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Abstract
Autism is a diagnostic label based on behavior. While the diagnostic criteria attempt to maximize clinical consensus, it also
masks a wide degree of heterogeneity between and within individuals at multiple levels of analysis. Understanding this
multi-level heterogeneity is of high clinical and translational importance. Here we present organizing principles to frame
research examining multi-level heterogeneity in autism. Theoretical concepts such as ‘spectrum’ or ‘autisms’ reflect non-
mutually exclusive explanations regarding continuous/dimensional or categorical/qualitative variation between and within
individuals. However, common practices of small sample size studies and case–control models are suboptimal for tackling
heterogeneity. Big data are an important ingredient for furthering our understanding of heterogeneity in autism. In addition
to being ‘feature-rich’, big data should be both ‘broad’ (i.e., large sample size) and ‘deep’ (i.e., multiple levels of data
collected on the same individuals). These characteristics increase the likelihood that the study results are more generalizable
and facilitate evaluation of the utility of different models of heterogeneity. A model’s utility can be measured by its ability to
explain clinically or mechanistically important phenomena, and also by explaining how variability manifests across different
levels of analysis. The directionality for explaining variability across levels can be bottom-up or top-down, and
should include the importance of development for characterizing changes within individuals. While progress can be
made with ‘supervised’ models built upon a priori or theoretically predicted distinctions or dimensions of importance, it
will become increasingly important to complement such work with unsupervised data-driven discoveries that leverage
unknown and multivariate distinctions within big data. A better understanding of how to model heterogeneity between
autistic people will facilitate progress towards precision medicine for symptoms that cause suffering, and person-centered
support.

Autism occurs in approximately 1–2% of the population [1]
and autistic individuals’ mental health difficulties are a
major public health issue. In economic terms, the lifetime
individual cost of autism is estimated at $2.4 (£1.5) million
in the United States and United Kingdom and annual
population costs are around $268 billion in the United
States [2, 3]. While interest in and science investigating
autism has been growing rapidly, progress towards trans-
lating scientific knowledge into high-impact clinical prac-
tice has been small and slow in pace. We are still far from
delivering more effective intervention for unwanted symp-
toms, more precise and earlier diagnosis, better under-
standing and prediction of prognosis and development, and
personalization of support and intervention. All of these
points are within the scope of stratified psychiatry [4] and
precision medicine [5]. To arrive at this point, our conten-
tion is that we will first need to grapple with an important
issue holding back progress—heterogeneity within the
autistic population.
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The field is currently addressing this issue. Some have
argued that we are at a crossroad and must acknowledge
that the concept of autism as a single entity lacks validity
at a biological level [6, 7] and that autism must be taken
apart [8]. This idea relates to what others have discussed
regarding autism as an umbrella label referring to many
different kinds of ‘autisms’ [9] and how the scientific
community should abandon attempts to continue char-
acterizing all of autism under a single theory [10].
Research has begun along these new directions but is
highly fractionated because heterogeneity is discussed
across multiple levels of analysis, from genetics [11],
neural systems [12–14], cognition [15], behavior and
development [16–18], and clinical topics (e.g., response
to treatment or outcome [19, 20]). Approaches differ in
how heterogeneity should be decomposed, from utilizing
theoretical a priori known stratifiers [21–23] or dimen-
sions to data-driven approaches [12, 24–26]. Models for
understanding heterogeneity also differ, with some
conceptualizing distinctions as categorical/qualitative,
continuous/dimensional, and/or where distinctions or
similarities may cut across diagnostic boundaries
[26–28]. Work can also differ with regards to aims that
are specific to understanding heterogeneity within one
level of analysis [29, 30], while others attempt to explain
heterogeneity across levels [31–36].

The purpose of this paper is not to provide an in-depth
review of the literature on these areas. Rather, we see a
need to provide organizing principles for framing these
diverse areas of research, so that future synthesis and
theoretical development about heterogeneity can be
facilitated. Specifically, we first discuss how commonly
used terminology such as ‘spectrum’ or the ‘autisms’ can
be used to imply different types of models for under-
standing heterogeneity in autism. Next, we discuss how
heterogeneity arises within the context of the historical
change in diagnostic criteria. Third, we provide arguments
behind why understanding heterogeneity is critical for
furthering progress towards precision medicine. Fourth,
we discuss some of the problems with the dominant
paradigm in the field—the case–control paradigm. In
discussing these issues, we point towards problems with
small sample studies and the need for bigger data. This
leads into a discussion regarding characteristics of big
data that are important for studying heterogeneity in aut-
ism. We follow this with organizing principles behind
how one attempts to understand multi-level heterogeneity.
We then discuss the role of transdiagnostic viewpoints
which go beyond understanding heterogeneity just within
autism. Finally, we conclude with discussions about rea-
listic challenges, mitigating strategies, and clinical
implications of big data approaches.

Terminology behind ‘heterogeneity’ and
impact on building and evaluating models

The concept of heterogeneity in autism dates back to the
original conceptions of an ‘autistic spectrum’ by Wing [37].
Since then, we now apply the concept of heterogeneity
beyond just clinical, behavioral, and/or cognitive levels. A
hallmark of heterogeneity in autism is its multi-level pre-
sentation (Fig. 1c), applicable from genotype through phe-
notype [9, 10], throughout development [16, 38], and
manifesting as important clinical differentiation (e.g., out-
come [20], response to treatment [19], etc.). Thus, the
concept of heterogeneity not only applies to how indivi-
duals differ at one level of analysis, but also when and at
which levels those differences arise, and potentially how
heterogeneity across levels is coordinated. While the idea of
heterogeneity itself has a longstanding history, better
explanations are needed behind why heterogeneity man-
ifests across different levels and how they are connected
across levels and within or between individuals. Bringing
such concepts back to developmental psychopathology,
terms such as equifinality and multifinality [39] may be
helpful. For example, a diversity of different developmental
starting points or causal mechanisms in the genome may
reach similar endpoints (equifinality) at levels more prox-
imate to clinical outcomes or behavior [40]. However, very
similar mechanisms at one level could also result in a
diversity of endpoints (multifinality) [41]. Currently, the
mapping of multi-level heterogeneity in autism is unclear,
but it is imperative that we understand these mappings
which are likely to be indicative of useful explanations
towards precision medicine goals.

