm taken from the cauda epididymis had the 
major labeled bands distributed between ~60  and "022 kD 
(Fig. 2, lane 3). The pattern of iodinated surface proteins of 
trypsin-treated testicular sperm resembled, but did not ex- 
actly match, surface proteins of cauda epididymal sperm. 
After trypsin treatment of testicular sperm, the band at 
70-104 was greatly reduced, and new bands appeared at 
'~60, 54, 43, 36, and 23 kD (Fig. 2, lane 2). 

We next immunoprecipitated from testicular sperm and 
cauda epididymal sperm two individual antigens that be- 
come localized in the epididymis (PH-20 and PH-30). We 
found that both these surface proteins undergo proteolytic 
cleavage during sperm development in the epididymis and 
that trypsin treatment of testicular sperm resulted in similar 
proteolytic cleavages. 

Previous work had shown that PH-20, purified from the 
whole testis (which includes PH-20 from spermatids as well 
as testicular sperm), ran at a slightly higher molecular mass 
on reducing SDS-PAGE ('066 kD) than PH-20 isolated from 
cauda epididymal sperm (,064 kD) (Phelps and Myles, 
1987). In this study, PH-20 was immunoprecipitated from 
the three detergent extracts of sperm and the precipitates 
were electrophoresed to determine: (a) if there was a differ- 
ence in molecular mass between PH-20 from purified testic- 
ular sperm and cauda epididymal sperm, and (b) if there was 
a difference, could trypsin treatment of testicular sperm alter 
PH-20 to a form similar to the PH-20 from cauda sperm. A 
difference in the molecular mass of PH-20 from testicular 

sperm compared to cauda epididymal sperm was detected; 
PH-20 precipitated from testicular sperm and run on non- 
reducing gels, was •2 kD larger than PH-20 precipitated 
from cauda epididymal sperm (Fig. 3, lanes I and 3). Tryp- 
sin treatment of testicular sperm did not change the relative 
molecular mass of PH-20 on nonreducing gels (Fig. 3, lane 
2). However, results examining PH-20 immunoprecipitates 
under reducing conditions did reveal an effect of the trypsin 
treatment. Previously we had found that PH-20, purified 
from cauda sperm and run on SDS-PAGE under reducing 
conditions, showed predominantly two subunits of 41--48 
and 27 kD (the 27-kD polypeptide is not labeled by ~25I; 
Primakoff et al., 1988a), and a small amount ran at ~64  kD. 
The experiments showed that most of the PH-20 on cauda 
sperm had been endoproteolyticaUy cleaved into two disul- 
fide bonded fragments (41-48 and 27 kD) while a small frac- 
tion of it remained as the uncleaved 64 kD (Primakoff et al., 
1988a). PH-20 from control testicular sperm was not en- 
doproteolyticaUy cleaved and ran at Mr ,,066 kD under re- 
ducing conditions (Fig. 3, lane 4). PH-20 protein from tryp- 
sin-treated testicular sperm ran differently than PH-20 from 
control testicular sperm, and partially mimicked the pattern 
seen with canda epididymal sperm; the major band at ,,066 
kD was drastically reduced, and a new band appeared at 
"048 kD (Fig. 3, lane 5). PH-20 precipitated from cauda 
sperm, was found primarily in the 41--48-kD bands with 
trace amounts detected in the ~64-kD band (Fig. 3, lane 6). 

The rabbit anti-PH-30 polyclonal antibody, which recog- 
nizes PH-30 on testicular sperm as well as cauda epididymal 
sperm (Fig. 1), was used to immunoprecipitate PH-30. We 
asked the same questions: does PH-30 undergo proteolysis 
during sperm differentiation in the epididymis, and if so, can 
this proteolysis be mimicked in vitro by trypsin treatment of 
testicular sperm? Autoradiographs of the PH-30 immuno- 
precipitates showed that this protein also underwent a change 
in molecular mass during differentiation in vivo, and that this 
change was partially mimicked on testicular sperm that had 
been treated with trypsin in vitro (Fig. 4). From cauda epi- 
didymal sperm (Fig. 4, lane 3), the anti-PH-30 polyclonal 
precipitated two polypeptides, one at 49 kD, termed a,  the 
other at 33 kD, termed/3. From other work it is known that 

