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Abstract

Background

Understanding cancer development crossing several spatial-temporal scales is of great

practical significance to better understand and treat cancers. It is difficult to tackle this chal-

lenge with pure biological means. Moreover, hybrid modeling techniques have been pro-

posed that combine the advantages of the continuum and the discrete methods to model

multiscale problems.

Methods

In light of these problems, we have proposed a new hybrid vascular model to facilitate the

multiscale modeling and simulation of cancer development with respect to the agent-based,

cellular automata and machine learning methods. The purpose of this simulation is to create

a dataset that can be used for prediction of cell phenotypes. By using a proposed Q-learning

based on SVR-NSGA-II method, the cells have the capability to predict their phenotypes

autonomously that is, to act on its own without external direction in response to situations it

encounters.

Results

Computational simulations of the model were performed in order to analyze its performance.

The most striking feature of our results is that each cell can select its phenotype at each

time step according to its condition. We provide evidence that the prediction of cell pheno-

types is reliable.

Conclusion

Our proposed model, which we term a hybrid multiscale modeling of cancer cell behavior,

has the potential to combine the best features of both continuum and discrete models. The

in silico results indicate that the 3D model can represent key features of cancer growth,

angiogenesis, and its related micro-environment and show that the findings are in good

agreement with biological tumor behavior. To the best of our knowledge, this paper is the

first hybrid vascular multiscale modeling of cancer cell behavior that has the capability to

predict cell phenotypes individually by a self-generated dataset.
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Introduction

Computer-based simulation and modeling (the dry-lab experimentation) are supposed to be a

potential auxiliary to the traditional biological experiments for systematically considering

complex systems like cancer in systems biology. Cancer evolution is a very complex procedure,

involving many dissimilar phenomena, which happen at different scales. A medical doctor,

bio-chemist or a biologist would probably describe the phenomena occurring during the can-

cer evolution using three natural points of view: the tissue level, the cellular level and the sub-

cellular level. From the modeling viewpoint, a link can be approximately drawn between the

description levels above and the macroscopic, mesoscopic and microscopic scales.

Furthermore, what occurs at a certain scale is toughly related to what happens at the other

scales. Consequently, it is not possible to completely describe a phenomenon without taking

into account others, occurring at a larger or a smaller scale.

Multiscale cancer modelers up to now have a wealth of useful, mainly scale-specific

resources to mention to or base their novel research on, however they face the massive chal-

lenge of developing more realistic and more accurate predictive models. The fundamental rea-

son is that when regarding the number of mechanisms at multiple scales, more parameters of

the model and the connections between them will have to be defined, described, quantified,

and adapted frequently according to data from the clinics, experiments or literature.

The multiscale nature of cancer requires modeling approaches that can handle multiple

subcellular and cellular aspects acting on different time and space scales. Hybrid models pro-

vide a way to integrate both continuous and discrete variables that are used to denote concen-

tration or density fields and individual cells, respectively [1].

The tumor has its own vascular network which comes up with access to an almost infinite

supply of resources and allows illimitable growth of the tumor mass. Recently several groups

have started to improve models of angiogenesis in which individual vessels form a network

that delivers nutrients to the tissue.

Modeling approach

We significantly improved our previous agent based model [2] as a hybrid multiscale one.

Such model is developed for investigating cancer cell within a three-dimensional in silico

microenvironment and with angiogenesis. The aim of this paper is to study, by means of a

hybrid multiscale model, the growth of a heterogeneous colony composed of healthy and

cancerous cell populations, as well as to study the effect of the vasculature. While in our model

the cells are viewed as discrete entities (or agent), the diffusion of nutrients is treated as a con-

tinuous field. Our agent-based sub-model is able to incorporate both cell growth and complex

vascular geometry at the tissue scale. This model represents internal cellular processes via dif-

ferential equations. In view of angiogenesis vital role in tumor growth, our model has a 3D

visualization for angiogenesis and vascular tumor growth which shows how blood flow influ-

ences the growth of healthy and cancerous cells in cancer.

While our model simulation is running a new dataset is generated. The phenotypes and the

variables of cell states, constitute the features of dataset. To the best of our knowledge, this

paper is the first hybrid vascular multiscale modeling of cancer cell behaviors that has the capa-

bility to predict their phenotypes autonomously.

Main results

Our model is formulated and performed on a three-dimensional square grid that subdivides

the simulation domain into lattice sites. We study a cluster of tumor cells to which nutrient is

made available through a nearby blood vessel. The proposed model is useful because it allows

Modeling and prediction of cancer cell behavior

PLOS ONE | https://doi.org/10.1371/journal.pone.0183810 August 28, 2017 2 / 26

https://doi.org/10.1371/journal.pone.0183810


for predictions to be made with regard to the behavior of cancer growth. The output data are

the time series of the density of each type of cell and nutrients. The findings are in good agree-

ment with biological tumor behavior.

Paper organization

The outline of this study is as follows. In section II we briefly review discrete, continuous and

hybrid modeling of cancer. In section III we discuss the proposed hybrid modeling, where the

tumor is described using both continuum and discrete elements, and which is capable of con-

necting cell and tissue scales to provide practical as well as theoretical insight into cancer

growth. We evaluate in chapters IV and V. Conclusions and future directions are described in

section VI.

Previous work

Three major types of modeling approaches currently exist in the computational cancer model-

ing community: discrete, continuous and hybrid approaches. Discrete models can explicitly

represent individual cells in space and time and easily incorporate biological rules. In contrast,

continuum approaches, by describing e.g. the entire tumor tissue as continuum medium

rather than at the resolution of individual cells, are able to capture larger-scale volumetric

tumor growth dynamics. Hybrid models provide a way to integrate both discrete and continu-

ous variables that are used to represent individual cells and concentration or density fields,

respectively.

a. Discrete modeling

The previous work in this area has consisted of two main approaches: Agent-based models

(lattice-free models) [3], Cellular automata (lattice-based models) [4].

Agent-based models try to address these problems by eliminating as many artificial con-

straints as possible. Agent Based Modeling (ABM) revolve around modeling individuals, inter-

actions between individuals, and in some cases, interactions with a physical or influential

surrounding environment [5]. Cells by arranging themselves in non-uniform alignments are

capable of moving freely through an environment. The cellular automata (CA) models share

common features using CA rules from cellular or subcellular levels and using stochastic meth-

ods see detail in Wolfram [6].

a.1. Cellular automata modeling. In brief, a cellular automaton (CA) contains a lattice of

any finite number in dimensions of cells. Each CA cell has a state. The number of state possi-

bilities is typically finite. Each CA cell has a neighborhood. This can be defined in any number

of ways, but it is typically a list of adjacent cells. The two most common options in a 3D grid of

squares are the von Neumann neighborhood, where each cell interacts only with its six hori-

zontal and vertical adjacent mates, and the 26 Moore neighborhood, comprising all the imme-

diately adjacent cells.