There are many ways to talk about how autistic indivi-
duals are similar to or different from each other [42]. On the
one hand, we can understand phrases like the ‘spectrum’ as
referring to heterogeneity as graded continuous change
between individuals. ‘Spectrum’ can also apply to both the
clinically diagnosed autism population and the whole
population, including those with the ‘broader autism phe-
notype’ [43–46]. The idea of a spectrum can be applied as a
model for understanding heterogeneity between autistic
individuals—a model we would refer to as a ‘dimensional
model’. Dimensional models can also cut across traditional
diagnostic boundaries, with the most prominent example of
this being the National Institute of Mental Health (NIMH)
Research Domain Criteria (RDoC) model [47]. However,
we also use heterogeneity as a way of conceptualizing
categorical or qualitative differences between autistic indi-
viduals. The term ‘spectrum’ could also imply a qualitative
rather than a quantitative difference between individuals.
However, terms that pluralize autism as ‘autisms’ may be
more applicable here, as the idea of multiple kinds of
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autisms lends itself to categorical ways of thinking about
individuals as ‘subgroups’ or ‘subtypes’. A subtype model
for explaining heterogeneity in autism can also be called a
‘stratified model’.

Since we have different ways of talking about hetero-
geneity, the question will naturally arise as to which way of
conceptualizing heterogeneity is best. Are categorical
‘subtype’ models better than continuous ‘dimensional’
models, or vice versa? This could be an ill-posed question,
since these concepts and models need not be mutually
exclusive. First, theoretically we could imagine an impor-
tant blending between the two types of models for under-
standing heterogeneity and this can be tested statistically
(e.g., factor mixture models [48]). For instance, one could
first subtype the autistic population, and then further char-
acterize between-individual variability through continuous
models within each subtype. Second, the answer to such a

question may differ depending on the aim of the model. For
example, a subtype model might be better at predicting
treatment responses, whereas a dimensional model might be
better at predicting basic biological mechanisms, or vice
versa. As we build a literature on understanding hetero-
geneity in autism, it will be important to be clear about how
different models conceptualize heterogeneity, as well as
understanding that different models may be important for
different types of aims. The aphorism by George Box that
‘all models are wrong, but some are useful’ is applicable
here [49]. Models are simplified explanations that typically
account only for a portion of variability in a phenomenon.
Even if models are quite different in their explanation and
predictive power, they can still be useful for a variety of
different aims. Therefore, a pragmatic approach for evalu-
ating heterogeneity models will be important for moving
forward, since it is unlikely that we will converge on single
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Fig. 1 Approaches to decomposing heterogeneity in autism. a A population of interest is shown, and autism cases are colored in green, pink, and
blue. The different colors are meant to represent different autism subtypes. In b we show the impact of ignoring heterogeneity on effect size. With a
typical case–control model, we ignore these possible subtype distinctions and compare autism to controls on some dependent variable. In this
example scenario there is no clear case–control difference but the autism group shows higher variability (indicated by the larger error bars). An
approach towards decomposing heterogeneity might be to construct a stratified model whereby we model the subtype labels instead of one autism
label, and then re-examine differences on the hypothetical dependent variable of interest. In this example, the autism subtypes show contradictory
effects. These effects are masked in the case–control model as the averaging cancels out the interesting different effects across the subgroups.
c Heterogeneity is shown in autism as multi-level phenomena. This panel also visualizes the difference between broad versus deep big data
characteristics and labels the top-down versus bottom-up approaches to understanding heterogeneity in this multi-level context. Finally, this panel
also shows how development is another important dimension of heterogeneity to consider at each level of analysis (i.e., ‘chronogeneity’). In this
example, chronogeneity is represented by different trajectories for different types of autism individuals
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explanations (models) that can explain the wide array of
multi-level heterogeneity in autism.

Heterogeneity, evolution of the diagnostic
concept

The evolution of the nosology and diagnostic concept of
autism changes the definition of autism—who counts as
being on ‘on the spectrum’ and who gets a clinical diag-
nosis [50]. This evolution also contributes to the discussion
about heterogeneity in autism. When ‘autism’ was first
defined as ‘autistic disturbances of affective contact’, the
core features were considered to be ‘extreme self-isolation’
and ‘obsessive insistence on the preservation of sameness’
[51, 52]. At the cognitive level, language impairments or
peculiarities were seen as secondary to ‘basic disturbances
in human relatedness’ [52]. Moreover, both Kanner [51]
and Asperger [53] recognized good cognitive potential in
their child patients and therefore autism was not necessarily
tied to intellectual disability. However, at the next stage of
nosological evolution, language and cognitive impairments
began to be considered ‘core’ [54] and this con-
ceptualization directly impacted the first operationalization
of autism in the Diagnostic and Statistical Manual of
Mental Disorders (DSM)-III [55], in which language defi-
cits were core to diagnosis. Individuals identified as having
autism in the 1970s and 1980s were therefore mostly those
with marked difficulties in verbal communication, and
many were considered to have intellectual disability. In the
1980s, Wing [56] and colleagues not only introduced the
work of Hans Asperger into the English speaking world,
but also conducted epidemiological studies that demon-
strated the heterogeneity in social, language, motor, and
cognitive abilities in the autistic and developmentally
delayed population [57, 58]. Wing’s ideas of the ‘triad of
social, communication and imagination impairments and
repetitive behavior’, the lack of clear division between
Kanner’s autism and less extreme forms, and the shift of
core social impairment from ‘extreme autistic aloneness’ to
‘deficits in the use and understanding of unwritten rules of
social behavior’ clearly broadened what autism encom-
passed. All these ideas were subsequently adopted into
versions of diagnostic systems including DSM-III-R,
DSM-IV and ICD-10 (International Statistical Classifica-
tion of Diseases and Related Health Problems-10th Revi-
sion). Phenotypic heterogeneity therefore increased,
allowing an autistic individual to be verbal or minimally
verbal, ‘active but odd’, ‘passive’, ‘aloof’ or ‘loners’ [59],
and with various combinations of repetitive and stereo-
typed behaviors. The DSM-5’s exclusion of language
impairments from, and inclusion of atypical sensory
responses into core symptoms, reflects how the concept of

