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Abstract
Executive functions (EF) are a set of higher-order cognitive abilities that enable goal-directed behavior by controlling lower-
level operations. In the brain, those functions have been traditionally associated with activity in the Frontoparietal Network, 
but recent neuroimaging studies have challenged this view in favor of more widespread cortical involvement. In the present 
study, we aimed to explore whether the network that serves as critical hubs at rest, which we term network reliance, differ-
entiate individuals as a function of their level of EF. Furthermore, we investigated whether such differences are driven by 
genetic as compared to environmental factors. For this purpose, resting-state functional magnetic resonance imaging data 
and the behavioral testing of 453 twins from the Colorado Longitudinal Twins Study were analyzed. Separate indices of EF 
performance were obtained according to a bifactor unity/diversity model, distinguishing between three independent compo-
nents representing: Common EF, Shifting-specific and Updating-specific abilities. Through an approach of step-wise in silico 
network lesioning of the individual functional connectome, we show that interindividual differences in EF are associated 
with different dependencies on neural networks at rest. Furthermore, these patterns show evidence of mild heritability. Such 
findings add knowledge to the understanding of brain states at rest and their connection with human behavior, and how they 
might be shaped by genetic influences.
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Introduction

Executive functions (EF) are an umbrella term for high-order 
cognitive abilities employed for situations requiring goal-
directed behavior, including the maintenance of task goal(s), 
the integration and elaboration of incoming lower-level sig-
nals and processes for the selection of relevant information 
and inhibition of distractors, switching between concurrent 
goals, and overall decision making (Banich 2009). The neu-
rological underpinnings of brain organization are commonly 
investigated by using fluctuations in the amount of blood 
(de-)oxygenation, known as Blood Oxygen Level Dependent 
(BOLD) signal, across distant cortical regions (Anderson 
et al. 2008). This approach has unveiled complex cortical 
profiles, whereby regions show patterns of co-activation 
and spontaneously assemble into coherent networks at rest, 
which mimic those observed during task (Smith et al. 2013). 
Traditionally, cognitive processes underlying EF have been 
thought to rely on the metabolic and functional activity of 
frontal and parietal regions (Stuss et al. 1998; Collette et al. 
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2005), which form the Frontoparietal Network (FPN). How-
ever, recent neuroimaging studies have expanded this view 
in favor of a more widespread involvement of remote brain 
regions in EF as well, including of posterior and subcorti-
cal structures (Jurado and Rosselli 2007; Fedorenko et al. 
2013). This evidence suggests that interconnectedness and 
integrity across multiple brain regions may help sustaining 
executive functioning. As such, investigating inter-network 
organization may be a fruitful route for understanding inter-
individual differences in EF, especially considering the role 
that regions outside the FPN might play in supporting higher 
levels of EF.

Since EF abilities rely upon distributed brain functional 
patterns, great interest has been directed toward the study of 
interindividual differences in their organization as assessed 
by resting-state patterns of connectivity. Indeed, not only 
have interindividual differences in the functional connec-
tome been proven to represent a unique signature of the indi-
vidual (Finn et al. 2015), but they have also been proven 
highly stable in the adult brain (Ronnlund et al. 2015). 
These findings have motivated the development of new 
approaches to help characterize individual differences, with 
such approaches showing that most of the regions helpful in 
improving interindividual differentiation lie in the default 
mode, attentional and control executive networks (Airan 
et al. 2016). Such findings are consistent with prior studies 
that reveal how the network organization of both the FPN 
and other attentional networks, as well as their coupling, 
differentiate higher versus lower EF individuals (Reineberg 
et al. 2015, 2018).

More recently, the study of brain networks has been con-
ceptualized within the framework of graph theory measures 
that allow for investigations of integration and segregation 
mechanisms that ensure information flow across the brain 
(Sporns 2013). Graph theory approaches deal with the study 
of network topology looking at the relationship between the 
graph nodes (i.e., brain regions) and edges (i.e., functional 
or structural connections). The study of interindividual dif-
ferences has been approached with the use of several graph 
theory measures. These have shown evidence of a tight link 
between global efficiency measures and interindividual dif-
ferences in intelligence scores (Li et al. 2009). Of interest, 
the degree of global connectivity of the prefrontal cortex has 
also been shown to selectively relate with interindividual 
differences in intelligence, suggesting a role of this region 
as a major hub for information exchange in the brain that is 
necessary for higher-order cognitive behavior (Cole et al. 
2012; Duncan et al. 2020). In line with the aforementioned 
studies, high and low EF individuals show distinct network 
topologies at rest with hub-like behavior for high EF indi-
viduals occurring for some regions outside the traditional 
FPN (Reineberg and Banich 2016).

In the present study, we expand upon these findings in 
two ways. First, we used in silico lesioning of the functional 
connectome (Hart et al. 2016) to examine network charac-
teristics as a function of an individual’s level of EF. In these 
in silico approaches, the network topology at baseline is 
determined. Then, networks are selectively lesioned itera-
tively in a step-by-step manner. In our case, in each step we 
took out the brain node (or edge) that is associated with the 
highest level of hub-like activity, referred to as centrality. In 
our study, centrality of nodes was determined based on their 
nodal degree, a measure representing the amount of con-
nection that a given brain region has to the rest of the brain. 
While several other measures of centrality have also been 
utilized in the literature, they tend to yield similar results 
(Joyce et al. 2013). This approach is then run iteratively, 
such as that every time a node is removed from the indi-
vidual connectivity matrix, centrality of all nodes is recalcu-
lated and the “new” most central node is removed. Because 
the most central nodes for information transfer are removed 
first in this procedure, one can determine those regions that 
play the most important role in the system across varying 
levels of degradation. Networks which lost the greatest num-
ber of nodes during the first stages of lesioning were con-
sidered to represent the networks on which individuals most 
rely during rest, which we term “network reliance”.