The main benefit of using cellular automata in cancer modeling is the ability to observe

emerging population level dynamics without a-priori knowledge of tumor behavior [7]. Sum-

mary of some important published approaches based on CA is shown in Table 1.

a.2. Agent-based modeling. Agent-based modeling (ABM) is another approach to model-

ing complex systems composed of interacting, autonomous agents. Agents have behaviors, fre-

quently represented by simple rules, and interactions with other agents, which in turn influence

their behaviors. Agent-based modeling suggests a technique to model social systems that are

composed of agents who learn from their experiences, and adjust their behaviors so they are

better suited to their environment [19]. In an agent-based model, each cell is often represented
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as an agent. Summary of some important published approaches based on ABM is shown in

Table 2.

ABM is a more realistic modeling approach for many problems, especially problems in

which there are multiple types of actors that interact in different ways [5]. However, it can

become very intricate when they incorporate a lot of detail. Therefore, it can become computa-

tionally expensive, entailing exceedingly long computer run times for simulations and it asks

for ancillary developmental resources. Another disadvantage of ABM is that model developers

would have to work on the bottom level of abstraction pursue great endeavor to graphical dis-

play, memory management and synchronization mechanism [20].

b. Continuous modeling (mathematical modeling)

Numerous mathematical models of cancer have been developed until the present. Mathemati-

cal models play a vital role in the development of knowledge in this field of research, since

these models are used to realize the common behavior of a phenomenon in various circum-

stances, to carry out in silico simulations or experiments, to perform new experiments, and to

suggest modifications of theories and test theoretical assumptions [21].

Table 1. Summary of some important published CA models.

Ref Modeling Scope Vascular/Avascular Dimension Year

[8] Tumor Growth Avascular 2D 1993

[9] Tumor Growth Avascular 2D 2009

[10] Tumor Growth Avascular 2D 2010

[11] Cell-cycle Avascular 2D 2012

[12] Tumor Growth Avascular 3D 2012

[13] Tumor Growth Avascular 2D 2013

[14] Tumor Growth Vascular 3D 2013

[15] Tumor Growth Vascular 3D 2013

[7] Tumor Growth Avascular 2D 2014

[16] Heat Transfer In Tumor Avascular 2D 2014

[17] Cancer Growth Avascular 2D 2014

[18] Tumor Growth Vascular 3D 2015

https://doi.org/10.1371/journal.pone.0183810.t001

Table 2. Summary of some important published agent-based models (M = Migration, P = Proliferation, Q = Quiescence, Mi = Microscopic,

Me = Mesoscopic, Ma = Macroscopic).

Ref. Phenotype Vascular/Avascular Dimension Scale ODE/PDE Cancer Year

[22] M, P, Q Avascular 2D Mi, Me ODE Brain 2005

[23] M, P, Q Avascular 2D Mi, Me ODE Brain 2006

[24] A, M, P, Q Avascular 3D Mi, Me ODE Brain 2007

[25] A, M, P, Q Avascular 2D Mi, Me ODE Lung 2007

[26] A, M, P, Q Avascular 3D Mi, Me ODE Brain 2009

[27] M, P, Q Avascular 2D Mi, Me ODE Brain 2009

[28] M, P Avascular 3D Mi, Me ODE Lung 2009

[29] M, P, Q Avascular 3D Mi, Me ODE Brain 2011

[30] A, M, P, Q Vascular 2D Mi, Me,Ma ODE/PDE Brain 2012

[14] A, M, P, Q Vascular 3D Me, Ma PDE Melanoma 2013

[31] M, H, P, Q Vascular 3D Me, Ma PDE Breast 2013

https://doi.org/10.1371/journal.pone.0183810.t002
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Two primary mathematical methodologies are employed in cancer modeling (ODE and

PDE). Partial and ordinary differential equation-based mathematical models of nutrient supply,

cancer growth, contaminant and so on, provide a starting point for all mathematical models

developed in this study. Ordinary differential equations (ODE) is used to form a description of

growth and interactions. ODEs allow the investigator to look at changes in the dynamics of the

system in a sense that is matching to how experimental researchers conduct their investiga-

tions-that is, the natural production of a system of ODEs is the time course of each interesting

variable, just as experimentalists record observations of a system over time. Many of the spatial

models in cancer modeling are based on partial differential equations (PDEs) that include tissue

stiffness, deformability, spatial heterogeneity and orientational tissue structure. Nonetheless,

these methods impose a significant restriction on the time-scales of models. Summary of some

important published approaches based on PDE and ODE is shown in Table 3.

c. Hybrid modeling

Hybrid modeling is a further extension of the previous studies. The coupled continuum and

discrete models in the hybrid modeling framework [1]. The concept of hybrid modeling is dis-

covered on the study of the connection between continuum and discrete modeling expres-

sions. Newly, hybrid modeling techniques have been proposed that combine the advantages of

the continuum and the discrete methods to model multiscale problems.

Moreover, hybrid modeling provides more realistic descriptions of microscopic mecha-

nisms while efficiently evolving the entire system to obtain macroscopic observations [42][43]

[44]. Cancer modeling is one case of such multiscale issue, where the cellular and subcellular

scale pathways have been intensively studied and are fairly well understood while the tissue-

scale cancer morphology is of interest in clinical applications.

Proposed model formulation

The following is a description of our model and its sub-models. The sub-models described

below simply illustrate how such a hybrid multiscale model can be assembled.

a. Hybrid multiscale modeling

Cancer evolution is a very complex process, involving many different phenomena, which

occurs at different scales. Multiscale models that integrate hierarchies in multiple scales are

being established for application in clinical settings [3]. The complexity of cancer development

embodies itself at least on three scales: Microscopic, Mesoscopic and Macroscopic (see subsec-

tion a.1 to a.3).

Our previous model which was based on an agent, and was published as a paper [2], is

highly developed and become more sophisticated in the present paper, and in what follows, a

detailed explanation of every aspect of proposed model will be provided.

Table 3. Summary of some important published Continuous models.

ODE PDE

Ref Cell Population Year Ref Concentration Modeling of Year

[32] Cancer 1964 [33] Nutrient 2000

[34] Cancer, Immune 1994 [35] Nutrient 2001

[36] Cancer, Immune 2005 [37] Nutrient 2006

[38] Cancer, Health 2009 [39] Oxygen, Glucose 2006

[40] Cancer, Health 2014 [41] Oxygen, Glucose 2012

https://doi.org/10.1371/journal.pone.0183810.t003
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In our model, cells (agents) are defined in a 3D lattice form (agent space) in which each cell

is surrounded by 26 other cells called Moore neighbors.

The single most important defining characteristic of our model agent is its capability to

select an action (phenotype) autonomously, that is, to act on its own without external direction

in response to situations it encounters (see subsection b).