autism nowadays is much broader than how it had initially
been conceptualized. The most recent revision of ICD
criteria (ICD-11) further emphasizes specific diagnostic
subgroups that qualify whether an individual with autism
has impairments with functional language and/or intellec-
tual development. With the changing and broadening
diagnostic concept comes increased heterogeneity, inevi-
tably at the behavioral phenotypic level, and possibly also
at other levels of analysis.

This history behind the evolving diagnostic concept is an
important yet often not fully acknowledged caveat for
interpreting research on autism. Research spanning several
decades may have been isolating phenomena in altogether
different types of individuals than does more recent
research. Since the spectrum of diagnosed individuals is
wider today than in the past, interpretations behind lack of
replication or inconsistencies across studies should take this
into account, rather than assuming the population under
study has not changed over time. As the diagnostic concept
continues to change we must be mindful of this issue when
interpreting how current research matches up to work that
may be several decades old.

Shifting from the ‘one-size-fits-all’ paradigm
towards understanding heterogeneity

Perhaps the most prominent justification behind why under-
standing heterogeneity is important is because individuals with
autism widely differ in response to treatment. While most
treatment approaches are early intensive behavioral interven-
tion and naturalistic developmental behavioral intervention,
the existing literature suggests that they have variable levels of
effectiveness and in some cases may not significantly affect
core autism features such as social-communication difficulties
[60–64]. Currently, there are also no medical treatments that
significantly affect the core characteristics of autism [65, 66].
Rather than advocating a ‘one-size-fits-all’ approach to treat-
ment, most recent best practice recommendations specifically
highlight the critical need for future research to identify factors
that explain heterogeneity in response to treatment, in order to
better individualize treatment and intervention approaches and
to better target changes in core or functionally impairing
symptomatology [60, 64]. A separate ethical issue raised by
the neurodiversity movement is the idea that autism itself
should not be a target for treatment, since it may be part of the
individual’s genetic make-up and identity. Rather, treatment
should target specific co-occurring symptoms and difficulties
in adaptive functioning that cause suffering and disability.
Such co-occurring symptoms and maladaptation (in many
cases the contributing reasons are not solely within the autistic
person but also arising from the environmental contexts)
comprise a critical, yet under-developed, angle to stratification
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of the autism spectrum which will guide ethical and perso-
nalized intervention.

Heterogeneity also limits basic scientific progress towards
understanding autism. To understand why, it is important to
first make salient the problems with the dominant paradigm,
which is ill-equipped to reveal heterogeneity—the case–con-
trol paradigm. The case–control paradigm exemplifies the
‘one-size-fits-all’ approach, since all cases are treated identi-
cally due to the same diagnostic label. Studies that attempt to
identify ‘biomarkers’ via case–control designs have implicitly
conceptualized the notion that if a strong biomarker did exist,
it would completely differentiate cases from all controls. We
have yet to isolate any biomarkers for autism that can reliably
and consistently reach this high bar [7, 67]. One reason why
case–control research has fallen short on identifying high-
impact biomarkers could be that we are looking at the wrong
features. However, an alternative explanation is that high-
impact biomarkers are likely exclusive to specific subsets of
autistic individuals. That is, a high-impact biomarker may be
informative for one subtype of autism, but not others
(Fig. 1b). In order to identify such stratification or dimen-
sional biomarkers [68], one will have to change the approach
from the case–control model to a stratified and/or dimensional
model. This is not to say that case–control studies are not
useful. Isolation of consistent and reliable case–control dif-
ferences are useful for identifying on average differences, but
typically with substantial degree of overlap in the distribu-
tions. However, if we are searching for biomarkers that could
help us move towards precision medicine, we will need to
pivot our approach away from case–control studies as the
dominant paradigm and towards stratified and/or dimensional
models that could yield much higher impact larger effects.

As an illustrative example, we take our own recent work
on mentalizing ability in adults with autism. From a case–
control perspective, autistic adults perform on average
lower on the ‘Reading the Mind in the Eyes’ Test (RMET)
compared to matched typically developing controls [69].
However, taking a stratified approach, we find that the
autistic adult population can be reliably split into subtypes
who are completely unimpaired on the RMET versus those
who are highly impaired [25] (Fig. 2). Thus, in this exam-
ple, while replicable on average case–control effects appear,
a stratified approach that takes into account heterogeneity
can isolate higher impact and more precise considerations
about mentalizing as measured by the RMET in the adult
autistic population.

Imprecise effect size estimates and lack of
power in small sample size studies

Compounding the problem of utilizing ‘one-size-fits-all’
models like the case–control paradigm is the issue of small

sample size studies. Over the last several decades, it has
been common practice to conduct and publish small sample
size studies. Small sample studies can be problematic from
the viewpoint that statistical power is low for all but the
largest effects. Small sample size also means that estimated
sample statistics vary considerably relative to their popu-
lation parameters due to more pronounced sampling varia-
bility. In Fig. 3, we show simulations that illustrate the
issues of low power and imprecise estimates of effect size
so that they are clear and salient to readers. A common
case–control study with n= 20 per group results in an effect
size that varies considerably relative to the true population
effect. This variability in estimated effect size at small
samples is consistent irrespective of what the true popula-
tion effect is. Only with very large sample sizes (e.g., n >
1000) can we see that the sample effect size hones in with
some precision on the true population effect size. The his-
tograms shaded in red in Fig. 3 also show the limited sta-
tistical power one has at smaller effect sizes and small
sample size.

