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ABSTRACT: Deoxygenative hydrogenation of amides to amines
homogeneously catalyzed by a complex of an Earth-abundant metal is
presented. This manganese-catalyzed reaction features high efficiency
and selectivity. A plausible reaction mechanism, involving metal−
ligand cooperation of the manganese pincer complex, is proposed
based on NMR studies and relevant stoichiometric reactions.
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Metal−ligand cooperation (MLC) is a powerful activation
mode in transition-metal catalysis, which has fascinated

chemists for many years.1 It has grown into, and will continue
to be, a popular and flourishing research field. In this regard,
our group developed a mode of MLC involving aromatization/
dearomatization by metal pincer complexes, which found
broad applications in the activation of C−H, N−H, O−H, B−
H, B−B, Si−H, as well as H−H bonds.2 This novel bond
activation mode enables the environmentally benign, sustain-
able synthesis of numerous important and useful chemicals
from simple starting materials. However, in most of those
reactions, complexes of precious metals are used. Currently,
there is growing research interest in the development of
catalytic reactions based on complexes of Earth-abundant
metals.3 In 2016, our group reported the manganese-catalyzed
acceptorless dehydrogenative coupling of alcohols and amines
to aldimines.4a Seminal works employing manganese-based
pincer complexes were subsequently disclosed by the groups of
Beller, Kempe, Kirchner, and others, including the dehydro-
genation of alcohols4b−e,5 and hydrogenation of ketones,6

esters,4f,7 and C−N bond hydrogenolysis of amides,8 as well as
conjugate addition of nonactivated nitriles.4g

Amine skeletons are prevalent in many biologically
important natural products, pharmaceuticals, and agrochem-
icals. They also serve as versatile building blocks in organic
synthesis, which can be easily elaborated into various fine and
useful complex molecules.9 In addition, amines are widely used
as dyes, surfactants, anticorrosive agents, detergents in
industrial production.9 Given the importance of amine
compounds, the development of effective protocols for their
synthesis is highly desirable. In this context, deoxygenative
hydrogenation (reduction) of amides (C−O bond cleavage)

represents a straightforward method to access the correspond-
ing amines.10

Conventional methods for the deoxygenative reduction of
amides to amines are largely based on the use of (over)-
stoichiometric amounts of reductants such as lithium
aluminum hydride (LiAlH4), silanes, or boranes.

10 However,
these methods suffer from the hazardous reductive agents,
tedious workup procedures, and generation of a large amount
of waste. To address these issues, catalytic deoxygenative
reduction of amides using hydrogen as the terminal reductant,
forming water, is ideal. The relatively low electrophilicity of the
amide carbonyl group and the competitive C−N bond cleavage
(deaminative reduction) make this transformation more
challenging, compared to the hydrogenation of aldehydes,
ketones, and esters. While heterogeneously catalyzed deoxy-
genative reduction of amides were reported,11 they were often
stricken with high pressure,11f−i high temperature,11a,b,f,g and
poor selectivity.11a,d,e Only few reports of homogeneously
catalyzed reaction were disclosed during the past decade
(Scheme 1a).12 Homogeneously catalyzed reactions are
generally attractive, because of potential high selectivity and
being more amenable for mechanistic understanding. In 2007,
Cole-Hamilton and co-workers reported a ruthenium-triphos
complex-catalyzed hydrogenation of amides to primary and
secondary amines with good to excellent selectivities.12a,b

Later, the Klankermayer group synthesized a rationally
designed ruthenium-triphos η4-trimethylenemethane complex
and successfully applied it to the hydrogenation of lactams.12c

Shortly after, similar ruthenium-based catalytic systems were
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disclosed by the groups of Beller12d and Zhou,12e using
Yb(OTf)3·H2O and BF3·OEt2 as the additives, respectively. In
addition, the Zhou group also described a selective
deoxygenative hydrogenation of amides catalyzed by an
iridium pincer complex, where B(C6F5)3 was used as the
Lewis acid additive.12f Despite these advances, all the above
transformations are using catalysts based on the precious
metals ruthenium or iridium. The development of novel
methods for the deoxygenative hydrogenation of amides
without noble metals is of great importance.
As part of our ongoing research program on sustainable

homogeneous catalysis, we herein report a more environ-
mentally benign strategy for the deoxygenative hydrogenation
of amides catalyzed by a pincer complex of Earth-abundant
manganese (Scheme 1b). We envisioned that the dearomatized
manganese complex 1 could heterolytically split dihydrogen via
MLC, and the resulting manganese hydride will hydrogenate
amides to amines with the aid of a proper Lewis acid. To the
best of our knowledge, there has hitherto been no report on
deoxygenative hydrogenation of amides to amines homoge-
neously catalyzed by a complex of a base metal.
Our initial studies were focused on examining the feasibility