Lesioning approaches have a long history in network sci-
ence, as they provide a window on the role of network topol-
ogy in sustaining efficient information processing (Barabasi 
and Bonabeau 2003). For example, in silico lesioning studies 
of scale-free systems have revealed that efficiency comes 
with a trade-off in the resilience of the network to sustain 
the random or targeted attack of its nodes, as the removal of 
central hubs causes greater disruption than the removal of 
random nodes (Barabasi and Bonabeau 2003). Particularly 
efficient networks, like the brain, appear to be able to with-
stand both targeted and random attacks (Achard et al. 2006; 
Joyce et al. 2013).

The second manner in which our study extends beyond 
prior work is that it was performed on a set of twins (in 
their late 20 s) which provides the opportunity to examine 
whether genetic or environmental influences are most promi-
nent in an individual’s network characteristics as a function 
of EF. We did so by exploring how these brain patterns of 
network reliance differ between pairs of monozygotic (MZ) 
twins, who share 100% of their genes, as compared to dizy-
gotic (DZ) twins, who share half their genes. Twins’ studies 
represent indeed one of the most common approaches for 
the investigation of genetic influences on a trait and hence 
its heritability (Mayhew and Meyre 2017; Friedman et al. 
2021). In recent years, twins’ studies have for instance been 
employed to demonstrate the genetic underpinnings of EF 
(Lessov-Schlaggar et al. 2007; Friedman et al. 2008; Tucker-
Drob et al. 2013), the genetic influences in shaping the 
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individual functional and structural connectome (Thompson 
et al. 2013; Reineberg et al. 2019), the heritability of the 
topological organization of the human connectome (Bolken 
et al. 2014; Sinclair et al. 2015), as well as the heritability of 
resilience to its systematic lesioning (Menardi et al. 2021). 
However, to our knowledge, no study has tried to combine 
this evidence to verify if in silico lesioning can be used to 
unveil patterns of preferential network reliance at rest as a 
function of individual EF abilities, nor if such reliance is at 
least partially influenced by genetic factors.

Methods

Participants and assessment of executive 
functioning

A total of 453 twins from the Colorado Longitudinal 
Study (age: M = 28.6, SD =  ± 0.62; MZ: n = 229, M = 28.6, 
SD =  ± 0.62; DZ: n = 216, M = 28.7, SD = 0.63) were 
recruited based on birth records from the Colorado Twin 
Registry. All participants underwent cognitive testing par-
ticularly focused on determining EF. From all tests’ scores, 
three EF components in the form of z-values were extracted 
according to the unity and diversity model by Miyake and 
colleagues (Miyake et al. 2000; Friedman and Miyake 2017), 
consisting of a common EF (cEF) factor, representative of 
the shared variance underlying all the administered EF tasks; 
and the updating (UPD) and shifting (SHI) specific com-
ponents, reflecting the remaining correlation between EF 
tasks once the cEF factor is removed. For more details on 
the model, the readers are referred to the original published 
work (Miyake et al. 2000; Friedman and Miyake 2017).

To determine the amount of overlap in participants’ 
scores across EF factors, higher and lower performers for 
each of the three EF components (cEF, SHI, UPD) were 
determined based on a cut-off score around 0, such as that 
z-values above 0 were considered as representative of indi-
viduals whose performance was above the sample mean, 
thus referred as “higher performers”, whereas z-values 
below 0 were considered indicative of “lower performers” 
within the same sample. Overall, the 67% and 65% of the 
subjects classified as higher performers for the cEF compo-
nent were also observed to show higher performance on the 
SHI and UPD components, respectively; on the other hand, 
45% of higher SHI performers also had higher scores at the 
UPD component. In this study, a moderate positive correla-
tion was observed between our measures of cEF and SHI 
(r = 0.31, p < 0.0001) and between cEF and UPD (r = 0.38, 
p < 0.0001); with a negative correlation between SHI and 
UPD measures (r = − 0.28; p < 0.0001).

To control for the possible risk of multicollinearity, the 
Variance Inflation Factor (VIF) was computed for each 

cognitive measure. VIF values inform on the percentage 
of the coefficients’ variance that is inflated, where values 
close to 1 indicate no correlation, values between 1 and 5 
indicate moderate correlation and values above 5 suggest 
high correlation (Fox 2015). Our results prove a VIF near 
1 for all the three EF factors  (VIFcEF = 1.49;  VIFSHI = 1.38; 
 VIFUPD = 1.46), suggesting the correlations to be only mild 
and that they do not imply a risk of multicollinearity of the 
data (Fox 2015).

Neuroimaging data acquisition and preprocessing

All participants underwent a single scanning session in 
either a Siemens Tim Trio (3 T) or Prisma (3 T) scanner 
for the acquisition of T1 anatomical images (repetition 
time (TR) = 2400 ms, echo time (TE) = 2.07 ms, matrix 
size = 320 × 320 × 224, voxel-size = 0.80 × 0.80 × 0.80mm3, 
flip angle (FA) = 8.00 deg., slice thickness = 0.80 mm) and 
T2* resting-state functional magnetic resonance imag-
ing (rs-fMRI) lasting 6.25 min (number of volumes = 816, 
TR = 460  ms, TE = 27.2  ms, matrix size = 82 × 82 × 56, 
voxel-size = 3.02 × 3.02 × 3.00mm3, FA = 44.0 deg., slice 
thickness = 3.00  mm, field of view (FOV) = 248  mm). 
Details on the preprocessing steps have been published in a 
recent work by some of the authors (Reineberg et al. 2019) 
and include: signal stabilization via the removal of the first 
10 volumes, head motion correction, coregistration, normal-
ization to the standard MNI152 template, denoising from 
motion and other noise signals through the AROMA ICA 
procedure and finally band-pass filtering (0.001–0.08 Hz). 
Blood Oxygen Level Dependent (BOLD) time series were 
extracted from each of the 264 spherical 1 cm parcels of the 
Power’s Atlas (Power et al. 2011). For each participant, a 
264 × 264 functional connectivity matrix was then computed 
from the Pearson’s r Correlation between each pair of par-
cels and further underwent normalization through Fischer’s 
z transformation.