Substances such as growth factors (VEGF), oxygen, glucose, TGFα and TNFα; and Signal-

ing pathways including EGFR and TNF are described as continuum fields in the cancer micro-

environment (see subsection a.2 0and a.1), while individual discrete components (e.g. healthy,

cancerous and endothelial cells) dynamically evolve in response to local circumstances like

substance concentration.

The spatial scale covers from micrometers to centimeter and the time scale ranges from sec-

onds to hours for microscopic and macroscopic scales respectively.

Fig 1 illustrates that three scales, i.e. macroscopic, mesoscopic and microscopic are inter-

connected because the tumor growth is closely related to cell population density, nutrient con-

centration, cell behavior and so forth.

a.1. Microscopic scale sub-models. The microscopic scale refers to those phenomena that

take place at the subcellular level. Signaling pathway is an important element to accede our

proposed models to reality because the fate of a cell is determined by signals received from its

environment. For this purpose, we used two important signaling pathways (TNF and EGFR)

in our model [45][46]. The concentration of each element in the TNF and EGFR signaling are

described by ODEs equations. Time step on this scale is second and the concentration of the

materials in every point of the grid is updated.

EGFR signaling pathways: EGFR Signaling pathway starts with binding TGFα to EGFR

and affects cell decision to migrate or proliferate. Each agent evaluates the concentration of

EGFR at its current location. In our model, the EGFR signaling pathway of [47] is used and its

equations are computed using numerical methods. EGFR Equations related to this signaling

pathway are given in S1 Appendix.

The input to EGFR equations is TGFα concentration and their output is PLCγ concentra-

tion. After solving signaling pathway equations, the value of PLCγ is calculated. In the case

that the PLCγ value of a cell is more than the average of PLCγ concentration of the other cells,

it can divide, otherwise it can migrate.

TNF signaling pathways: TNF signaling pathway triggers by binding TNFα to TNFR and

takes decisions of cell survival and cell death. TNFR is responsible for a diverse range of signal-

ing events within cells, leading to necrosis or apoptosis and inhibiting tumorigenesis. TNF

Equations related to this signaling pathway are given in S2 Appendix.

a.2. Mesoscopic scale sub-models. The mesoscopic scale refers to the cellular level. The

term mesoscopic refers to intermediate between short and long and applies to microstructures

to be seen in between the atomic and the macroscopic length scales. In this scale, each cell (or

Fig 1. Multiscale model techniques overview. This figure shows the techniques used in each scale

(ML = Machine Learning, CA = Cellular Automata, ABM = Agent Based Modeling, PDE = Partial Differential

Equation, ODE = Ordinary Differential Equation). Our model combines aspects of both discrete (CA, ABM)

and continuum (PDE, ODE) modeling to provide a more complete description of the tumor environment.

https://doi.org/10.1371/journal.pone.0183810.g001
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agent) is characterized by a site or position (p(x,y,z)) and phenotype or action. The p(x, y, z) is

used to express each site (or point) in the lattice, where x, y and z indicate the integer location

in Euclidean terms.

We have four agents: healthy cell, cancerous cell, stalk vessel and tip vessel. Transitions

between states (or selection a new action) are modeled by an online learning approach (see

subsection b). The general idea is to specify such model by means of different states in which it

can be, actions which an agent can perform to affect the future behavior, and rewards or costs

that depend on the state and decision. After an action has been chosen (based on a learning

approach), our model changes its state depending on the action and the current state.

Cell state (agent state): The state of each cell is characterized by number of variables

(Table 4). These variables are based on the simulation environment factors such as the value

of signaling pathways output/input (Plcγ, TNFα), nutrients concentration (Oxygen, Glucose,

VEGF), number of cell neighbors, etc. The value of each variable is continuous; hence we have

an infinite set of states. For each of these variables, we define some rules.

Cell phenotype (agent action): In the cellular scale, we concentrate on cell behaviors. Each

cell (at time t) is assumed to have one phenotype (presented below) according to its type

(Cancerous, Healthy, Tip, Stalk). Table 5 shows the phenotypes of each agent (See [48] for a

discussion of the biological theory of this modeling construct).

• Apoptosis

Apoptotic healthy cells undergo programmed cell death in response to signaling events

[48]. If healthy cells gain apoptotic phenotype, they become inactive and remove from simula-

tion environment.

• Necrosis

Necrosis is a form of cancerous cell injury which results in the premature death of cells in

living tissue by autolysis. On the contrary, apoptosis is a naturally occurring programmed and

targeted cause of cellular death. The only effect of this phenotype will be a grid point occupa-

tion, and therefore other cells cannot enter at this point of the grid. By occurring necrosis,

necrotic cell not only remains in simulation environment but also preserves from any changes.

• Migration

Cell always searches for a place with more nutrition to migrate or to delivers its offspring

there. The candidate position (p(x,y,z)) is selected according to the following condition (Eq 1)

Table 4. Variables of state for each agent (for example the variables of the tip vessel state are VEGF, Doubling Age and Number of Capillary Cells).

Agent

State Variables

Healthy Cell Cancerous Cell Stalk Vessel Tip Vessel

Oxygen Concentration Value Yes Yes No No

Glucose Concentration Value Yes Yes No No

Cell Division Counter Yes No No No

Proliferation Time Delay Yes Yes No No

Hypoxia Counter Yes Yes No No

Plcγ Value Yes Yes No No

Number of Healthy Moore Neighbors Yes Yes No No

Number of Cancerous Moore Neighbors Yes Yes No No

TNFα Value Yes Yes No No

VEGF Value No No Yes Yes

Tip Cell Age No No Yes Yes

https://doi.org/10.1371/journal.pone.0183810.t004
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[14].

_nutrient½MaxCx;y;z
nutrient �

�Cx;y;z
nutrient > 3σx;y;z

nutrient� ¼ true ð1Þ

Where:

_ is OR operator.

MaxCx;y;znutrient = maximum Concentration of nutrient among all Moore neighbors of candidate

position (p(x,y,z))

�Cx;y;znutrient = Average nutrient concentration for candidate position among all its Moore

neighbors

s
x;y;z
nutrient = Standard Deviation of nutrient concentration for candidate position among all its

Moore neighbors

nutrient ¼
oxygen; glucose For Cancerous or Normal Cells

VEGF For Vessel Cells

(

If the candidate site doesn’t have the above condition or two or more candidates have the

above condition, all candidate locations will be ranked through Eq 2 and according to their

ProbabilityOfSelection value, one candidate will be selected randomly.

