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SUPPLEMENTAL FIGURES

Figure S1. Consistent PYY treatment does not affect the myogenic program in myoblasts.
(A) Effects of consistent PYY treatment on myogenic differentiation. C2C12 cells were treated
with a myogenic induction medium containing the indicated concentration of PYY for 0, 3, and 5
days and analyzed by Western blotting using antibodies against MYH1/2 and GAPDH. (B) The
ratio of MYH1/2 to GAPDH is shown as fold. Data are mean = s.e.m (n = 3 independent
experiments). ***p < 0.001; NS, no significance. (C) Effects of consistent PYY treatment on
myocyte fusion. C2C12 cells were treated with a myogenic induction medium containing the
indicated concentrations of PYY for 5 days and immunostained for myosin 4 (yellow; to visualize
MYH II* myotubes) and DAPI (blue; to visualize nucleus). Scale bar, 100 um. (D) Fusion index,
calculated as the percentage of nuclei (= 3) in MYH II* cells, as shown in (C). Data are mean *
s.e.m (0 ng/ml PYY: n = 13 independent fields [total 537 MYH II+ cells counted]; 0.1 ng/ml PYY:

n = 10 independent fields [total 368 MYH I+ cells counted]; 1 ng/ml PYY: n = 6 independent

fields [total 339 MYH II+ cells counted], from 3 independent experiments). NS, no significance.

Figure S2. Consistent GLP-1 treatment inhibits GLUT4 membrane translocation during
myogenic differentiation.

(A and B) Effects of consistent GLP-1 treatment on membrane expression of GLUT4. Cells were
treated with a myogenic induction medium containing the indicated concentration of GLP-1 for 5
days. Subsequently, flow cytometry analysis was conducted using antibodies against GLUT4 or
buffer alone (Control), followed by labeling with the Alexa Fluor 488-conjugated secondary
antibody. (A) The representative flow cytometry plots. (B) The average GLUT4 intensity. Data

are mean = s.e.m (n = 4 independent experiments). **p < 0.01.
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