In silico networks’ lesioning

To obtain a quantitative estimate over network reliance as a 
function of performance scores at the three EF components, 
we adopted a lesioning approach based on the selective 
removal of each node (parcel) from the original correlation 
matrix. In more detail, weighted adjacency matrices were 
obtained from the thresholded functional matrices, retaining 
only the 10% of the overall connection density. The rationale 
for such a stringent approach comes from prior large cohort 
studies demonstrating that 10% sparsity thresholds have the 
highest test–retest reproducibility for global metrics (Wang 
et al. 2011). Furthermore, genetic contributions have been 
reported to be better exploited at connection density around 
10% (Sinclair et al. 2015). Nevertheless, as common in the 
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graph theory literature, we have also tested a range of lower 
thresholds (from 80 to 60%), retaining from the 20% to the 
40% of the original connection densities. Results compar-
ing different thresholding are available in the Supplementary 
Materials, and demonstrate that the pattern of results is main-
tained across different thresholds.

The study of brain network properties was then approached 
within the graph theory framework, whereby graphs are con-
structed considering brain parcels as nodes and their functional 
correlation as weighted links, known as edges. A measure of 
nodal degree, an index of connectedness between a node and 
all the other nodes of the brain, was computed based on the 
Brain Connectivity Toolbox (https:// sites. google. com/ site/ 
bctnet/) function running in Matlab 2017b. The measure of 
nodal degree was weighted based on the individual adjacency 
matrix, and hence it was computed as the total sum of the 
weighted links connecting a given node to all other nodes of 
the network. Nodes were then ranked based on their nodal 
degree, such as that parcels ranking first are thought to repre-
sent major hubs in the information flow, whereby their lesion-
ing is expected to cause a greater disruption in network con-
nectivity (Jeong et al. 2000), compared to the removal of less 
central nodes (Albert et al. 2000).

To investigate the patterns of network degradation, we 
progressively decomposed the functional matrix through the 
selective removal of one node at a time, iteratively re-com-
puting the rank order at each stage of degradation. We then 
inferred the relevance of each network by counting the aver-
age number of nodes lost per network across 8 equal stages of 
matrix lesioning, each accounting for 33 nodes loss (i.e., equal 
to a 12.5% reduction in network components), totalizing 264 
nodes. We hypothesized that nodes lost at the first stages of 
lesioning represent the brain regions and connections that are 
most important in network integrity as they count the most in 
ensuring proficient information flow. In contrast, regions and 
connections lost at later stages have instead a minor role in 
ensuring efficient functioning.

Linear regression models, accounting for dependence 
between twins and scanner type (TRIO, PRISMA), were then 
run to test the association between EF components’ scores and 
the associated number of nodes lost for each network, which 
were both treated in the form of continuous variables in the 
formula:

Significance threshold value was set as p = 0.05. Figure 1 
graphically presents the main methodological steps underlying 
neuroimaging data preprocessing, definition of matrices and 
in silico lesioning of networks.

Nodes lost ∼ cEF + SHI + UPD + scanner type.

Heritability analyses

Monozygotic and dizygotic twins born and raised in the 
same family represent a unique sample of data from which 
to derive estimates of a trait’s heritability. In particular, pairs 
of MZ twins share 100% of their genetic profile, or additive 
genetic variance (A). Moreover, they are likely to receive 
equal maternal care, education, and socioeconomic benefits, 
thus also sharing a common environment (C) (Mayhew and 
Meyre 2017). Similarly, DZ twins also share the environment 
in which they grow but, differently from MZ twins, they only 
share 50% of their genes (Mayhew and Meyre 2017). Based on 
these notions, Falconer’s formula (Mayhew and Meyre 2017) 
is commonly employed to estimate heritability of a given 
human trait from the correlation between MZ and DZ twins, 
multiplied by 2:

According to this formula, if a trait presents a significantly 
higher correlation in MZ twins compared to DZ twins, then 
that trait can be considered as genetically influenced, whereas 
if a higher DZ correlation is observed compared to MZ, then 
that trait might be more driven by environmental factors 
instead. Although the Falconer’s formula has the advantage 
of providing a fast and easily computable estimate of herit-
ability, more information can be derived from structural equa-
tion models (SEMs) (Mayhew and Meyre 2017). In genetic 
studies, SEMs are typically employed for the comparisons of 
4 models: ACE, which considers the influence of A, C and of 
unique (E) environmental influences plus measurement error, 
of only AC (dropping E), of only AE (dropping C) and finally 
of only E models. This approach has the advantage of allowing 
an estimation of the contribution of each specific factor (A, C 
and E) to the phenotype. In the present study, SEMs were com-
pute via OpenMx (Neale et al. 2016). The best model fit was 
chosen based on the model with a non-significant Chi-Square 
test and the lowest Akaike Information Criteria (AIC), as those 
are indicative of models with smaller prediction error (Wilson 
and Hilferty 1931; Akaike 1973).

In this study, Falconer’s formula was used to derive initial 
estimates of heritability, followed by a more throughout analy-
sis via SEMs. The heritability of EF was assessed for replica-
tion purposes, since prior studies have already determined their 
genetic origin (Lessov-Schlaggar et al. 2007; Friedman et al. 
2008; Tucker-Drob et al. 2013). On the other hand, a more in-
depth analysis was carried out to explore the extent to which 
resting-state networks’ reliance, computed from the average 
node loss per network in the first four stages of lesioning (up 
to 50% of the network is lesioned), could be considered geneti-
cally influenced and, thus, heritable.