ProbabilityOfSelectionx;y;z ¼
Weightx;y;z

P
for all candidate ðx0 ;y0 ;z0ÞWeightx0 ;y0 ;z0

ð2Þ

Where:

Weightx;y;z ¼
X

nutrient

�Cx;y;znutrient

�Cx;y;znutrient = Average nutrient concentration for candidate position among all its Moore

neighbors

nutrient ¼
oxygen; glucose For Cancerous or Normal Cells

VEGF For Vessel Cells

(

Table 5. Cells can have the following actions based on their types in each site (for example the Tip vessels undergo the actions of branch and

expansion).

Agents

Actions

Cancerous

Cells

Healthy

Cells

Stalk

Cells

Tip

Cells

Apoptosis No Yes No No

Hypoxia Yes No No No

Necrosis Yes No No No

Migration Yes Yes No No

Proliferation Yes Yes No No

Quiescence Yes Yes Yes Yes

Branch No No Yes Yes

Expansion No No No Yes

Sprout No No Yes No

https://doi.org/10.1371/journal.pone.0183810.t005

Modeling and prediction of cancer cell behavior

PLOS ONE | https://doi.org/10.1371/journal.pone.0183810 August 28, 2017 8 / 26

https://doi.org/10.1371/journal.pone.0183810.t005
https://doi.org/10.1371/journal.pone.0183810


Each lattice site can be occupied by one cancerous/healthy cell or four endothelial (vessel)

cells. The cancer cells compete with healthy cells for the empty sites and the cancerous cell out-

performs its normal counterpart. Therefore, if a cancerous cell and healthy one simultaneously

select an empty site, the cancerous cell will gain the site. If the type of competitors is the same

as each other, one of them will be selected randomly. If no movement at all is possible, the cell

will remain stationary.

• Proliferation

Cell proliferation is the process that results in an increase of the number of cells. Cell prolif-

eration is increased in cancer. Cancerous or healthy cells can enter the proliferation pheno-

type. In this phenotype, cell divides into two identical offspring cells. In our model, one of the

offspring cells is located in their mother grid site and the other one is located in one of the free

grid sites in a Moore neighborhood of its mother based on Eqs 1 and 2. However, as soon as its

neighboring spaces are occupied by other cells, the cell moves to resting phase (quiescence

phenotype) [11,49].

• Quiescence

The quiescent phenotype is the default phenotype for a cell. It represents G0 in terms of the

cancerous or healthy cells cycle. For endothelial cells, this phenotype means they don’t do any-

thing. It needs to be mentioned here that there is no reverse change of cell from quiescent back

to other phenotypes in this model.

• Hypoxia

Hypoxia is a phenotype for a cancerous cell in which the cancerous cell is deprived of ade-

quate oxygen supply. Decrease oxygen availability (hypoxia) stimulates cancerous cell to pro-

duce VEGF much more. Cancerous cells enter hypoxia when oxygen levels drop below a

defined threshold and will enter necrosis if they remain at that level for too long.

• Branch

The endothelial cells spearheading the vascular sprouts are known as the endothelial tip

cells. Tip cells take the decisions of vessel branch, thereby defining the route in which the new

sprout grows [30].

In our model, tip cells deliver two new offspring in two free sites of the grid in its Moore

neighborhood of its mother based on Eqs 1 and 2.

• Expansion

Tip cells are the leading cells of the sprouts; they guide following endothelial cells (stalk

cells) and sense their environment for guidance cues. As the tip cells move out from the exist-

ing blood vessel, the stalk cells follow to sprout. As tip cell moves forward, a new stalk cell is

created in back of it.

• Sprout

Following the tip cells are the endothelial stalk cells, which are highly proliferative, establish

adherent and tight junctions to ensure the stability of the new sprout. Stalk cell always searches

for a place with more VEGF to deliver its daughter cell there [50]. The candidate place is

selected according to Eqs 1 and 2. Type of new vessel generated from the existing stalk cells is

the same as its parent. Arteriole and Venule are separated from artery and vein respectively.

Material diffusion: We considered five materials in the environment (Oxygen, Glucose,

TGFα, VEGF and TNFα). The concentration (C) of each material is identified within each of
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environment grid points. Environment diffuses the material by PDE diffusion equation based

on its source (S), uptake (U) and waste (W). In this model, duty of endothelial cells are the pro-

duction of Oxygen, Glucose (which is consumed by cancerous/healthy cells) and consumption

(or uptake) of VEGF. The duty of cancerous/healthy cells are the production of VEGF (which

is consumed by endothelial cells), TGFα and TNFα (which is consumed at mesoscopic scale

based on equations in S1 Appendix and S2 Appendix).

• Oxygen, glucose TGFα and TNFα diffusion

The concentration of each material is identified within each of environment grid points.

Environment diffuses the material by the diffusion equation. We rewrite Diffusion equation

for discrete environments in Eq 3 for oxygen, glucose, TGFα and TNFα based on [18] and

[51]. For TGFα and TNFα, uptake is computed based on their ODEs equations (see S1 Appen-

dix and S2 Appendix). Grid sites occupied by healthy and cancer cells are sinks of oxygen, glu-

cose, TGFα and TNFα.

Cx;y;z
nutrient t þ 1ð Þ ¼ Cx;y;z

nutrient tð Þ þ
Dnutrient � Dt

DS2
ðDCx;y;z

nutrientðtÞÞ � Ux;y;z
nutrient tð Þ þ Sx;y;z

nutrient tð Þ ð3Þ

Where:

Dnutrient is nutrient diffusion coefficient,

DCx;y;znutrientðtÞ ¼ ð
X

for all 26 Moore neighbors of ðx;y;zÞ

Cx
0;y0;z0
nutrientÞ � 26� Cx;y;znutrient

Ux;y;z
nutrientðtÞ ¼

Dt � z
x;y;z
nutrientðtÞ � C

x;y;z
nutrientðtÞ nutrient ¼ foxygen; glucoseg

0 nutrient ¼ fTNFa;TGFag

(

z
x;y;z
nutrientðtÞ ¼

bc cell ¼ cancer; phenotype ¼ proliferation
bc

2
cell ¼ cancer; phenotype ¼ migration

bc

4
cell ¼ cancer; phenotype ¼ quiescence

bc

6
cell ¼ cancer; phenotype ¼ hypoxia

bc

8
cell ¼ cancer; phenotype ¼ necrosis

an cell ¼ normal

0 no cell exists in position ðx; y; zÞ

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

Sx;y;znutrient x; tð Þ ¼

Dt
DS2

2p� Rx;y;zðtÞ � Penutrient � ðrx;y;znutrientðtÞ � C
x;y;z
nutrientðtÞÞð Þ

� �

nutrient ¼ foxygen; glucoseg

Dt � SOnutrient nutrient ¼ fTNFa;TGFag

8
><

>:

Rx;y;zðtÞ ¼

rart if arteriole passes through x; y; z

rcap if capillary passes through x; y; z

0 no vessel cell passes through x; y; z

8
><

>:

rart and rcap are radius of arteriole and radius of capillary respectively

r
x;y;z
nutrientðtÞ ¼

Cartnutrient if arteriole passes through x; y; z

Ccapnutrient if capillary passes through x; y; z

(

Modeling and prediction of cancer cell behavior

PLOS ONE | https://doi.org/10.1371/journal.pone.0183810 August 28, 2017 10 / 26

https://doi.org/10.1371/journal.pone.0183810


Cartnutrient and C
cap
nutrient are concentration of nutrient in arteriole and capillary respectively

nutrient = {oxygen,glucose,TGFα,TNFα}

βc is constant variable (Table A in S3 Appendix)

ΔS = the size of grid point

• Vascular endothelial growth factor diffusion

Vascular endothelial growth factor (VEGF) stimulates the ingrowth of a new blood supply

from the host vasculature via angiogenesis. Cancerous cells release growth factors (VEGF), in

the surrounding normal tissue. We rewrite Diffusion equation for discrete environments in Eq

4 for VEGF.