Figure 3. Autoradiographs of 
SDS-PAGE of PH-20 immuno- 
precipitated from 125I surface- 
labeled strum1. Lanes 1-3, non- 
reducing conditions; lanes 4-6, 
reducing conditions. Lanes 1 
and 4, testicular sperm; lanes 
2 and 5, trypsin-treated testic- 
ular sperm; lanes 3 and 6~ ,.a, rlA 
epididymal sperm. Molecular 
mass is in kilodaltons. 
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Figure 4. Autoradiographs of non- 
reducing SD-PAGE of PH-30 protein 
immunoprecipitated from t25I sur- 
face-labeled sperm. A rabbit poly- 
clonal antibody to the PH-30 protein 
was used for immunoprecipitation. 
Lane 1, testicular Sperm; lane 2, 
trypsin-treated testicular sperm; lane 
3, cauda epididymal sperm. Molecu- 
lar mass is in kilodaltons. 

the o~ and/3 polypeptides copurify on PH-30 mAb affinity 
columns and are two distinct subunits of the PH-30 protein. 
ot and/3 have different peptide maps (Primakoff et al., 1987) 
and affinity-purified polyclonal antibodies from o~ bind only 
to ot or from 13 bind only to 13 (Blobel et al., 1990). From 
testicular sperm, we found that the anti-PH-30 polyclonal 
precipitated the ot band at 49 kD, and no/3 band but instead 
showed an additional heavily labeled band(s) at 69-112 kD 
(Fig. 4, lane 1 ). Polyclonal antibody, affinity purified from 
the 33-kD/3 band of cauda epididymal sperm, immunoblots 
a band centered at *85  kD on testicular sperm, indicating 
that this higher molecular mass polypeptide is a precursor 
of 13 (Blobel et al., 1990). PH-30, immunoprecipitated from 
trypsin-treated testicular sperm, shows that the 13 precursor 
is lost and a band of molecular mass very close to mature 
/3 (33 kD) is produced (Fig. 4, lane 2). 

Discussion 

Our results strongly implicate proteolysis of the surface as 
one step in the mechanism for protein localization to the 
posterior and anterior head domains. We found that brief in 
vitro trypsin treatment oftesticular sperm is sufficient to pro- 
duce the identical localizations that occur in vivo late in 
sperm differentiation. In the case of the PH-30 protein, tryp- 
sin treatment not only mimicked the change in localization 
of PH-30 protein but also resulted in the appearance of a new 
PH-30 protein epitope, recognized by the PH-30 mAb. This 
epitope also appears in vivo late in sperm differentiation. In 
addition, trypsin treatment of testicular sperm produced the 
same quantitative increase in PH-20 protein on the posterior 
head as was observed on in vivo-differentiated cauda sperm. 
These findings suggest that there may be protease action on 
sperm surface molecules during in vivo differentiation and 
that this proteolysis results in the formation of the head sur- 
face domains. 

Immunoprecipitation experiments confirmed that there is 
protease action on sperm surface proteins during in vivo 
differentiation. Both the PH-20 and PH-30 proteins are pro- 
teolytically cleaved on sperm in vivo. PH-20 protein under- 
goes an endoproteolytic cleavage into two disulfide-linked 
fragments. The cleavage of the 13 chain precursor of PH-30 
protein (Mr = •85 kD, testicular sperm) to the mature/3 
(Mr = '~33 kD, cauda epididymal sperm) could be en- 
doproteolytic, exoproteolytic, or both. 

Two kinds of models can be envisioned for steps in the 
mechanism of domain formation after the protease step. In 
one model, the only event required would be the proteolysis 
of specific surface molecule, which would allow the localiza- 
tions to proceed spontaneously. The key event might be pro- 
teolysis of some type of network holding PH-20, PH-30, and 
AH-50 in their broad distributions on testicular sperm or the 
key event could be proteolysis of PH-20, PH-30, or AH-50 
themselves. A glycocalyx or extracellular coat can be seen 
as part of the surface of mammalian sperm (Suzuki and 
Nagano, 1980), including guinea pig sperm (Bearer and 
Friend, 1982), and could be a restraining network holding 
surface proteins in a broad distribution. In a second model, 
the proteolysis could trigger a subsequent sequence of bio- 
chemical modifications. The sequence of modifications 
could occur entirely on the surface or proteolytic cleavage 
of a particular surface protein could act as an extraceUular 
signal which could be transduced across the plasma mem- 
brane and initiate cytoplasmic events resulting in local- 
ization. 