H
2
= 2

(

rmz − rdz

)

.

https://sites.google.com/site/bctnet/
https://sites.google.com/site/bctnet/


53Brain Structure and Function (2022) 227:49–62 

1 3

Results

Differential networks reliance as a function of EF 
performance

Networks’ lesioning via the targeted removal of nodes based 
on their nodal degree was used to explore patterns of net-
works reliance as a function of EF performance. Results of 
linear regression models yielding a significant, positive beta 
value indicated that individuals with higher EF scores were 
losing more nodes belonging to that specific resting-state 
network than those with lower EF scores, while negative 
beta values indicated the opposite: individuals with lower 
EF scores were losing more nodes belonging to a specific 
network than those with higher EF scores. Figure 2 shows 

a graphical depiction of the observed patterns of network 
reliance as a function of EF performance. Associated raw 
beta and p values for each stage of matrix lesioning are listed 
in Table 1. In consideration of potential type I errors due 
to multiple comparisons, p values surviving false-discov-
ery rate (FDR) correction (Jafari and Ansari-Pour 2019) 
are marked in bold in Table 1. For each network, FDR was 
applied to consider multiple testing over the 8 stages of 
matrix lesioning.

For cEF, none of the results survived the correction for 
multiple comparisons. Nonetheless, a number of statistically 
significant effects were observed and they are described here 
for completeness. Higher scoring individuals tended to lose 
nodes belonging to the Default Mode Network (DMN) at the 
very first stage of lesioning  (b1 = 1.15,  p1 = 0.036), opposite 

Fig. 1  Data acquisition and analysis workflow. a Structural and func-
tional MRI data were acquired from 453 twins from the Colorado 
LTS dataset. b. BOLD signal fluctuations were then extracted from 
each of the 264 cortical nodes as defined by the Power Atlas (Power 
et  al. 2011) and used to extract individual functional connectivity 
matrices from the Pearson’s r correlation value between each pair 
of ROIs. c Matrices were then thresholded to retain the 10% of the 
connection density. d Brain graph metrics were extracted, consider-
ing brain parcels as nodes and their functional connections as edges. e 
A matrix lesioning approach was employed to estimate the extent for 
which individual brain activity at rest relies on cortical nodes belong-
ing to different cortical networks. To do so, all nodes in the brain 
were ranked based on their nodal degree, so that the most impor-
tant hub in the brain was removed first during the lesioning process. 
After each lesion, brain topology measures were re-computed and the 

order of lesioning updated. f At the end of the lesioning process, we 
counted the number of nodes belonging to a given network that were 
lost at each stage of matrix lesioning. Networks which lost the great-
est number of nodes during the first stages of lesioning (reduction of 
12.5% of nodes) were considered to represent the networks on which 
individuals most rely during rest (i.e., network reliance). Finally, the 
influence of genetics and of environmental factors in determining net-
work reliance was computed as the difference between MZ and DZ 
twins. *AUD auditory network, CING cingulo-opercular network, 
DAN dorsal attention network, DMN default mode network, FPN 
fronto-parietal network, LTS Colorado Longitudinal Twin Study, rs-
fMRI resting-state functional magnetic resonance imaging, s-MRI 
structural magnetic resonance imaging, SMN sensorimotor network, 
SN salience network, SUB subcortical network, VAN ventral attention 
network, VIS visual network
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to what observed in those with lower EF, who tended to lose 
sensory nodes belonging to the Visual (VIS) network in the 
first two steps of matrix lesioning  (b1 = − 0.91,  p1 = 0.037; 
 b2 = − 0.53,  p2 = 0.024). Interestingly, the observed pattern 
appeared to flip toward the final stages of matrix lesioning, 
with higher cEF individuals losing VIS nodes at stages 4 and 
6  (b4 = 0.045,  p4 = 0.018;  b6 = 0.35,  p6 = 0.026) and lower 
cEF losing DMN and FPN nodes at stage 5 and 6 (DMN: 
 b5 = − 0.41,  p5 = 0.041; FPN:  b6 = − 0.29,  p6 = 0.046).

With regard to the SHI component, results surviving the 
FDR correction showed a significant positive correlation 
between performance scores at SHI-specific abilities and 
the higher loss of nodes belonging to the Subcortical (SUB) 
network at stage 3  (b3 = 0.3,  p3 = 0.002) and Ventral Atten-
tion (VAN) at stage 7  (b7 = 0.2,  p7 = 0.012), and conversely a 
negative correlation with the loss of nodes belonging to the 
Auditory (AUD) network at stage 6  (b6 = − 0.38,  p6 = 0.006) 
and the VAN at stage 5  (b5 = − 0.22,  p5 = 0.004). Although 
not surviving correction for multiple comparisons, we also 
observed a trend in the data whereby lower SHI performers 

tended to show a higher loss of nodes belonging to the cin-
gulo-opercular (CING) and SUB networks at later stages of 
lesioning (5th, 6th and 8th (i.e., final)) (CING:  b5 = − 0.23, 
 p5 = 0.021;  b6 = −  0.19,  p6 = 0.044; SUB:  b8 = −  0.38, 
 p8 = 0.019).

In regard of UPD-specific abilities, results surviving the 
FDR correction showed a significant higher loss of nodes 
belonging to the VAN at stage 6 of lesioning (b6 = 0.28, 
p6 = 0.004) in individuals with higher performance scores. 
In addition, although not surviving correction for mul-
tiple comparisons, we observed a tendency by the higher 
performers to also loose VAN nodes at stages 4 of matrix 
lesioning  (b4 = 0.21,  p4 = 0.039) and more DMN nodes at 
stage 5  (b5 = 0.54,  p5 = 0.034).