Effect size inflation in small sample studies

Our simulations also make salient another common
characteristic of small sample size studies—the possibility
for vast effect size inflation when statistically significant
effects are identified [70]. Inflated effects occur because
effect sizes that are deemed statistically significant in
small studies benefit from noise in the direction of the
effect. Such inflated effects present an over-optimistic
view on the identified effects and are prone to the win-
ner’s curse [70]. Inflated effects look attractive and may
be easier to publish due to their apparent indication of
large effects. However, in subsequent replication
attempts, investigators likely will fail to identify effects as
large as the original small sample study because the effect
size in the original study was inflated by some degree
[71]. We can see effect size inflation and its interaction
with true population effect size in Fig. 3. At very small
true population effect sizes, sample effect size estimates
that are deemed statistically significant (the red histo-
grams in Fig. 3a–e) are wildly inflated, and this problem is
most pronounced for small sample size studies. For
example, tiny population effect sizes of 0.1 standard
deviations of difference show on average greater than 300
to 350% effect size inflation when a study observes a
statistically significant effect at p < 0.05 with an n= 50 or
n= 20, respectively (Fig. 3f). If the true population effect
size is much larger (e.g., d > 0.5), inflation in effect size is
attenuated, and at relatively large sample sizes (n > 100
per group), there is very little effect size inflation on
average for such effects. Of course, these simulations here
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are simplistic examples of studies with only one statistical
comparison. The reality is that studies typically make
multiple comparisons and sometimes on a massive scale
(e.g., neuroimaging, genetics). In these situations, inflated
effect sizes become an even bigger problem [72].

Why is such a characteristic important in discussions of
case–control paradigms versus paradigms that acknowledge
heterogeneity? The pervasiveness of small sample sizes and
effect size inflation in case–control studies tend to give
over-optimistic views on the utility of case–control studies.
Over the course of time, replication attempts typically
decrease the enthusiasm for many such effects, because the
reality is likely that most case–control effect sizes are much
smaller than published small sample size studies would
suggest. By portraying initial novel case–control studies as
showing large effects, we may be less inclined to ask the
question of whether heterogeneity is involved. Furthermore,
small case–control effects may be due to complicated het-
erogeneity in the autism population that hides potentially
large effects restricted to specific subtypes. By focusing on
heterogeneity, we are likely to better identify true

population effects of much larger magnitude. Assuming that
such research identifies true large effects in relatively large
samples, the issue of effect size inflation may be much less
of an issue (as the simulations here demonstrate). However,
any model where statistical power is low can show inflated
effect sizes. Therefore, models that try to explain hetero-
geneity can be prone to effect size inflation as well, hence
the need for very large samples and high statistical power in
stratified or dimensional models.

Sampling bias across strata nested in the
autism population

Small sample size case–control studies that do not
acknowledge heterogeneity in the autism population are
also particularly problematic because increased sampling
variability has substantial biasing impact in enriching
specific strata of the population over others. Ideally, to get
a generalizable sample of the population in a case–control
paradigm, one hopes that if there are unknown strata
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Fig. 2 Case–control vs stratified model example with adult autism and
mentalizing ability. This figure reports data from Lombardo et al. [25]
on two independent datasets of adults with autism and performance on
an advanced mentalizing test, the Reading the Mind in the Eyes Test
(RMET). a (Discovery), b (Replication) Case–control differentiation
and the standardized effect size for each dataset are shown. c–f RMET

scores and standardized effect sizes from the same two datasets after
unsupervised data-driven stratification into five distinct autism sub-
groups and four distinct TD subgroups. Autism subgroups 1–2 are
highly impaired on the RMET, while autism subgroups 3–5 are
completely overlapping in RMET scores with the TD population

1440 M. V. Lombardo et al.



nested in the population, the sample prevalence of each
strata reflects the true prevalence of that strata in the
population. If such a criterion is not achieved, it means
that samples can be biased by the enrichment of certain
strata of the population over others. If enrichment of
different strata of the population are present across mul-
tiple studies, they may paint a confusing and potentially
contradictory picture of the phenomenon. A primary
example of this is the systematic over-enrichment of
males over females in most case–control studies, parti-
cularly intervention and biological studies [73–75], which
may lead to male-biased inferences about autism [76].
Another simulation shown in Fig. 4 illustrates that small
samples are much more prone to this bias due to enrich-
ment of specific strata over others. In this simulation,

there are five subtypes in the autism population, and each
has different effects relative to the control population.
Therefore, enrichment of different subtypes can have
dramatic effects on the results of the study. Our simulation
had equal population prevalence for each subtype (i.e.,
20% of the autism population), which meant that from
study to study, the specific strata that may be enriched is
random. Obviously, in the likely scenario where popula-
tion prevalence rates are asymmetrical across subtypes,
the enrichment of specific strata could favor those sub-
types with higher population prevalence.

Such biases due to sampling variability across subtypes
have considerable importance for replicability. To illustrate,
we give a simple example indicative of many cases in the
current literature. For example, Study 1 may unknowingly