of the deoxygenative hydrogenation of N-phenylbenzamide
(2a) and optimization of the reaction conditions for the
application to various amides. Encouragingly, the hydro-
genation of 2a did indeed occur in the presence of the
manganese PNP complexMn-I5e (5 mol %), tBuOK (6 mol %)
and one equivalent of BPh3 under 50 bar H2 at 150 °C in m-
xylene, to afford the desired product N-benzylaniline (3a) in
53% GC yield after 72 h (Table 1, entry 1). The
transformation is highly selective and only trace amounts of
the C−N bond cleavage products aniline (<1%) and benzyl
alcohol (<1%) were detected by GC (see the Supporting
Information for details). Control experiments indicated that
without manganese complex or Lewis acid no hydrogenation
reaction occurred (entries 2 and 3). Encouraged by this
promising result, we started to optimize the reaction
conditions to improve the conversion and yield. Two
manganese PNNH complexes Mn-II4c,f and Mn-III4d showed
lower catalytic performance and produced the product in 23%
and 37% yield, respectively (entries 4 and 5). Lowering the
reaction temperatures led to dramatically decreased con-
versions and yields (entries 6 and 7). Interestingly, both
conversion and yield were increased by using the stronger
Lewis acid B(C6F5)3 as the additive (74% conversion and 63%
yield, entry 8). Further screening the solvents indicated that
dioxane and THF were not suitable reaction media, probably
due to their coordination to B(C6F5)3 (entries 9 and 10).
Increasing the Lewis acid loading to 1.5 equiv provided the

best results: 95% conversion and 89% isolated yield of product
3a (see entry 11). Under shorter reaction time (48 h), the
reaction efficiency was slightly decreased (see entry 12).
Next, we selected the conditions of entry 11 to examine the

generality of this catalytic hydrogenation system by evaluating
a variety of amides. As highlighted in Table 2, benzamides
bearing substituents of different electronic nature on the N-
phenyl group were applicable to this reaction, and the
corresponding secondary amines 3a-3f were obtained in
good to excellent isolated yields (Table 2, entries 1−6). The
hydrogenation of N-benzyl-, cyclohexyl-, and hexyl-benzamides
in 2g−2i also proceeded smoothly to give the desired products
in good yields (68%−83% yields, entries 7−9). Aliphatic N-
phenyl amides such as N-phenylacetamide (2j), N-phenyl-
propionamide (2k) and N-phenylisobutyramide (2l) were
compatible with the optimal conditions, furnishing the
products 3j−3l in 52%−70% isolated yields (entries 10−12).
Notably, the lactams 2-pyrrolidinone (2m) and 2-piperidinone
(2n) were also suitable substrates, and good results were
observed (entries 13 and 14). Deoxygenation of formamides
resulted in low yields (see the SI for details). In order to
further extend the substrate scope, we evaluated the reaction of
the tertiary amide 2o; deoxygenative hydrogenation also
occurred to give the fully aliphatic tertiary amine 3o, albeit
in lower conversion (47%) and yield (21%) (entry 15).
Significantly, all the reactions selectively gave the C−O bond
cleavage products.
In order to get some insight into the mechanism of this

transformation, we first treated complexMn-I with 1.2 equiv of

Scheme 1. Transition-Metal-Catalyzed Deoxygenative
Hydrogenation of Amides to Amines

Table 1. Optimizing of the Reaction Conditionsa

entry Mn BR3 solvent conversionb (%) yieldb (%)

1 Mn-I BPh3 m-xylene 53 53
2 BPh3 m-xylene <5 0
3 Mn-I m-xylene 0 0
4c Mn-II BPh3 m-xylene 38 23
5c Mn-III BPh3 m-xylene 45 37
6d Mn-I BPh3 m-xylene 26 24
7e Mn-I BPh3 m-xylene 19 20
8 Mn-I B(C6F5)3 m-xylene 74 63
9 Mn-I B(C6F5)3 dioxane 23 17
10 Mn-I B(C6F5)3 THF <1 0
11f Mn-I B(C6F5)3 m-xylene 95 95 (89)
12f,g Mn-I B(C6F5)3 m-xylene 89 75

aReaction conditions: 2a (0.2 mmol), Mn cat. (5 mol %), tBuOK (6
mol %), Lewis acid BR3 (0.2 mmol), H2 (50 bar), and solvent (1.0
mL) at 150 °C (bath temperature) for 72 h. bConversions and yields
were determined by GC analysis using biphenyl as an internal
standard; isolated yield is given in parentheses. c12 mol % of tBuOK
was used. dReaction was performed at 130 °C. eReaction was
performed at 110 °C. fB(C6F5)3 (0.3 mmol) was used. gReaction was
performed for 48 h.
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tBuOK at room temperature in THF, upon which the
transparent yellow solution immediately changed to a dark
brown homogeneous solution (Scheme 2b; see SI for details)

and two sharp AB doublets appeared at δ = 81.03 (2JP−P = 79.9
Hz) and 68.04 (2JP−P = 79.9 Hz) ppm in the 31P NMR (THF
as the solvent), attributable to complex 1 (Scheme 2a).13

Recrystallization of 1 gave the new N2-bridged dinuclear
manganese complex 5 (N2 is from the glovebox), the only
example of a dearomatized N2-bridged complex (Scheme 2a).
The bond lengths of C6−C7 and C27−C28 are 1.385 and
1.384 Å, respectively, which clearly indicate double-bond
characters.14