Genetic influence in neuronal networks reliance 
and EF performance

As found in previous waves of this study (Friedman et al. 
2008; Friedman and Miyake 2017), high heritability was 

Fig. 2  Network reliance at rest as a function of EF performance. 
Patterns of network reliance were computed based on the average 
number of nodes lost per network for each stage of matrix lesion-
ing. Overall, degradation patterns appeared to differ as a function of 
EF performance. a Individuals scoring higher across EF tasks (cEF 
component) showed an initial greater loss of DMN nodes, opposite 
to the lower performers, who appeared to rely more on VIS nodes 
instead. Interestingly, the pattern switched along the lesioning pro-
cess, with high and low performers losing visual and DMN/FPN 
nodes at the last stages of lesioning, respectively. b Performance 
scores for the shifting-specific (SHI) component proved that, even 
at rest, higher performers tend to rely more on CING and SUB net-
work nodes, whereas those same networks appear of less relevance in 

low performers, who lose them only at the last stages of lesioning. c. 
Higher and lower performers at the updating-specific (UPD) compo-
nent tended to equally rely more on bottom-up attentional networks 
(VAN), with a slight tendency for higher performers to also lose more 
DMN nodes. In the legend, brain size is indicative of the associated 
statistical significance of each finding. *AUD auditory network, cEF 
common executive function, CING cingulo-opercular network, DAN 
dorsal attention network, DMN default mode network, FPN fronto-
parietal network, ns non-significant, SHI shifting-specific factor, SMN 
sensorimotor network, SN salience network, SUB subcortical net-
work, UPD updating-specific factor, VAN ventral attention network, 
VIS visual network
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observed for the measures of EF performance. In general, 
higher correlations for EF scores were observed in MZ twins 
compared to DZ twins, suggesting very similar cognitive 
profiles across pairs of MZ twins. As a result, moderate-to-
high heritability estimates were observed for the cEF factor 
(rMZ = 0.81, rDZ = 0.22, Falconer’s value = 1.18), followed 
by the SHI (rMZ = 0.55, rDZ = 0.15, Falconer’s value = 0.79) 
and UPD (rMZ = 0.65, rDZ = 0.32, Falconer’s value = 0.68) 
components (see Table 2).

In the present work, we also asked whether the observed 
patterns of network reliance, as indexed by the average 
node loss in the first stages of lesioning (stage 1 to 4), was 
influenced by genetics and/or environmental factors. Said 
differently, we were examining whether the pattern of loss 
of nodes appears to show genetic influences. For this pur-
pose, both the Falconer’s Formula and SEMs, comparing 
the models’ fitness considering all combinations between A, 

Table 1  Patterns of network reliance as a function of EF performance

Multilevel models, accounting for dependence between twins and scanner type, were used to test the association between EF components’ scores 
and the associated number of nodes lost for each network. Associated raw beta and p values are reported across stages of matrix lesioning for all 
networks reaching the significant value (p < 0.05). The significant values surviving the FDR correction for multiple comparison over the 8 stages 
of lesioning are marked in bold. Overall, positive beta values are indicative of individuals with higher EF scores losing more nodes belonging to 
that specific resting-state network. The opposite, significant negative beta values, are indicative of individuals with lower EF scores losing more 
nodes belonging to a specific network
AUD auditory network, cEF common executive function, CING cingulo-opercular network, DMN default mode network, FPN fronto-parietal 
network, SHI shifting-specific factor, SUB subcortical network, UPD updating-specific factor, VAN ventral attention network, VIS visual network

Stages of lesioning

1st stage 2nd stage 3rd stage 4th stage 5th stage 6th stage 7th stage 8th stage

Network reliance at rest DMN cEF
b = 1.15
p = 0.036

– – – cEF
b = − 0.41
p = 0.041
UPD
b = 0.54
p = 0.034

– – –

FPN – – – – – cEF
b = − 0.3
p = 0.046

– –

VIS cEF
b = − 0.91
p = 0.037

cEF
b = − 0.53
p = 0.024

− cEF
b = 0.45
p = 0.018

− cEF
b = 0.35
p = 0.026

– –

CING – – – – SHI
b = − 0.23
p = 0.021

SHI
b = − 0.19
p = 0.044

– –

SUB – – SHI
b = 0.3
p = 0.002

– – − – SHI
b = − 0.38
p = 0.019

AUD – – – – – SHI
b = − 0.38
p = 0.006

– –

VAN – – cEF
b = 0.2
p = 0.047

UPD
b = 0.21
p = 0.039

SHI
b = − 0.22
p = 0.004
UPD
b = − 0.19
p = 0.039

UPD
b = 0.28
p = 0.004

SHI
b = 0.2
p = 0.012

–

Table 2  Heritability Estimates of EF

The extent of genetic influence on EF performances was calculated 
by means of Falconer’s formula, computed from the correlation 
between MZ and DZ twins. All three EF components showed moder-
ate-to-high genetic influences
cEF common executive function, DZ dizygotic twins, MZ monozy-
gotic twins, SHI shifting-specific factor, UPD updating-specific factor

EF components rMZ rDZ Fal-
coner’s 
Value

cEF 0.81 0.22 1.18
SHI 0.55 0.15 0.79
UPD 0.65 0.31 0.68
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Table 3  Heritability of network 
reliance at rest

The extent of genetic influences on network reliance at rest was calculated by means of Falconer’s Formula 
and structural equation models. Model selection, marked in bold in the table, was based on non-significant 
Chi-Square test and the Akaike information criterion, whereby lower values are indicative of better fit