A B

D E

Effect Size d = 0.10 Effect Size d = 0.30

Effect Size d = 0.90

Effect Size d = 0.50

Effect Size d = 0.70 F

C

Fig. 3 Simulation of sample effect size estimates at different sample
sizes and across a range of true population effects for a hypothetical
case–control study. In this simulation we set the population effect size
to a range of different values, from very small (e.g., d= 0.1) to very
large (e.g., d > 1.0) (panels a–e show simulation results when effect
size ranges from d = 0.1 to d = 0.9 in steps of 0.2). We then simulated
data from two populations (cases and controls), each with n=
10,000,000, that had a case–control difference at these population
effect sizes. Next, we simulated 10,000 experiments where we ran-
domly sampled from these populations different sample sizes (n= 20,
n= 50, n= 100, n= 200, n= 1000, n= 2000) and computed the
sample effect size estimate (standardized effect size, Cohen’s d) for the
case–control difference. These histograms (gray) show how variable
the sample effect size estimates are (black lines show 95% confidence
intervals) relative to the true population effect size (green line).
Visually, it is quite apparent how small sample sizes (e.g., n= 20)
have wildly varying sample effect size estimates and that this

variability is consistent irrespective of what the true population effect
size is. Overlaid on each gray histogram are red histograms that show
the distribution of sample effect size estimates where the hypothesis
test (e.g., independent samples t-test) passes statistical significance at
p < 0.05. The rightward shift in this red distribution relative to the true
population effect size (green line) illustrates the phenomenon of effect
size inflation. The problem is much more pronounced at small sample
sizes and when true population effects are smaller. We then computed
what is the average effect size inflation for this red distribution and
plotted this average effect size inflation as a percentage increase
relative to the true population effect in (f). Each line in panel f refers to
simulations with different sample sizes. This plot directly quantifies
the degree of effect size inflation across a range of true population
effects and across a range of sample sizes. The code for implementing
and reproducing these simulations is available at https://github.com/
mvlombardo/effectsizesim
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possess a sample enriched with specific autism subtypes
that show a decreased response on some dependent variable.
Study 2 unknowingly has a different autism sample enri-
ched with subtypes that show a contradictory increased
response on the same dependent variable. Both studies are
published and the authors of each may get into a heated
debate, each claiming that the other is wrong. Yet a third
study comes out with perhaps a more unbiased (and pos-
sibly larger) sample, and given that the overall population
effect could be near zero for a case–control comparison (as
in the simulations in Fig. 4), this third study finds no dif-
ference and claims that both studies 1 and 2 are false
positives. While the third study may be the clearest indi-
cation of what occurs as an overall case–control effect, this
study too may be missing the point completely—the
population under investigation is not homogeneous and is
stratified. Therefore, each study could have merit, if better

contextualized and with some attempt to grapple with issues
of heterogeneity. Thus, it is clear from these examples that
practices of running case–control studies, utilizing small
sample sizes, and not fully confronting the issue of het-
erogeneity in autism, may compound problems and lead to a
conflicted literature and delay scientific progress. Given
these considerations, our recommendation is to move away
from small-sample case–control models and towards stra-
tified and/or dimensional models that take into account
important heterogeneity in autism.

Essential big data characteristics for
studying heterogeneity

While the idea of heterogeneity in autism has been around
for some time, it is understandable why as a field autism

Autism 1 d = -1
Autism 2 d = -0.5
Autism 3 d = 0
Autism 4 d = 0.5
Autism 5 d = 1

Autism 1 d = -1
Autism 2 d = -0.5
Autism 3 d = 0
Autism 4 d = 0.5
Autism 5 d = 1

Autism 1 d = -1
Autism 2 d = -0.5
Autism 3 d = 0
Autism 4 d = 0.5
Autism 5 d = 1

Autism 1 d = -1
Autism 2 d = -0.5
Autism 3 d = 0

Autism 4 d = 0.5
Autism 5 d = 1

Autism population

Autism subtypes

Fig. 4 Simulation showing sampling variability and bias of enrichment
of specific strata in small sample size studies. In this simulation we
generated a control population (n= 1,000,000) with a mean of 0 and a
standard deviation of 1 on a hypothetical dependent variable (DV). We
then generated an autism population (n= 1,000,000) with 5 different
autism subtypes each with a prevalence of 20% (e.g., n= 200,000 for
each subtype). These subtypes vary from the control population in
effect size in units of 0.5 standard deviations, ranging from −1 to 1.
This was done to simulate heterogeneity in the autism population that
is reflective of very different types of effects. For example, the autism
subtype 5 shows a pronounced increased response on the DV, whereas
autism subtype 1 shows a pronounced decreased response on the DV.

Across 10,000 simulated experiments, we then randomly sampled
from the autism population sample sizes of n= 20, n= 200, and n=
2000, and computed the sample prevalence of each autism subtype.
The ideal result without any bias would be sample prevalence rates of
around 20% for each subtype. This 20% sample prevalence is
approached at n= 2000, and to some extent at n= 200. However,
small sample sizes such as n= 20 shows large variability in sample
prevalence rates of the subtypes and this can markedly bias the results
of a case–control comparison. The code for implementing and repro-
ducing these simulations is available at https://github.com/mvlomba
rdo/effectsizesim
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research has made only limited progress. Conducting
research on heterogeneity can be difficult for reasons of lack
of datasets that are large enough to sufficiently answer such
questions. As the previous discussions on issues with small
sample sizes suggest, we would argue that one key ingre-
dient to studying heterogeneity in autism successfully is
‘big data’. When we use the phrase ‘big data’, we are not
necessarily referring to the ‘feature’ dimension of the data—
that is, massively multivariate ‘feature rich’ data (e.g.,
neuroimaging or genomics data). Obviously, feature-rich
aspects of big data are indeed important in their own right
and for the purposes of understanding heterogeneity.
Rather, the dimensions we would emphasize about big data
are the participant dimension (i.e., large sample size) and
the depth of the measured features embedded in the parti-
cipant dimension. Put another way, we need big data that
have characteristics of being both ‘broad’ and ‘deep’ [77]
(Fig. 1c).

Broad data refer directly to the participant or sample
dimension of the dataset (as opposed to the feature
dimension) and is characteristic of massive sample size.
Such a broad spread over individuals should ideally provide
good coverage over the population of interest and allows for
sufficient sampling of each strata of interest. Broad data are
an essential ingredient for decomposing heterogeneity in
autism since we can run into many problems with data that
are not sufficiently large or do not allow for such broad
coverage over the population. Sufficiently broad data can
also open up opportunities for replicating findings, since
experimental designs can be planned ahead of time to set
aside a sufficiently large validation set to replicate findings
from an initial broad discovery set. As data sharing and
open data initiatives become more available, we should see
more investigations on heterogeneity that meet this big data
requirement. There are some current resources that are
immediately available to meet such needs (e.g., the ABIDE
datasets [78], the National Database for Autism Research
(NDAR) [79], the Simons Simplex Collection [80], SPARK
[81], the Healthy Brain Network [82], and see refs. [83, 84])
and we would expect much more in the coming years. As
we get better at detecting what are the relevant dimensions
and/or subtypes explaining important heterogeneity in aut-
ism, we may be better able to design high-powered targeted
studies where the requirements for massive sample size may
be reduced substantially. However, for most topics, we are
not yet at this stage, and thus broad data (i.e., massive
sample size) are necessary.