Cx;y;z
VEGF t þ 1ð Þ ¼ Cx;y;z

VEGF tð Þ þ
DVEGF � Dt

DS2
ðDCx;y;z

VEGFðtÞÞ � Ux;y;z
VEGF tð Þ þ Sx;y;z

VEGF tð Þ � Wx;y;z
VEGF tð Þ ð4Þ

Where:

DVEGF is VEGF diffusion coefficient,

DCx;y;zVEGFðtÞ ¼ ð
X

for all 26 Moore neighbors of ðx;y;zÞ

Cx
0;y0;z0
VEGF Þ � 26� Cx;y;zVEGF

Ux;y;z
VEGF tð Þ ¼

Dt
DS2 ð2p� Rx;y;zðtÞ � PeVEGF � Cx;y;zVEGFðtÞÞ

Rx;y;zðtÞ ¼

rart if arteriole passes through x; y; z

rcap if capillary passes through x; y; z

0 no vessel cell passes through x; y; z

8
><

>:

rart and rcap are radius of arteriole and radius of capillary respectively

Sx;y;zVEGFðx; tÞ ¼ Dt � z
x;y;z
VEGFðtÞ

z
x;y;z
nutrientðtÞ ¼

�c cell ¼ cancer; phenotype ¼ necrosis
�c

2
cell ¼ cancer; phenotype ¼ hypoxia

�c
4

cell ¼ cancer; phenotype ¼ quiescence

�c

6
cell ¼ cancer; phenotype ¼ migration

�c

8
cell ¼ cancer; phenotype ¼ proliferation

0 no cancerous cell exists in position ðx; y; xÞ

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

Wx;y;z
VEGFðtÞ ¼ Dt � oVEGF � Cx;y;zVEGFðtÞ

ωVEGF and ϕc are constant variables (Table A in S3 Appendix)

ΔS = the size of grid point

a.3. Macroscopic scale sub-models. The macroscopic scale pertains to processes happen-

ing at the tissue level. At the tissue level, we consider vessels and tumor directly.
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Angiogenesis: Angiogenesis is termed as the growth of new blood capillaries on the basis of

pre-existing vessels, which is a critical step in cancer growth and metastasis. Tumorigenesis is

a prime case of an emergent tissue patterning phenomenon reliant on many cell types, both

normal and aberrant cell behaviors. Models of angiogenesis fall into three classes: models of

vasculature growth without tumor or other tissue cells, models of vasculature growth with only

tumor cells, and models of vasculature growth with both tumor and healthy tissue cells [31].

Vasculatures in the system give cells (agents) materials (oxygen, glucose, TGFα and TNFα),

which they require to survive. Once vascularized, cancer has access to a huge nutrient source

and rapid growth ensues. At the other hand, VEGF stimulates the ingrowth of a new blood

supply from the host vasculature via angiogenesis. In this section, we present a model of angio-

genesis and vascular tumor growth. We assume that there are eight main parallel parent vessels

(four veins and four arteries located on the four vertical edges and four vertical surfaces of

cube respectively) as the major part of the blood supply in our 3D simulation environment as

shown in Fig 2.

In our model, the general order of blood flow is as follow: Arteries! arterioles! venules

! veins. When we refer to an “active” vessel, we are referring to an arteriole in which it can

connect to a venule. As arteriole connects to venule, the blood flow circulated throughout it.

b. Q-Learning based on SVR-NSGA-II

There is no information available in the literature of the quantitative relationship between the

phenotype rate and nutrient density and time. So we need a practical computational method

for constructing autonomous systems that improve themselves with experience.

Markov decision processes (MDPs) provide a mathematical framework for modeling deci-

sion making in situations where results are partly random and partly under the control of a

decision maker. Reinforcement learning (RL) can solve Markov decision processes without

explicit specification of the transition probabilities. RL is an area of machine learning inspired

by behaviorist psychology, concerned with how software agents ought to determine the ideal

Fig 2. Four veins and four arteries located on the middle of four surfaces and four edges of cube.

https://doi.org/10.1371/journal.pone.0183810.g002
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behavior within a specific environment, in order to maximize its performance. A RL agent

interacts with its environment in discrete time steps.

There are many different algorithms that tackle this issue. Q-learning is one type of algo-

rithm used to calculate state-action values. It estimates a function which measures the good-

ness of all possible actions, and use that function to define the policy.

Discretization and value function approximation are the commonly methods to solve con-

tinuous space problems in reinforcement learning. We use SVR-NSGA-II to approximate the

Q value of state-action pair. In other words, since the variables of cell states are continuous

(Table 4) then the state space is continuous and to solve a continuous-state space, we use

SVR-NSGA-II. The model used in this work is summarized in Fig 3.

b.1. Regression sub-model (SVR-NSGA-II). It is well known that SVR generalization

performance (estimation accuracy) depends on a good setting of C, Ԑ and kernel function

parameter (e.g. gamma). Existing software implementations of SVM regression usually treat

these parameters as user-defined inputs. Selecting a particular kernel type and kernel function

parameters are usually based on application-domain knowledge and also should reflect the dis-

tribution of input (x) values of the training data.

Parameter C decides the tradeoff between the model complexity (flatness) and the degree to

which deviations larger than Ԑ are tolerated in optimization formulation. Parameter Ԑ controls

the width of the Ԑ-insensitive zone, used to fit the training data. The value of Ԑ can affect the

number of support vectors used to construct the regression function. Parameter gamma (γ) is

the free parameter of some kernels (e.g. RBF, polynomial and sigmoid kernels).

Fig 3. Sketch map of Q-learning based on SVR-NSGA-II. In train phase, a simulated dataset is generated

which is used by SVR-NSGA-II to determine cancer cell behaviors autonomously. Model performance

assessment is done through test phase.

https://doi.org/10.1371/journal.pone.0183810.g003
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Kernel function maps the data into higher dimensional spaces in the hope that in this

higher-dimensional space, the data could become more easily separated. Each kernel function

can extract a specific type of information from a given dataset. Now the question arises how

to get an appropriate kernel function. Since each kernel has some degree of variability in prac-

tice, there is nothing else for it but to experiment with different kernels and regulate their

parameters.