Falconer’s formula Structural equation models

rMZ rDZ Falconer's H Comparison minus2LL df AIC p

AUD
 0.21 0.19 0.04 ACE 996.79 395 206.79 NA

AE 996.80 396 204.80 0.93
CE 996.80 396 204.80 0.90
E 997.28 397 203.28 0.78

CING
 0.20 0.25 − 0.11 ACE 1137.35 395 347.35 NA

AE 1137.55 396 345.55 0.65
CE 1137.40 396 345.40 0.82
E 1141.35 397 347.35 0.13

DAN
 0.28 0.14 0.29 ACE 960.80 395 170.80 NA

AE 960.81 396 168.81 0.93
CE 961.08 396 169.08 0.60
E 964.75 397 170.75 0.14

DMN
 0.46 0.38 0.15 ACE 1811.11 395 1021.11 NA

AE 1811.13 396 1019.13 0.90
CE 1811.30 396 1019.30 0.66
E 1815.23 397 1021.23 0.13

FPN
 0.40 0.28 0.23 ACE 1322.36 395 532.36 NA

AE 1327.02 396 535.02 0.03
CE 1329.61 396 537.61 0.01
E 1330.79 397 536.79 0.01

SMN
 0.15 0.20 − 0.11 ACE 1821.84 395 1031.84 NA

AE 1822.48 396 1030.48 0.42
CE 1823.00 396 1031.00 0.28
E 1823.54 397 1029.54 0.43

SN
 0.23 0.22 0.01 ACE 1146.22 395 356.22 NA

AE 1146.48 396 354.48 0.62
CE 1146.50 396 354.50 0.60
E 1146.50 397 352.50 0.87

SUB
 0.12 0.18 − 0.12 ACE 778.22 395 − 11.78 NA

AE 778.22 396 − 13.78 0.94
CE 778.22 396 − 13.78 0.97
E 778.39 397 − 15.61 0.92

VAN
 0.16 0.19 − 0.05 ACE 726.57 395 − 63.43 NA

AE 728.98 396 − 63.02 0.12
CE 727.99 396 − 64.01 0.23
E 729.83 397 − 64.17 0.20

VIS
 0.32 0.23 0.19 ACE 1696.06 395 906.06 NA

AE 1696.82 396 904.82 0.38
CE 1697.30 396 905.30 0.27
E 1697.62 397 903.62 0.46
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C and E components, were run. As shown in Table 3, both 
the Falconer’s Formula and the model selection based on 
non-significant Chi-Square and low AIC values reveal the 
presence of genetic influences for 3 networks: the DAN, the 
DMN and the FPN. For the DAN network, the Falconer’s 
Formula reveals a MZ correlation that is double that of DZ 
twins’ pairs (rMZ = 0.28, rDZ = 0.14, H = 0.29). The pair-
wise model comparison dropping A resulted in poorer model 
fit, as well as the model comparison dropping A and C. This 
suggests a significant contribution of genetic components 
to the phenotype, which is supported by the best model fit 
being the one combining the A and E components. A similar 
pattern was observed for the DMN, where the MZ correla-
tion remained higher than the DZ correlation (rMZ = 0.46, 
rDZ = 0.38, H = 0.15), suggesting a genetic contribution. 
Again, the pairwise model comparison revealed the AE 
model as the one with the smallest prediction error and it 
was hence preferred over all other combinations. Finally, a 
slightly more complex scenario was observed for the FPN. 
As for the DAN and DMN, the correlation between MZ twin 
pairs was still higher than that of DZ twins (rMZ = 0.40, 
rDZ = 0.28, H = 0.23). However, a drop in model fit was 
observed whenever one of the three parameters (A, C or 
E) was removed from the model, suggesting that the best 
prediction could be achieved only when their combined con-
tribution was considered.

Interestingly, these findings were replicated across dif-
ferent matrix thresholding, specifically from 80 to 60% 
thresholding, for both the DAN, DMN and FPN. SEMs 
results along all ranges of matrix thresholding are reported 
in Table S1 of the Supplementary Materials. The complete 

patterns of network lesioning for the 3 networks showing 
genetic influences are also displayed in Fig. 3.

Discussion

In the present study, we expand the current knowledge of 
the relationship between brain and cognition by quantifying 
how, within a large set of neurologically normal individu-
als, one’s level of EF performance is associated with the 
differential load upon brain networks at rest. The notion that 
specific cortical activation patterns are observed as a func-
tion of the individual EF abilities, as assessed outside the 
scanner, has already been shown in the literature (see for 
example Reineberg et al. 2015, 2018; Reineberg and Banich 
2016). These patterns of activity extend beyond the tradi-
tionally recognized frontal and parietal regions, involving 
subcortical and lower-level regions (Jurado and Rosselli 
2007; Bettcher et al. 2016), whereby individuals with higher 
cognitive performance appear to benefit from more distrib-
uted resting-state network activity (Reineberg et al. 2015). 
An example of this diffuse processing is represented by 
the different network-to-network interactions that underlie 
individual differences in aspects of higher-level cognition, 
which have been reported both during resting-state condi-
tions (Tian et al. 2013; Roye et al. 2020; Jolles et al. 2020), 
as well as during online task execution (Kelly et al. 2008; 
Sala-Llonch et al. 2012; Zhang et al. 2019).

Notably, several sources of evidence have shown that 
the functional patterns associated with behavior, usu-
ally detected via task fMRI, can be reliably detected via 

* AIC Akaike Information criterion, AUD auditory network, CING cingulo-opercular network, DAN dor-
sal attention network, df degrees of freedom, DMN default mode network, FPN fronto-parietal network, 
minus2LL minus 2 log likelihood value; SMN sensorimotor network, SN salience network, SUB subcortical 
network, VAN ventral attention network, VIS visual network

Table 3  (continued)