Developing models to explain aspects of heterogeneity at
one level is only the first step. Once we have built good
models that explain heterogeneity at one level, we will need
to ask the next translational question: ‘What else are these
models good for?’ Put differently, stratified or dimensional
models can be good at predicting phenomena at one level of

analysis, but because autism is heterogeneous at multiple
levels, could such models help us make sense of hetero-
geneity outside the domain that the model was originally
built upon? Answering this question can have considerable
relevance for precision medicine goals. For instance, a
geneticist may have identified a unique biological subtype
of autism based around a certain genetic mechanism. Such a
genetic stratifier would already be useful for pinpointing a
specific discrete cause for some proportion of the autism
population. However, working towards precision medicine,
we would next want to know whether such a genetic sub-
type is different from other autistic individuals on clinically
relevant aspects such as prognosis, response to treatment,
symptomatology, cognition, etc. Thus, when we ask this
type of question, we need big data that are not only broad,
but also ‘deep’ [77]. Deep data are data collected on the
same individuals that penetrate through multiple levels of
analysis (Fig. 1c). Deep data allow for stratifications or
dimensional models to be built at one level, but the
important tests of such stratifications can be done at other
levels. An example of this can be seen in recent work on the
Simons Simplex Collection. Here the authors made strati-
fications on the phenotype and then asked the question of
whether such stratifications increased power for detecting
genome-wide association study-type effects at the genetic
level [31]. Thus, to best answer questions by utilizing
stratified or dimensional models, we will require big data
that are both broad and deep, as the combination of both
types of data can allow for discovery of explanations of
autism heterogeneity and can immediately point towards the
utility of such models for explaining the multi-level com-
plexity inherent in autism. New multi-site studies such as
EU-AIMS Longitudinal European Autism Project (LEAP)
are targeted to directly address both issues of broad and
deep data [85–87] and we need other efforts along these
lines.

Approaches to decomposing heterogeneity
in autism: top-down, bottom-up, and
chronogeneity

Since the approach to decomposing heterogeneity in aut-
ism towards precision medicine goals is one of identifying
clinically and mechanistically useful models, it is helpful
to make salient some different approaches towards
these goals. A common circumstance might be where a
researcher makes a stratification at a level higher up in the
hierarchy presented in Fig. 1c. The translational next step
may be to work down towards understanding how a stra-
tified and/or dimensional model at this higher level of
analysis can explain some phenomenon at a lower level.
We refer to this as a top-down approach. For example, a

Big data approaches to decomposing heterogeneity across the autism spectrum 1443



clinically important stratification can be made in the early
development of autism regarding language outcome at 4–5
years of age. Some children keep up with age-appropriate
norms in the areas of expressive and receptive language
development, whereas others fall far behind in their lan-
guage abilities across these domains. The empirical ques-
tion after making such stratification could be whether such
autism language–outcome subtypes differentiate at the
level of neural systems organization, particularly neural
systems that are developing specialization of function for
speech and language processes [22]. More recent work has
also shown that variation at the level of gene expression in
blood leukocytes is associated with large-scale speech-
related functional neural responses. These gene expres-
sion-neuroimaging associations are different across autism
language outcome subtypes [23]. In this example, it is
clear that the stratifications were made at a level of ana-
lysis above the level that was later interrogated for
mechanistic understanding. Thus, while early
language outcome is itself a clinically important stratifier,
this top-down work also indicates that the stratifier may
also be mechanistically useful for pointing towards
different underlying biology. Other examples of a top-
down approach may be based on cognitive characteristics
[88], sex/gender [76], and co-occurring medical and psy-
chiatric conditions (e.g., epilepsy [89], attention-deficit/
hyperactivity disorder (ADHD) [27], etc). This type of top-
down approach may ultimately motivate future work that
could potentially identify unique discoveries about biology
behind a subset of the autism population that was pre-
viously unknown.

In contrast to top-down approaches, an approach that
works from the bottom-up could be highly complementary.
As the phrase implies, a bottom-up approach starts with
identifying and building useful models from a lower level in
the hierarchy, and then asks questions about how such low-
level models can explain phenomena higher up in the
hierarchy. For example, in the ‘genetics first’ approach, an
investigator may be interested in identifying how different
high-impact genetic causes of autism may be similar
or different at a phenotypic or cognitive level of analysis
[90–93]. In another example, an investigator may compare
autism subtypes at the level of neural systems or structural
brain features (e.g., with or without early brain enlarge-
ment), and then ask the question of whether such a strati-
fication provides a meaningful indicator of differentiation at
a clinical level [14]. Both top-down and bottom-up
approaches can be useful, depending on the particular
research question, and each can highlight different aspects
of important heterogeneity in autism. In order to link up
such multi-level complexity into explanations behind het-
erogeneity in autism, it will be imperative to have work
from both approaches.

A final approach to decomposing heterogeneity deals
with the lifespan developmental dimension across any level
of analysis, or ‘chronogeneity’ [38]. Several large long-
itudinal studies consistently indicate that there are several
autism subtypes with different developmental trajectories
[16–18, 38, 94]. Regression, a developmental feature seen
in autistic individuals, is another key stratifier that is
surprisingly under-studied but with plausible unique
biological bases [95, 96]. Within the developmental
dimension, heterogeneity can be assessed as both inter- and
intra-individual variability, but can also cover individua-
lized deviance from group trajectories over time- [38] or
age-specific norms [97, 98]. Chronogeneity thus offers a
unique vantage point on multi-level heterogeneity not
covered by understanding heterogeneity at static time
points.