In a previous study, we proposed a method (SVR-NSGA-II) [52] that is an improved algo-

rithm based on SVM. SVR-NSGA-II optimizes the above parameters (C, Ԑ and γ) by imple-

menting the evolutionary process (NSGA-II). The Non-dominated Sorting Genetic Algorithm

II (NSGA-II) is a Multiple Objective Optimization (MOO) algorithm and is an instance of an

Evolutionary Algorithm from the field of Evolutionary Computation.

For single objective optimization problems, the best single design is the goal. But for multi-

objective problems, with several and possibly conflicting objectives, there is usually no single

optimal solution. A suitable solution should provide for acceptable performance over all

objectives.

We convert the RL problem into regression problem, which the observed states and actions

are viewed as input variables and the Q values as output variables. To collect enough training

samples, simulation iterations must be high enough for accurate results. In order to improve

learning performance, the training samples are slide with the manner of time-window and the

newest samples are considered as train dataset.

Assume that we are given a training set D, consisting of pairs (xi,yi), for i = 1,. . .,m. Each

sample xi is a vector that describes the cell states, phenotypes (action) and Q values. In other

words, the phenotypes, the variables of cell states, constitute the features of the dataset. The

label yi associated with xi is a discrete value between -1 and 1 and describe the Q value.

An initial population of chromosomes is generated randomly. Then the population is

evolved for a number of generations. The chromosome is a fixed length list of genes or

parameters.

We have implemented three kernels Sigmoid, Polynomial and RBF for our method.

SVR-NSGA-II aggregate these three kernels which are performed through a simple voting

based on allocating weight to each of them. This weight is based on F-Measure of its kernel for

train dataset (Eq 5).

F-measure is a harmonic mean between precision (or Confidence) and recall (or Sensitiv-

ity). Recall is the percentage of real positive cases that are correctly predicted positive. Preci-

sion indicates the percentage of predicted positive cases that are correctly real positives. Also,

NSGA-II optimizes Recall, F-Measure and precision in a multi-objective way.

Weightk ¼ F � Measure ¼
2� Recall � Precision

Recall þ Precision
ð5Þ

where:

Recall or Sensitivityð Þ ¼ TP
TPþFN ; Precision or Confidenceð Þ ¼ TP

TPþFP

TP is the number of correct predictions in which an instance is positive;

FN is the number of incorrect predictions in which an instance is negative

FP is the number of incorrect predictions in which an instance is positive

TN is the number of correct predictions in which an instance is negative

k = {Sigmoid,RBF,Polynomial}
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b.2. Q-learning sub-model. Q-learning is a simple incremental algorithm developed

from the theory of dynamic programming for delayed reinforcement learning. The objective

of Q-learning is to quantify the Q value for an optimal value when the system dynamics fea-

tures are unexplored. Q-learning approach is fulfilled as follows: a Q-learning system observes

the current state st and executes an action at at each time step t. Next, perceive the subsequent

state st+1 and receives an immediate reward rt. The value of Q can be adapted based on Eq 6

where η is a learning rate that controls the learning speed and γ is a discount factor used to

determine the proportion of delay to the future rewards.

Qðst; atÞ  ð1 � ηÞQðst; atÞ þ η½rt þ γðmaxatþ1
ðQðstþ1; atþ1ÞÞÞ� ð6Þ

Policy (cellular phenotype decision): To enable healthy/cancerous cells to evolve in the 3D

domain, we need to define some rules. These rules clarify the relationship between cell states

(see Table 4) and cell actions (see Table 5). For each rule, if the probability of selection for

some phenotypes increases, it decreases for other phenotypes. In Table 6, policies are deter-

mined on a scientific basis using evidences derived from various studies.

Reward: The objective of the learner is to choose actions maximizing discounted cumula-

tive rewards over time. The value of reward at time t (rt) is calculated based on the following

reward function (RF). In Eq 7, for each policy (p) the value of the reward function is equal to 0

when the value of x is equal to the threshold and also its sign changes at this point. It is obvious

that the value of RF is between -1 and +1. A gradient is a constant number that describes both

the direction and the steepness of the line. RF is increasing/decreasing if it goes up/down from

left to right if the gradient is positive/negative respectively (see Fig 4).

RFp xð Þ ¼ tanh
x � thresholdp

gradientp

 !

ð7Þ

where:

x equal to value of state variables

In Table B in S3 Appendix, we specify a threshold for all rules that the sign of its probability

changes at this point. We use the average of above function for all policies to calculate the total

value of the reward.

c. Algorithm steps

Our model has two phases (train and test). During train phase, the dataset is built and finally,

our model is run in the test phase to get the results. The Q-learning based on SVR-NSGA-II

can be generalized as follows (see Fig 3):

Train phase. Step 1. Check the current state st

Step 2. Construct test sample (st,ak) comprised of each action ak in action set (A) and current
state st

Step 3. Constitute dataset for training (select the d newest samples)

Step 4. For all available k actions, predict Qk corresponding to (st,ak) by SVR-NSGA-II

Step 5. Randomly select action at based on its Qt value (ProbðatÞ ¼ Qt
XjAj

i¼1

Qi

where at 2 A)
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Step 6. Run proposed hybrid multiscale model (run diffusion and signaling pathways) and per-
form action at, obtain rt and the successor state st+1

Step 7. Update Qt according to Eq 6

Step 7. Add the new observed data into dataset (st, at, Qt) if rt>θ (θ is a predefined threshold
value)

Test phase. Step 1. Check the current state st

Step 2. Construct test sample (st,ak) comprised of each action ak in action set (A) and current
state st

Step 3. Constitute dataset for training

Step 4. For all available k actions, predict Qk corresponding to (st, ak) by SVR-NSGA-II

Table 6. The relationship between state variables and actions according to policies.

No. Description Ref.

1 Elements occupied by cancerous/healthy cells whose local oxygen concentration falls below

threshold are more likely to select hypoxia, necrosis (for cancerous cell) or apoptosis (for

healthy cell) phenotypes; On the contrary, if the oxygen level goes above threshold, the

selection of these phenotypes will reduce and choosing proliferation, as well as migration, will

increase.

[53]

2 Glucose has two thresholds (dead threshold and active threshold). If the concentration of

glucose for cancerous/healthy cell at its current site, is greater than the active threshold, the

agent will pick proliferation and migration with more probability than other actions. If the

concentration of glucose is less than the dead threshold, the agent has more chance to select

necrosis/apoptosis phenotype. If the concentration is between active and dead thresholds,

the healthy cell will enter into quiescence with more probability.