Fig. 3  Phenotypic similarity across MZ and DZ twins. The average 
number of nodes lost for the FPN, DAN and DMN network along the 
8 stages of matrix lesioning is shown. The greater the similarity in 
the profiles between MZ and DZ siblings, the narrower the shadowed 

area in-between profiles. *FPN fronto-parietal network, DAN dorsal 
attention network, DMN default mode network, MZ monozygotic, DZ 
dizygotic
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resting-state fMRI as well (Smith et al. 2013; Vidaurre et al. 
2021). Indeed, recent work has unveiled this tight linkage 
providing the feasibility of reliably predicting interindivid-
ual differences via the mapping of resting-state components 
to task-evoked activity, showing the application of a wide 
range of machine learning tools for the prediction of behav-
ior via rest data (Parker Jones et al. 2017; Cohen et al. 2020). 
Moreover, recent evidence also suggests that the capacity 
of resting-state data to accurately identify regions typically 
associated with behavior, e.g., language areas, might even 
be superior to what exploited via task-evoked activity (Park 
et al. 2020). In another study, the observed close correlation 
between task activity and the amplitude in fluctuation of the 
resting-state signal has been suggested as a possible ration-
ale for the implementation of resting-state fMRI analysis as 
a possible proxy to determine task activity in non-compliant 
patients’ populations, where task fMRI testing is not possi-
ble (Kannurpatti et al. 2012). Taken together, all those lines 
of evidence support the existence of a strong relationship 
between networks behavior at rest and the unique profile of 
the individual (Finn et al. 2015).

In this study, we hypothesized that individuals would dif-
fer in their reliance on brain networks as function of their 
executive function ability and that this relationship would be 
reflected by our in silico lesioning approach. In particular, 
our logic was that networks for which the individuals showed 
higher reliance during rest and hence greater intra- and inter-
network connectivity, as indexed by the graph theory metric 
of nodal degree, would be lost at the first stages of lesioning. 
For each of our cumulative measures of EF, specifically cEF, 
SHI and UPD, we were indeed able to observe distinguish-
able patterns, which we will discuss below.

For our cEF factor, we observed a tendency for a positive 
association between performance scores and the amount of 
nodes lost in the first stages of lesioning belonging to the 
DMN and VAN, whereas lower performance scores showed 
a tendency toward the preferential loss of nodes belonging to 
the VIS network instead. Interestingly, this pattern appeared 
to switch halfway through the stages of lesioning, such as 
that high performers lost VIS nodes only at the later stages 
and, vice versa: low cEF performers lost DMN, FPN and 
marginally VAN nodes at the last stages (Fig. 2a). How-
ever, because these findings did not survive the correction 
for multiple comparisons, great caution is advised in their 
interpretation, which we will discuss only for completeness 
and future reference. Indeed, the plausibility of the existence 
of discernable patterns as a function of performance abili-
ties, has already been addressed (Reineberg et al. 2018). In 
this regard, prior studies have demonstrated that the DMN 
is involved not only in internal processes such as memory 
retrieval or mind wandering (Buckner and Carroll 2007; 
Hongkeun 2010; Spreng et al. 2010; Sestieri et al. 2011), but 
it also actively cooperates with other networks in sustaining 

high-order cognitive processes (Elton and Gao 2015), useful 
for the formation of chains of thoughts (Spreng et al. 2010) 
and in supporting goal-directed behavior (Smallwood et al. 
2012). In line with this interpretation, greater DMN activ-
ity at rest is associated with better task performance (for a 
review see Anticevic and colleagues (Anticevic et al. 2012)). 
In contrast, the more the DMN activity is suppressed dur-
ing a task, the more the activity of visual and sensory areas 
tends to emerge (Greicius and Menon 2004), such as that 
the greater the overall decoupling between VIS and DMN 
nodes, the better the performance at cognitive tasks, such 
as memory recall (Zhang et al. 2019). On the other hand, 
reduced activation of the DMN in favor of abnormal activ-
ity in the VIS network has been associated with important 
attentional deficits, as those observed in individuals suffer-
ing from Attention Deficit Hyperactivity Disorder (ADHD) 
(Hale et al. 2014). Taken together, we speculate that lower 
cEF performers might be more driven by external sensory 
inputs resulting in greater functional connectivity at rest 
between VIS nodes.

Differently from what was observed for the cEF compo-
nent, shifting-specific scores, after correcting for multiple 
comparisons, were associated with differences between high 
and low performers mainly with regards to the involvement 
of networks mediating attentional processes and bottom-
up/automatized behavior. In particular, we observed that 
individuals with higher SHI scores showed greater reliance 
on the SUB network (whose nodes were lost at the begin-
ning of the lesioning process) and less reliance on the VAN 
(nodes were lost only at the last stages of lesioning), whereas 
individuals with lower SHI scores lost both AUD and VAN 
nodes in the last stages of lesioning. In addition, we also 
observed a tendency (that did not survive multiple com-
parisons) toward the loss of CING and SUB nodes in lower 
performers at the last stages, suggesting a less central role of 
those networks at rest (Fig. 2b). In line with this observation, 
studies on both healthy and pathological populations have 
reported a link between subcortical structures, especially the 
basal ganglia and the thalamus, and an individual’s capacity 
to proficiently switch one’s attentional focus (Ravizza and 
Ivry 2001; Green et al. 2017). Similarly, the connectivity 
of the anterior cingulate cortex with the prefrontal cortex 
is thought to help sustain high-order cognitive processes 
by enabling a transition from”thoughts to actions” (Paus 
2001). On the other hand, VAN activity mediates the ability 
to attend to relevant sensory stimuli, particularly relevant in 
attentional shifting (Corbetta et al. 2008). Finally, the CING 
network has also been proposed to mediate alertness levels 
in the absence of predictive stimuli, such as that the greater 
its pre-stimulus activity, the faster the response times upon 
stimulus presentation (Coste and Kleinschmidt 2016). As 
such, it may be that greater connectivity at rest in nodes 
mediating attentional-relevant processes may allow for an 
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individual to promptly respond to, and to switch between, 
different stimuli.