Approaches to decomposing heterogeneity
in autism: supervised versus unsupervised

In addition to conceptualizing stratified and/or dimensional
models by top-down, bottom-up, or developmental
approaches, it is also important to clarify how we build on
the process of understanding heterogeneity. Ultimately, the
scientific process of better understanding heterogeneity in
autism is a learning problem. Taking ideas from statistical
or machine learning, we can broadly divide learning pro-
cesses into supervised and unsupervised learning [99].
Supervised learning deals with a priori knowledge about a
topic (i.e., known labels), and then seeks to derive a model
to best predict that known information. With regard to the
process of understanding heterogeneity in autism, the ana-
logy of supervised learning can apply to all instances where
the experimenter uses their own knowledge and justifica-
tions to dictate where the stratifications are made (e.g., top-
down, bottom-up, or developmental). In other words,
knowledge from a supervised source (e.g., an investigator, a
theory) informs the stratification or dimension to be mod-
eled. This type of approach has the advantage of being
theory driven and/or builds on expert knowledge of the
investigator (e.g., clinical intuition or experience), who may
already have highlighted a distinction that is meaningful
and justified in a variety of ways.

The disadvantage of solely relying on a ‘supervised’
approach is that the investigator and/or a theory may be
missing other important distinctions about how to model
heterogeneity for the question of interest. In this case, the
learning process can be helped by some type of ‘unsu-
pervised’ statistical learning process that uncovers dis-
tinctions that may not be readily apparent from a priori
knowledge. Because big data are a key ingredient for
building models to explain heterogeneity, we can utilize
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the feature-rich aspects of big data to embark on data-
driven discovery of potentially complex multivariate
patterns that distinguish different types of individuals. We
refer to this data-driven approach as an ‘unsupervised’
approach since computationally, the learning occurs
without any expert a priori knowledge and justifications
and solely relies on statistical distinctions embedded in
the data itself. With this approach we likely rely on
advanced computational techniques from machine learn-
ing that are tailored to best identify complex multivariate
distinctions. For example, we utilized clustering methods
taken from systems biology and applied them to item-
level patterning of behavioral responses on the RMET.
This unsupervised approach yielded discovery of five
different autism subtypes that could be replicably identi-
fied in an independent replication set (Fig. 2) [25]. In
other work, Ellegood et al. [100] applied clustering to
neuroanatomical phenotypes across a range of different
mouse models for autism. This work illustrated that het-
erogeneous starting points (e.g., different genetic muta-
tions highly associated with autism) can converge and
diverge at the level of neuroanatomical phenotypes [100].
Using structural magnetic resonance imaging measures of
cortical morphometry, Hong et al. [12] used clustering to
identify three autism subtypes with different anatomical
profiles. These anatomically defined subtypes were then
found to be useful for increasing the performance of
supervised learning models to predict symptom severity
on measures such as the autism diagnostic observation
schedule (ADOS) [12].

It should be noted that both supervised and unsupervised
approaches have their advantages and disadvantages, and
can be complementary. An example of this com-
plementarity can be seen in a hybrid supervised–unsu-
pervised approach from Feczko et al. [15]. In this study, the
authors utilized a supervised ensemble learning model
called a Functional Random Forest (FRF) model to classify
autism versus typically developing children based on cog-
nitive features from a neuropsychological test battery. In
addition to classifying autism versus typically developing
children, the FRF model produces a proximity matrix that
indicates similarity between individuals. The authors then
utilized this proximity matrix to identify subgroups in an
unsupervised manner utilizing a community detection
algorithm, typically used in network science to discover
‘modules’. This hybrid approach to cognitive subtyping
proved useful for identifying different patterns of resting
state functional connectivity across the subtypes. Thus,
through the scientific process of building knowledge about
important stratified or dimensional models, both unsu-
pervised and supervised approaches can inform each other,
and in some cases may be utilized together in a hybrid
fashion.

Decomposing heterogeneity in relation to
transdiagnostic constructs

Although so far we treat autism as an entity and focus on
heterogeneity within it, this diagnostic construct is human-
made, cumulative, and evolving [101, 102]. Phenotypically,
autism frequently co-occurs with other neurodevelopmental
(e.g., ADHD, tic disorders) and psychiatric (e.g., anxiety,
depression, obsessive-compulsive disorder, psychotic dis-
orders) conditions [1, 103] and heightened autistic traits
often cut across other categorical diagnoses as well [104].
Underlying this may be multi-level processes cutting across
sets of frequently co-occurring diagnoses [105], which
potentially can be delineated by transdiagnostic approaches
such as using the RDoC framework [47]. In this respect, we
should acknowledge that heterogeneity in autism is part of
the broader heterogeneity existing across neurodevelop-
mental and (physical and mental) health conditions. In the
same vein, the reasons, principles, and approaches descri-
bed above to tackle heterogeneity in autism can be similarly
applied when autism is studied within a transdiagnostic
framework cutting across multiple diagnoses. In the back-
ground of high co-occurrence, a transdiagnostic framework
is necessary for deepening our understanding of the het-
erogeneity within and beyond autism.