On the other hand, upon treatment of the above reaction
mixture with 1 atm dihydrogen, an orange solution was formed
(Scheme 2b), generating the new hydride complex 4, as
indicated by the 31P{1H} NMR spectrum in THF, which
exhibited a singlet at δ = 111.77 ppm (see the SI for details),
and the 1H NMR spectrum exhibited a hydride resonance at δ
= −4.34 ppm (t, 2JP−H = 48.5 Hz). The IR spectrum of 4
showed two strong absorption bands at 1878.4 (νasym) and
1804.0 cm−1 (νsym). The structure of complex 4 was further
confirmed by X-ray crystal analysis.14 Importantly, when
complex 4 was employed as catalyst for the hydrogenation of
amide 2a, full conversion was observed and the product 3a was
isolated in 91% yield (see Scheme 3).
We also examined the manganese complex Mn-I catalyzed

hydrogenation of the imine N-benzylideneaniline 6.15 As

Table 2. Deoxygenative Hydrogenation of Amides 2 to
Amines 3 Catalyzed by Mn-I

aReaction conditions: 2 (0.2 mmol), Mn-I (5 mol %), tBuOK (6
mol %), B(C6F5)3 (0.3 mmol), H2 (50 bar), and m-xylene (1.0 mL) at
150 °C (bath temperature) for 72 h. bConversions were determined

Table 2. continued

by GC analysis using biphenyl as an internal standard. cYields of
isolated products after flash chromatography. dYields were deter-
mined by GC analysis using biphenyl as an internal standard.

Scheme 2. (a) Dearomatization of Mn-I, Activation of H2 by
Complex 1, and Related X-ray Crystal Structures and (b)
31P NMR Spectra
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shown in Table 3, the hydrogenation of 6 did occur under the
above optimal hydrogenation conditions, without Lewis acid,

resulting in 60% conversion within 24 h and the amine 3a was
isolated in 51% yield (Table 3, entry 1). Prolonging the
reaction time to 72 h, the conversion was increased to 80%
(entry 2). When 0.2 equiv of B(C6F5)3 was used, the reaction
reached 88% conversion within 48 h (entry 3). Increasing the
loading of B(C6F5)3 to 0.5 equiv, 100% conversion was
recorded and the desired product was isolated in 81% yield
(entry 4). These results indicate that imine 6 could be an
intermediate in the hydrogenation of amide 2a, and Lewis acid
may also accelerate the hydrogenation of the imine.16

Based on our experimental results and previous work, we
propose a possible reaction mechanism for the Mn-catalyzed
deoxygenative hydrogenation of amides. As we have shown, in
the presence of tBuOK, the pincer complex Mn-I undergoes
deprotonation to give the dearomatized complex 1, which is
very likely the actual catalyst (Scheme 4). Subsequently,
complex 1 heterolytically splits dihydrogen by MLC,
generating the aromatized complex 4. The carbonyl group of
the Lewis acid activated amide 7 then may electrophilically
attack the Mn−H moiety of the coordinatively saturated 4
through an outer-sphere pathway, leading to formation of the
hemiaminal intermediate 9 via transition state 8.17 Later, the
Lewis-acid-assisted dehydration of 9 occurs to produce imine
6, accompanied by the regeneration of the dearomatized
complex 1.18 Once imine 6 is formed, it may react with the
hydride complex 4 to afford intermediate 11 through transition
state 10 via a similar outer-sphere process.16 At last,
elimination of the desired product 3a from 11 releases the
complex 1, which then re-enters the catalytic cycle.
In conclusion, we have developed the first Earth-abundant-

based metal complex for homogeneously catalyzed deoxy-
genative hydrogenation of amides to amines. This synthetically
important, highly selective C−O bond cleavage reaction is
catalyzed by a dearomatized pincer complex of manganese. A

plausible catalytic cycle, involving metal−ligand cooperation, is
supported by nuclear magnetic resonance (NMR) studies,
stoichiometric reactions, X-ray crystallography, and isolation of
plausible intermediates. Further detailed mechanistic inves-
tigations and applications of this methodology are underway in
our laboratory, and will be reported in due course.
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Scheme 3. Deoxygenative Hydrogenation of Amide 2a
Catalyzed by Complex 4

Table 3. Hydrogenation of Imine 6 Catalyzed by Mn-I

entrya B(C6F5)3 t (h) conversionb (%) isolated yieldc (%)

1 24 60 51
2 72 80 72
3 0.2 equiv 48 88 83
4 0.5 equiv 48 100 81

aReaction conditions: 6 (0.2 mmol), Mn-I (5 mol %), tBuOK (6
mol %), H2 (50 bar), and m-xylene (1.0 mL) at 150 °C (bath
temperature). bConversions were determined by GC analysis using
biphenyl as an internal standard. cYields of isolated products after
flash chromatography.

Scheme 4. Proposed Reaction Mechanism for Manganese-
Catalyzed Deoxygenative Hydrogenation of Amides to
Amines
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