[30]

3 Since healthy cells had a limited number of divisions (cell division counter), when number of

cell division goes above the cell division threshold, quiescence selection probability for healthy

cell rises.

[54]

4 As cancerous/healthy cells select proliferation phenotype, they need minimal amounts of

oxygen. If a sufficient amount of oxygen is not available, cell postpones the proliferation and

as soon as the conditions are met, it can proliferate. By increasing the proliferation time

delay, the probability of hypoxia, apoptosis/necrosis increases too.

[55]

5 If the cells lacked oxygen for a period of time greater than the hypoxia threshold, the

cancerous/healthy cell has more chance to select necrosis/apoptosis phenotype. If this time

is less than hypoxia threshold and greater than 1, the probability of choosing hypoxia

phenotype increases. In hypoxia phenotype, the healthy cell has a little chance to survive.

[50]

6 If the value of Plcγ inside a site occupied by an agent is less than the average value of Plcγ of

all other sites, the agent will start to migration with more chances. Otherwise, the probability

of proliferation is more feasible than the other phenotypes.

[30]

7 The more external healthy/cancerous Moore neighbors a cell has, the more likely it is to

migrate. As the number of healthy/cancerous Moore neighbors increases, the probability

of migration increases too. In the study, only if the cell has more than two neighbor cells

(threshold = 2), it will migrate with a positive chance.

[55]

8 As TNFα concentration increases, the probability of cell survival decreases and the probability

of cell death increases. Therefore, by increasing TNFα concentration higher than a threshold,

the probability of choosing necrosis or apoptosis increases.

[56]

9 The concentration of VEGF plays a direct role in a sprout of stalk cells. If levels of VEGF

higher than a threshold, it can lead to increased sprout.

[57]

10 New tip sprouts must mature for a length of time (tip cell age) at least equal to ψ before being

able to branch. Having reached this age, the probability of branching for tip sprouts

increases. On the contrary, the probability of expansion and quiescence for tip sprouts

decreases.

[58]

https://doi.org/10.1371/journal.pone.0183810.t006
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Step 5. Select action with highest Qt value

Step 6. Run proposed hybrid multiscale model (run diffusion and signaling pathways) and per-
form action

Analytic results

In the results presented here, the simulation starts from the initial tumor and microvascular

network and finishes at 21 days when the tumor size reaches finishing criteria. Vasculatures

added in the lattice provide a continuous source of the nutrient.

a. Lattice setup

We simulate our model in a comparable size of lattice and show that the findings are in good

agreement with biological tumor behavior. We choose a cubic geometry for the 3D tumor lat-

tice and the Moore neighborhood. Each agent represents a single cell and exists on a three-

dimensional grid to approximate a tissue. The lattice spacing is 20 μm, which is approximately

the diameter of cells. The 3D virtual tumor environment is made up of a discrete lattice con-

sisting of a grid of 40 × 40 × 40 points.

b. Model initialization

To begin with, in a circle with radius 60μm at the center of the lattice, cancer cells are initial-

ized with a probability of 70 percent. Initial proportions of normal cells in the lattice are

obtained with a probability of 70 percent. Also, oxygen and glucose are normally distributed

with high density near eight preexisting vessels. We have estimated our model parameters

through a deep search of the theoretical and experimental biology and clinical literature [59–

61]. We summarize those estimates in tables within S3 Appendix.

c. Simulation results

Computational simulations of the model were performed in order to analyze its performance.

Model execution is based on an iterative process, with each tick or step iteration representing

approximately one hour in real time. The output data are the time series of the density and

amount of each type of cell.

Fig 4. Four reward functions examples. Threshold point (or inflection point) is a point on a curve at which

the curve changes from being concave (concave downward) to convex (concave upward), or vice versa.

Gradient (or slope) specifies the rate of RF change.

https://doi.org/10.1371/journal.pone.0183810.g004

Modeling and prediction of cancer cell behavior

PLOS ONE | https://doi.org/10.1371/journal.pone.0183810 August 28, 2017 17 / 26

https://doi.org/10.1371/journal.pone.0183810.g004
https://doi.org/10.1371/journal.pone.0183810


Prolonged hypoxia of the tumor tissue leads to necrosis, and necrotic regions are also char-

acteristic of solid tumors [62]. Tumor necrosis is a sign that rapid tumor cell proliferation con-

tinues and cancerous proliferation occurs at a much higher speed compared to cancerous

necrosis [63] (Fig 5A). Initially, due to insufficient vascularization, most of the tumor cells are

quiescent and secrete VEGF which stimulates an angiogenic response(Fig 5B). As the tumor

cells grow, some of the cells within the tumor mass will be starved of oxygen and eventually

become hypoxic. Initially, insufficient nutrient supply in areas at distance from the vessels

causes the prevalent death of the healthy cells (Fig 5C).

Spatial distribution of the healthy cells at different times are shown in Fig 6A. The normal

cells that surround the tumor are faded out gradually. From Fig 6B, it can be seen that the

necrotic cells are scattered all around the necrotic center of a tumor as it is usually observed in

clinical biopsies. The time-spatial patterns reveal a tumor with a compact shape and irregular

boundaries, as occurs in some solid tumors [9]. Cells at the center of tumor suffocate because

of lack of oxygen and die (necrosis), forming a necrotic core.

Additional proliferation (see Fig 6C) leads to its vascular stage, where cancer cells enhance

the existing vascular network through angiogenesis. The outcomes from the simulation, show-

ing the development of a tumor and its associated network of blood vessels, are depicted in Fig

6D. Vessels emerge near the initial tumor and form a well-vascularized tumor; far from the

four initial artery vessels, most normal cells have died.

At the beginning, cancerous cells spread further than healthy cells. However, in the end,

there were still more cancer cells than normal cells. Fig 6E shows how the number and spatial

distribution of the different cell types evolve over time. A colony of cancer is free to grow

Fig 5. Evolution of Cancerous cells actions (A), number of vessel cells (B) and healthy cells actions (C).

https://doi.org/10.1371/journal.pone.0183810.g005
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isotopically until it occupies all the space available. Cancerous cells eventually spread over the

whole tissue and killing almost all of the normal cells. More figures are presented in S4

Appendix.