Finally, we investigated whether differences in network 
reliance could also be observed for the updating-specific 
component of the unity-diversity model (Friedman and 
Miyake 2017). In this case, UPD performance scores were 
mostly related to nodes belonging to the VAN network, 
when associations were corrected for multiple comparisons. 
This pattern was present in form of a significant positive cor-
relation between the number of VAN nodes lost and the indi-
vidual performance scores, which might suggest that higher 
UPD performers might benefit from greater network reliance 
upon this network, whose activity is relevant in mediating 
contextual updating and modulation of top-down processes 
(Geng and Vossel 2013). In addition, although not surviv-
ing correction for multiple comparisons, we also observed 
that individuals with higher scores tended to present greater 
involvement of the DMN network at the central stages of 
lesioning (Fig. 2c). A possible link between higher UPD 
abilities and the activity of the DMN is represented by the 
reported positive association between the extent of DMN 
network engagement and the greater levels of thought’s 
details during a working memory task (Sormaz et al. 2018; 
Turnbull et al. 2019).

A second aim of the present study was to address if the 
observed interindividual differences in brain and behavior 
might be explained by genetic influences, as exploited via 
Falconer’s Formula and SEMs’ pairwise comparison. SEMs 
were run to compare the efficacy of 4 models, iteratively 
considering all possible combinations between the A, C and 
E factors to respectively determine the influence of genetic, 
common and unique environmental influences on the trait 
of interest. Our results suggest the presence of genetic influ-
ences in the lesioning patterns of the DAN, DMN and FPN 
networks across a range of matrix thresholding scenarios. 
Interestingly, all three networks showing genetic influences 
are well-established cognitively relevant networks, with a 
strong role in determining EF abilities, as discussed above. 
Furthermore, we were able to replicate prior evidences of the 
strong genetic origin of EF abilities via the simpler imple-
mentation of the Falconer’s Formula, used to compare MZ 
and DZ measures based on the assumption that higher cor-
relation between MZ twins, compared to DZ twins, is indica-
tive of a genetic contribution to the measure at hand. It is, 
however, important to consider that the estimates made by 
the model on the role of additive genetic and environmental 
components on a given trait are specific to the population 
being tested (Mayhew and Meyre 2017). As a result, if any 
alteration is present in one of the component (genetic or 
environmental) as a result of sampling, this will be reflected 
in the model’s results as well (Mayhew and Meyre 2017).

Prior work was able to detail the complex heterogeneity 
of genetic influences in the brain, and in particular how it 

correlates with the resting-state networks (Richiardi et al. 
2015), proving higher heritability for within, rather than 
between, regions in the brain serving similar functional roles 
(Reineberg et al. 2019). It is worth mentioning that prior 
studies have highlighted the issue that heritability estimates 
might be more difficult to exploit in the absence of long scan 
times (Menardi et al. 2021). Because this is a common issue 
in neuroimaging studies, a recent investigation has suggested 
a possible way to overcome this via the combination of task 
and rest fMRI data, to obtain a measure known as “general 
functional connectivity” (GFC), which has shown to entail 
stronger test–retest reliability and to display higher herit-
ability estimates compared to when only rest or task fMRI 
data are analyzed (Elliott et al. 2019). It would be of interest 
for future studies to apply in silico lesioning considering 
GFC measures.

Limitations

Overall, our study is not free of limitations. First of all, one 
might argue that the majority of the cited evidence in favor 
of a given network preponderance in explaining cognitive 
differences comes from studies looking at task fMRI data, 
whereas all our inferences come purely from rs-fMRI. As 
such, it might be challenging to assume that interindividual 
differences at rest could still hold any value in explaining 
task-related behavior. Nevertheless, a recent study investigat-
ing the replicability and reliability of fMRI data on a large 
dataset was able to prove how interindividual differences in 
the functional connectome are persistent across resting state 
and 7 different task-related scan acquisitions, spanning EF, 
motor, social and emotional tasks (Shah et al. 2016). This 
evidence supports that what is observed during the resting 
state is indeed characteristic of individual differences that 
shape intra and inter-network connections, which ultimately 
determine behavior. Of course, not all the brain areas show 
such heterogeneous profiles across individuals, but all the 
regions that do predict cognitive differences belong to areas 
of the brain with high variability (Mueller et al. 2013).

A second limitation of the present study is that our 
approach allows us to discern reliance on specific net-
works as a function of EF performance but not within 
regions of the same network, and also not with regards to 
hemispheric differences. For instance, prior studies have 
proven the existence of a right-hemispheric bias during 
selective attention tasks (Shulman et al. 2010), and a left 
hemispheric bias for task switching performance (Kim 
et al. 2012; Ambrosini and Vallesi 2016). One possibility 
is that our approach applied to resting-state data might 
present sufficient sensitivity, but diminished specificity, 
to detect the intrinsic and finer grade linkages of behavior 



60 Brain Structure and Function (2022) 227:49–62

1 3

to network reliance, which might otherwise be more easily 
examined via task-evoked activity instead.

Finally, while the high interindividual variability across 
our participants has allowed us to detect interesting dif-
ferences in the brain–behavior continuum as a function of 
their cognitive performance, on the other hand it might 
have diminished the statistical strength of some of our 
findings. In particular, only some of the results survived 
FDR correction. Nevertheless, we believe that providing 
the reader with all our findings can help point to meaning-
ful patterns, which would have otherwise been obscured 
by using more stringent corrections. Nonetheless, it would 
be advisable to attempt to replicate our findings in future 
studies.

Conclusions

The present study adds knowledge on the relationship 
between the individual organization of the functional con-
nectome at rest and interindividual differences in EF. In 
particular, we show that discernable patterns of preferen-
tial network reliance can be demonstrated as a function of 
EF performance, as revealed through an in silico lesion-
ing approach of the functional connectome. Furthermore, 
while interindividual differences in EF showed high herit-
ability estimates in our sample, replicating prior findings 
in the literature, heritability estimates of reliance on spe-
cific rs-fMRI networks as a function of level of EF were 
more modest.
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