Challenges for big data approaches in
autism science and clinical practice

With all these advantages of big data in mind, we
acknowledge it is easier said than done in practice. There
are key practical challenges to be overcome. First, con-
ducting studies with very large sample sizes is challenging,
and perhaps only the most well-funded laboratories and/or
consortiums can regularly conduct such work. In a situation
where we are investigating phenomena with stratified
models, this problem is magnified since one now needs
large sample sizes within each strata being investigated. The
practical issues are further compounded when there is need
to replicate—a need which is absolutely necessary to build
confidence in identified effects. Second, broad and deep
data are both desirable, but there are inevitable tradeoffs
when considering feasibility. Current initiatives to collate
existing data from smaller-scale studies (e.g., ABIDE [78]
and NDAR [79]) have stimulated the field of autism
research to move towards broad data, and there are
increasing consortium efforts taking a prospective, coordi-
nated data acquisition protocol to synchronize the acquisi-
tion of broad and deep data (e.g., EU-AIMS LEAP [85–87],
the Healthy Brain Network [82], the POND Network
[106]). Continuous exchange across research teams to
establish shared methodologies and measurements are
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critical, yet for the field to move forward, it is important to
sustain flexibility and openness in incorporating new find-
ings, methodologies, and measures, especially considering
that the samples to be enrolled in future research must be
more representative of the autistic population at large—
truly diverse and inclusive (e.g., in terms of age and life
stage, ethnic background, genetic make-up, social-
economic status, cultural context, sex, and gender, etc.)—
in order to represent the full spectrum of individuals around
the globe. Fundamental to these large-scale and long-term
efforts is advocacy for funding support that encourages
coordinated study designs and data merging efforts to
achieve broad and deep data.

In the meantime, we believe there is still room for
‘smaller science’ in the era of big data. Contributions
towards delineating heterogeneity could still be made by
studies with moderately sized but adequately-powered
samples. By ‘moderately sized samples’, we do not define
this phrase in absolute terms (e.g., some rule-of-thumb
sample size that can be applied irrespective of the context).
Rather, what counts as moderately sized samples will need
to be defined for each research context. However, at the
very least we do intend ‘moderately sized’ to mean sample
sizes that are sufficiently statistically powered (e.g., >80%)
for reasonably sized effects of interest (e.g., medium or
large effects). Such sample sizes are different from what we
consider as ‘large sample sizes’, which would be situations
where the sample size offers more than enough statistical
power (e.g., 90–100%) even for very small effect sizes and
likely hones in on point estimates of the population effect
size with high precision. These moderately sized studies can
make substantial progress in autism research via several
ways. First, such studies could focus on examining well-
defined subgroups in the autism spectrum, derived either
from hypothesis-driven strata (e.g., individuals with specific
behavioral profile, specific neurobiological status, specific
developmental characteristics, specific etiological factor,
etc.) or strata discovered via prior big (broad) data studies.
In this scenario of moderately sized studies, case–control
models could be meaningful with evidence of independent
replication. However, such studies will likely yield more
information if they also are stratified and/or use dimensional
models to capture aspects of important heterogeneity within
autism. Such studies could help isolate effects specific to
subsets of autism where the effects are larger than smaller
effects typically found in case–control studies. Studies like
these could help canalize research in specific directions
towards better understanding such reasonably sized large or
medium effects. Second, moderately sized studies could
hone their focus on well-defined mechanisms in a hypoth-
esis-testing/driven manner or conducting clinical trials that
target on specific mechanisms (instead of treating autism
overall as a single category driven by an ubiquitous cause).

In these scenarios, moderately sized studies are not broad,
but they could dive into deep data as a way to reveal more
mechanistic insight and connect multiple levels of analysis.
In sum, practical limitations likely require the field to
alternate between investigations that are large-N and broad
or more moderately sized studies that feature deep char-
acteristics of the data. This strategy may facilitate future
work until opportunities arise that can truly allow for big
data that is both broad and deep.

Although big data approaches can move our research
closer towards precision medicine goals, it is an even bigger
challenge to translate the work into real-world individua-
lized care and support. As in other fields of health care,
person-level information that parses heterogeneity and
achieves individual-level accuracy as a biomarker or pre-
dictor (e.g., BRCA gene mutations, the utility of which
comes from big data science in oncology) is only part of the
whole decision-making process in health care. Optimal care
and support for autistic individuals has to be embedded in a
person-centered, lifespan perspective that incorporates
shared decision making and collaborative action planning
[107]. Big data bring clarity to our understanding of indi-
vidual differences on the autism spectrum and beyond the
spectrum, yet in daily clinical practice, care and support can
be improved only when such clarity is integrated with a
perspective that respects the individuality of the autistic
person and their personal contexts.

Conclusions

Understanding how heterogeneity manifests in autism is
among the biggest challenges in our field. As we continue to
develop models for explaining this heterogeneity, the
organizing concepts laid out here could be useful in syn-
thesizing very diverse areas of research. Heterogeneity must
be interpreted relative to the zeitgeist, particularly as it
pertains to how diagnostic concepts evolve. Models for
explaining heterogeneity manifest in many ways, depending
on whether the researcher conceptualizes the differences
between individuals as quantitative and dimensional, or
qualitative and categorical. There is room for both models
that fuse together both dimensional and categorical dis-
tinctions. In general, we need to move beyond one-size-fits-
all models such as case–control models, and we need to be
stringent with respect to methodology, since practices such
as small sample size research cannot live up to the chal-
lenges that heterogeneity creates. Small samples cannot
adequately cover heterogeneity in the autism population in a
highly generalizable fashion, and hence there is a need for
‘big data’ when studying heterogeneity. Big data should be
both broad and deep, to not only sample adequately across
different strata from the population but also to examine how
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strata defined at one level may be relevant for explaining
variability at other levels. Heterogeneity can be parsed from
multiple approaches that capitalize on information from
levels of analysis either most proximate or most distal from
the clinical phenotype and which work their way down or
up through the hierarchy, or via an examination of change
across development. Also important for conceptually orga-
nizing work on this topic is whether we utilize a priori
knowledge to build heterogeneity models or whether we
allow computational methods to inform us about data-
driven distinctions that may be hidden and not readily
apparent to most researchers. Models to understand het-
erogeneity can move beyond just those with clinical diag-
noses of autism and, in the future, transdiagnostic
approaches utilizing similar organizing concepts may pro-
vide complimentary information. Overall, the push to
understand heterogeneity is critical as we attempt to
move towards precision medicine, which will need to be
embedded in a person-centered, lifespan-informed, shared
decision-making and collaborative planning of care
to provide holistic support for each unique autistic
individual.
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