Previous measurements of PH-20 protein diffusion, at 
different stages of sperm differentiation, show that there is 
a constraint on its diffusion on testicular sperm that could be 
partially disrupted by proteolysis in the epididymis. On tes- 
ticular sperm, diffusion of the PH-20 protein is slow (D = 
1.9 × 10 -tl cmZ/s; Phelps et al., 1988), but on cauda 
epididymal sperm it is 10-fold higher (D = 1.8 × 10 -1° 
cm2/s; Cowan et al., 1987). Restriction to diffusion on tes- 
ticular sperm would be expected to result from extracellular 
rather than cytoplasmic interactions, since PH-20 is an- 
chored in the membrane by linkage to glycosyl phosphatidyl- 
inositol (GPI) (Phelps et al., 1988). Such an external con- 
straint system could be analogous to the maintenance of 
surface distribution of the fibronectin receptor by interaction 
with extracellular fibronectin (Roman et al., 1989) and 
would be accessible to external proteases. Our results show 
that one of the steps after proteolysis is the migration of PH- 
20 protein into the posterior head region, which could occur 
after a release from constraint. 

In epithelial cells, the GPI anchor is a sorting signal for 
localization of proteins to the apical domain (reviewed in 
Lisanti and Rodriguez-Boulan, 1990). It is conceivable that 
the GPI anchor is critical for localization of PH-20 to the 
posterior head domain and that other structural information 
in involved in targeting to the posterior head for PH-30, an 
integral membrane protein that is not GPI anchored 
(Primakoff et al., 1987; Phelps et al., 1988; Blobel et al., 
1990). 

The hypothesis that proteases or other enzymes might 
modify sperm surface proteins in the epididymis has been 
previously suggested (see Eddy et al., 1985) and proteases 
have been found in the male reproductive tract (Vanha- 
Perttula et al., 1985; Huarte et al., 1987). There are at least 
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four potential cellular or extracellular sites of in vivo pro- 
tease(s) that could trigger domain formation. The sperm it- 
self may contain surface proteases that are activated or inter- 
nal proteases that are released (for example, from the 
cytoplasmic droplet) while sperm are in the epididymis. Al- 
ternatively sperm may be acted upon by proteases that are 
in the epididymal fluid or on the plasma membrane of epithe- 
lial cells lining the lumen of the epididymis. Biochemical 
identification of the in vivo protease(s) will require deter- 
mining their localization and will also require overcoming 
the difficulties of working with the small quantifies of mate- 
rial available in the early region(s) of the epididymis where 
proteolytic processing occurs (our unpublished observa- 
tions). In addition it will be necessary to distinguish the 
physiological protease(s) from irrelevant proteases that may 
be present in the fluid or cell preparations. 

The localization of surface proteins during sperm differen- 
tiation in the epididymis may be essential for sperm fertiliz- 
ing ability which is acquired as sperm pass through the 
epididymis (Orgebin-Crist and Olson, 1984; Eddy, 1988). 
Antibody inhibition studies indicate that PH-20 has a re- 
quired role in sperm-zona binding (Primakoff et al., 1985; 
Primakoff et al., 1988b) and PH-30 functions in sperm-egg 
fusion (Primakoff et al., 1987). Given the geometry of 
sperm-egg interaction, surface localization could be impor- 
tant simply in bringing these proteins into the correct do- 
main for their activity. A second possible function of local- 
ization is to increase the surface density of the proteins by 
restricting them to a small surface area. Indeed, changes in 
the localization of PH-20 protein act to concentrate it in the 
region where acrosome-reacted sperm bind to the zona pel- 
lucida. Protein concentration is divided into two stages. 
First, migration of PH-20 protein into the posterior head sur- 
face domain results in a twofold increase in the posterior 
head PH-20 concentration (Table I). After the acrosome 
reaction a further 2.5-fold increase in surface expression will 
occur in the region of the inner acrosomal membrane as a 
second migration moves PH-20 into this newly inserted sur- 
face membrane where it joins a previously covert population 
(Myles and Primakoff, 1984; Cowan et al., 1986). The re- 
striction of PH-30 from the whole head to the posterior head 
may also act to increase surface density of PH-30 protein. 
In other systems, cell adhesion and membrane fusion have 
both previously been shown to require a threshold density 
of functional surface molecules (Gething and Sambrook, 
1981; Hoffman and Edelman, 1983; Gething et al., 1986; 
Norment et al., 1988; Doherty et al., 1990). 

The current findings represent an initial insight into a 
mechanism for establishing surface domains during pola- 
rized cell differentiation. As more information accumulates 
about surface domain formation in developing sperm and in 
other differentiating cells, either proteolysis or different initi- 
ating events may be discovered and the subsequent steps in 
the mechanism(s) of protein localization established. 
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