External validation

Model accuracy can only be established through external validation. A number of ODE models

have been proposed to represent tumor growth [64][65]. Gompertzian growth has been one of

the most studied decelerating tumor growth over the past 60 years [66]. It is a type of mathe-

matical model for a time series, where growth is slowest at the start and end of a time period

(Eq 8). The predictive performance of the Gompertz model has been validated by many

researchers [67]. An important validation of our model is shown by comparing the Gompert-

zian α parameter of simulated tumors with the corresponding parameter of actual tumors. The

author in [68] proves that the value of α and β must be in the range of [0.005, 0.016] and

[0.121, 0.390] respectively.

n tð Þ ¼ n0 e
α
β 1� e� βtð Þ

� �
ð8Þ

Where:

Fig 6. Growth pattern of cells. A: series of images showing the growth pattern of normal cells after 50, 100,

250 and 400 time steps. B: snapshots of Spatio-temporal evolution of necrotic cancer cells. C: snapshots of

Spatio-temporal evolution of proliferative cancer cells. D: 3D vasculature of vessels. The vessels labeled in

red and blue are arteries and veins respectively. E: Graphical visualization of tumor morphologies at different

time with a 3D model.

https://doi.org/10.1371/journal.pone.0183810.g006
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n(t) is cancerous cell population at time t, n0 is cancerous cell population at t = 0, α is a parameter
that corresponds to instantons growth rate of n(0) and β is a parameter that measures how
rapidly curve departs from a simple exponential curve into the sigmoid shape.

In [63] a function depicting vessel growth over time was created from experimental data to

define growth within the computational model (Eq 9). This function depicts the total vascular

length within the domain at any point in time. A sigmoid curve was chosen to characterize ves-

sel growth as such a curve is often used to describe population growth restricted by limited

resources.

g tð Þ ¼ g
0
þ

α

1þ e�
t� t1=2

β

ð9Þ

Where:

g(t) is the total vascular length at time t, g0 is the initial vessel length at t = 0 (bottom of the sig-
moid curve), α is the range of the function (top minus bottom) and β is the slope of the curve.
t1/2 is the time at which g(t) is halfway in between the top and bottom of the sigmoid curve.

Our model also requires a function describing vessel branching over time. In [63] an expo-

nential function was used to describe branch formation as branching metric data taken during

the 7 day culture period (Eq 10).

bðtÞ ¼ b0 þ αeβt ð10Þ

Where:

b(t) is the number of branch points at time t, b0 is the initial number of branches at t = 0, α scales
the exponential term and β describes the rate of branch formation. We consider the value of α
and β equals to 2.62 and 0.105 respectively, where these parameters are determined experimen-
tally [59].

Fig 7. shows that the tumor growth, vessel growth and vessel branching obey these three

functions. It shows cancer cells grow exponentially in the beginning. As soon as all empty sites

in lattice are occupied by cancer cells, migration or proliferation phenotypes cannot be selected

anymore (see subsection a.2). Since the grid in our simulation has 64000 sites, it has enough

space for first 504 hours (21 days) time step. After 504 hours time step, there isn’t any empty

site for cancerous cells to grow and exponential growth converts to exponential decay. Finally,

the lack of space leads to cessation of cancer cell growth.

Fig 7. External validation of our model. Parameters were chosen as follows: ((n0, α, β) = (100,0.01,0.3),

(g0, α, β,t1/2) = (0,58500,62,360), (b0, α, β) = (0,2.62,0.105)).

https://doi.org/10.1371/journal.pone.0183810.g007
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In order to assess the learning performance of the proposed model, we must evaluate our

model at the microscopic level. The Root Mean Square Error (RMSE), Mean Absolute Devia-

tion (MAD) and Mean Absolute Percentage Error (MAPE) are used to compare the fits of dif-

ferent forecasting and smoothing methods. RMSE is a frequently used measure of the

difference between values predicted by a model and the actual values (i.e. n(t), b(t) and g(t)).

RMSE more aggressively punishes big errors than small ones. MAD expresses accuracy in the

same units as the data, which helps conceptualize the amount of error. MAPE is useful to com-

pare the precision between different methods.

This work compares the proposed algorithm with other approaches. RMSE, MAD and

MAPE of our proposed method and three other methods are given in Table 7. In this table, it

is obvious that all the three error measures are significantly improved through utilizing kernel

aggregation instead of the single kernel. The results of this study suggest that our proposed

model can outperform a human observer in recognizing cancer.

Conclusive remarks and future directions

We have developed a new computational modeling paradigm for predicting the behavior

resulted from the interaction of cells. Our proposed approach is expected to be a cancer model-

ing and simulation framework. We incorporate the composition of cells, intercellular and

intracellular adhesion as well as processes involved in cell cycle (quiescence, proliferation, hyp-

oxia, necrosis, apoptosis, and migration) in our model, which can accurately simulate

angiogenesis.

It has the method of representing biological cells as autonomous software agents. The most

important features of our model are the capability of cells to select their phenotype intellectu-

ally. We propose an automatic cell phenotype prediction procedure in the study presented

here, that predicts the value of Q by using Q-learning and SVR-NSGA-II methods.

A new Q-learning method is proposed, whose rules capture some generic features of tumor

development, to study the influence of environmental conditions on the evolution of a tissue

containing healthy and cancerous cells. A simulated dataset, which includes the information of

cell phenotypes, is generated from the simulation environment (see S5 Appendix). Finally, we

attack the classification problem (phenotype selection) using the regression approach, which is

done by SVR-NSGA-II.

The model proposed in this study is capable of capturing the Gompertzian behavior of

tumor growth. In addition, measurements of vessel growth and branching provided by simula-

tion has excellent statistical agreement with experimental data.

Table 7. The quantitative results for proposed classification of the cell (SN = SVR-NSGA-II).

Q-Learning System Based on

SN SN-RBF SN-Poly SN-Sigmoid Simple SVM MLP C4.5

n(t) RMSE 414.64 604.64 938.64 738.64 793.51 961.25 1618.96

MAD 3567.59 4288.59 5976.59 5203.59 7833.60 9496.96 16003.09

MAPE (%) 25.16% 29.16% 38.16% 34.16% 36.02% 43.70% 76.82%

b(t) RMSE 49375.11 51149.11 56033.11 53582.11 62821.42 64152.38 66366.72

MAD 15951.88 17127.88 20210.88 18748.88 24019.75 24968.11 25791.15

MAPE (%) 28.48% 30.48% 34.48% 32.48% 36.86% 38.61% 39.53%

g(t) RMSE 252.77 306.77 353.77 325.77 1705.05 1883.63 2384.43

MAD 208.41 225.41 294.41 247.41 1128.49 1241.26 1689.78

MAPE (%) 8.99% 9.37% 10.62% 9.46% 11.43% 11.79% 15.54%

https://doi.org/10.1371/journal.pone.0183810.t007
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There are some limitations of the current model. Firstly, the neighboring cells of cancer

cells behave differently to the same cells in a normal context, but it can play an active role in

controlling the behavior of cancer cells. Secondly, this model doesn’t deal with changes in tis-

sue architecture and represents tissue structure on a fixed grid in order to simplify the calcula-

tion. The dynamic changes in tissue topology in the presence of competing cells would be

followed in our next paper. Further model extensions could include incorporating a more

detailed description of subcellular level and tumor-induced angiogenesis.
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