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Figure S1. Consistent PYY treatment does not affect the myogenic program in myoblasts. 

(A) Effects of consistent PYY treatment on myogenic differentiation. C2C12 cells were treated 

with a myogenic induction medium containing the indicated concentration of PYY for 0, 3, and 5 

days and analyzed by Western blotting using antibodies against MYH1/2 and GAPDH. (B) The 

ratio of MYH1/2 to GAPDH is shown as fold. Data are mean ± s.e.m (n = 3 independent 

experiments).  ***p < 0.001; NS, no significance. (C) Effects of consistent PYY treatment on 

myocyte fusion. C2C12 cells were treated with a myogenic induction medium containing the 

indicated concentrations of PYY for 5 days and immunostained for myosin 4 (yellow; to visualize 

MYH II+ myotubes) and DAPI (blue; to visualize nucleus). Scale bar, 100 µm. (D) Fusion index, 

calculated as the percentage of nuclei (≥ 3) in MYH II+ cells, as shown in (C). Data are mean ± 

s.e.m (0 ng/ml PYY: n = 13 independent fields [total 537 MYH II+ cells counted]; 0.1 ng/ml PYY: 

n = 10 independent fields [total 368 MYH II+ cells counted]; 1 ng/ml PYY: n = 6 independent 

fields [total 339 MYH II+ cells counted], from 3 independent experiments). NS, no significance. 

Figure S2. Consistent GLP-1 treatment inhibits GLUT4 membrane translocation during 

myogenic differentiation. 

(A and B) Effects of consistent GLP-1 treatment on membrane expression of GLUT4. Cells were 

treated with a myogenic induction medium containing the indicated concentration of GLP-1 for 5 

days. Subsequently, flow cytometry analysis was conducted using antibodies against GLUT4 or 

buffer alone (Control), followed by labeling with the Alexa Fluor 488-conjugated secondary 

antibody. (A) The representative flow cytometry plots. (B) The average GLUT4 intensity. Data 

are mean ± s.e.m (n = 4 independent experiments). **p < 0.01.  24 
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